
A note on compiling arithmetic expressions
J. S. Rohl and J. A. Linn
Department of Computer Science, The University, Manchester M13 9PL

This note describes a technique for compiling arithmetic expressions to minimise temporary storing
on a single accumulator machine.
(Received March 1970, Revised July 1971)

Most algorithms for compiling arithmetic expressions regard
the operators + and — as being essentially the same: in the
ALGOL Report they are given the same precedence, in an
Operator Precedence context they have the same precedence
relations. They have, though, some important differences:
minus is neither commutative {a — b # b — a), nor associ-
ative (a — (b — c) # (a — b) — c). Similar differences apply
between * and /.
In the field theory sense, there are two binary operators +

and *; the 'reciprocal' operators — and / are unary. The
expression a — b is a convenient shorthand for a H— b, and
ajb a shorthand for a*/b. (Note that this automatically gives
the ALGOL interpretation to a/b/c.) These two binary oper-
ators are both commutative and associative so that terms of an
expression can be reordered at will, as can the factors of a
term. Consider first the terms of an expression. For example,
using the symbol = to show the equivalence between short
and long-hand, and ^ to indicate transformation:

a - b — c*d = a H b H c*d~>
-c*d -\ b + a = —c*d — b + a

It is the purpose of this note to point out that the same trans-
formation can be produced by regarding all operators as being
unary, and an expression as a concatenation of 'signed' terms.
First it is necessary to insert, where applicable, an implicit +
in front of the first term.

a - b - c*d = + a - b - c*d=> -c*d - b + a

The implicit + is added in the examples below.

Phase 1
There are, of course, a number of transformations of any
expression: the object is to produce a transformation which can
be easily compiled into optimum code in the sense of minimis-
ing the storage of temporary results. The transformation may
be performed explicitly and the transformed expression com-
piled by some other algorithm; alternatively, it may be merged
with the compiling algorithm so that code corresponding to the
transformation is produced. When we consider the transform-
ation process separately then the optimum transformation is
one which can be compiled optimally by a left-to-right
algorithm.
Such a transformation algorithm is straightforward:

1. If the expression is a single term then the transformed
expression is the same.

2. If the first term is not simple! (i.e. not a scalar, array
element or constant) then the transformed expression is the
same.

3. Otherwise, treat the rest of the terms as an expression
(using these rules recursively) and then append the first
term.

Thus, assuming all the named quantities to be scalars:

+ Z3> +Z
+ a + b

+ 2*x + 1
+1 + 2*x

-a + b +
fO + 4*/l

+ x - y2

+ b + a
+ 2*x + 1
+ 2*x + 1
+ c*d + b — a
+ 4*/l +/2+/0

Note that even when a transformation does actually occur (as
in the second example above) the resulting expression does not
necessarily give rise to the better code. Note also that, as in the
last example above, the algorithm is as likely to produce a
leading negated term as it is to eliminate it. We will return to
this point later.

Similar manipulations can be performed at a lower level on
the factors of a term. We must, however, postulate (for the
moment) the existence of a unary multiplication operator and
again will add it to all our examples. Thus we regard the term
c*d*e2 as *c*d*e2, which is a combination of the signed factors
*c, *d, *e2 which may be reordered at will. A similar algorithm
to that used on the terms of an expression would produce for
the above example *ez*d*c, which is the optimal form for
compilation.
This manipulation is likely to produce an initial division

operator. For example, *2*x/y EE> /y*x*2. Clearly this is not
in an optimal form (even less so than the original) unless a
machine is provided with a 'load the reciprocal' order and
(remembering that each term is signed) with a 'load the negative
of the reciprocal' order. This is, of course, unlikely, but in any
case a further transformation avoids the problem.

Phase 2

Phase 2 is required to transform any term whose initial factor
includes a division sign.
This initial division can be replaced by a multiplication and its

effect promulgated as follows:
1. Replace the initial division and all those divisions up to the

next multiplication by multiplications.
2. Replace this multiplication (there will always be one) by a

reverse divide operator (jfi).
3. Leave all following operators unaltered.

Thus
*2*x/y s> /y*x*2 => *y<j>x*2 .

An interesting side effect is that strings of divisions can be
replaced by one reverse division and a string of multiplications.
As an (unlikely) example:

*a/b/cld/e^leldlclb*a s> *e*d*c*b(j>a.

The final result is the same as that obtained from the more
usual way of writing such an expression, since

*a/(*b*c*d*e) E=> j{*e*d*c*b)*a => *(*e*d*c*b)<t>a

tMore precisely a simple term is one which does not require the accumulator of the machine for its evaluation.

Volume 15 Number 1 13

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/15/1/13/418304 by guest on 19 April 2024



and the brackets in this final form are trivially recognised as
redundant.
The initial minus can be eliminated by an equivalent pro-

cedure so that, for example — 1 + / s> 1 9 i. There is no guaran-
tee, however, that there will be a plus sign to convert to a
reverse minus. Consider, for example, —b — a. The algorithm
would never reach beyond stage 1 and would produce a + b
which is, of course, the negative of the required expression.
This situation is comparatively rare and the simplest solution
is to negate the result. This may be necessary, for example,
where the expression is to be exponentiated or used as an
exponent. More often the effect of this negation can be pro-
pogated. There are two cases:

1. The expression is enclosed within brackets as an operand of
another larger expression. The negation can be effected by
reversing the plus or minus sign of the term containing this
expression. For example:

+y + (-a - b) => + (-b - a) + y EE> (£ + a) 9y
+y - (-a - b)m> -(-b - a) + y^>{b + a)+y

where the brackets on the final expression are of course
redundant.

2. The expression is to be assigned (either explicitly in an
assignment statement or implicitly in the parameter of a
procedure call).

First we expand our view from expressions to assignments.
The left-hand side variable is moved to the right-hand side
with the store operator. Thus:

z = + x + y ^ +y + x => z
The rules for phase 2 as applied to the terms of an expression
can be more explicitly stated:

1. Replace the initial minus sign and all those minus signs up
to a plus or store by plus signs.

2. Replace this plus or store by reverse minus or store negative
respectively.

3. Leave any following operator above.
For example:

x = — a — b ^ — b — a=>x^+b + a-^>x
Thus the full algorithm assumes an order code with operators
for LOAD, + , -,*,l,0,4>,=> and -=>.

Implementation

As noted earlier, the transformation described above may not
necessarily be performed: instead the compilation may be such
that object program corresponding to the transformation is
produced. The algorithm in this form has been implemented
in a compiler to validate the ease of compilation into the order
code of a new machine, MU5 (Kilburn, Morris, Rohl, and
Sumner, 1968) being built in this department, and for an Atlas
Autocode Compiler for the ICL 1900 Series. Since it requires a
structural knowledge of any statement (whether a term is

References
BROOKER, R. A., MORRIS, D., and ROHL, J. S. (1967). Compiler Compiler Facilities in Atlas Autocode, The Computer Journal, Vol. 9, No. 4.
KILBURN, T., MORRIS, D., ROHL, J. S., and SUMNER, F. H. (1968). A System Design Proposal, Proc. IFIP 1968.
MORRIS, D., WILSON, I. R., and CAPON, P. C. (1970). A System Program Generator, The Computer Journal, Vol. 13, No. 3.
SHERIDAN, P. B. (1959). The Arithmetic Translator—Compiler of the IBM Fortran Automatic Coding System, CACM, Vol. 2, No. 2.

simple and so on) the algorithm is suited to a syntax directed
approach, and the compilers have been written using the
Compiler Compiler facilities of Atlas Autocode (Brooker,
Morris, and Rohl, 1967) and SPG (Morris, Wilson, and Capon,
1970) respectively. Measurements on the first compiler indicate
that compiling time generally increases by 10%, as compared
with a straightforward, less efficient algorithm.
Some of the compilers for the MU5 machine will use the

algorithm directly, since all the compilers will produce a
common target language (CTL) as output rather than machine
code. This CTL is at a fairly high level but contains no pre-
cedence rules so that the algorithm will be modified to insert
brackets as necessary.

Conclusions

As indicated above the algorithm above requires the instruc-
tions LOAD, +, -,&,*, I, <f>,=> and -=>. (In fact, this note
may be looked upon as a partial design of an order code.)
Where the reverse operators are not available (e.g. the 1900
fixed point orders and the Atlas A orders) then phase 1 of the
algorithm can be modified to avoid their use by a little more
testing of the context.
For example, rule (2) of phase 1 may be modified to:
2. If the first term is not simple, or if it is but the second term

is negative, then the transformed expression is the same.
This would in some cases result in less than optimum code.

Where a store negative is not provided, then two orders—a
negate followed by a store—must be used. Since this can arise
only in an expression with no +'s it is likely to be rare. It can,
however, bs serious in a statement such as a = — b, since the
algorithm does not accommodate a load negative order.
The algorithm suffers from the disadvantage that the resulting

code bears a complicated relationship to the source code. For
example, even a straightforward expression a + b + c is
translated as c + b + a. Since the same algorithm applies to all
subexpressions nested within brackets, the resulting translation
is, in general, difficult to unravel. This should not affect the
main body of users, who are not concerned with the translation,
but will add a little difficulty to those who scan object code to
see whether an inner loop can be speeded up by handcoding.
The rearrangement does have one further advantage, how-

ever. If we consider / = / + 1 as a typical incrementing in-
struction (rather than / = 1 + /) then the algorithm converts
this to 1 + i => i, and it is trivially easy to recognise this case
where orders which leave their result in the store are available
(as in the 1900 Series).

Acknowledgement
We should like to thank the Science Research Council who have
supported one of us (JAL) in this work. It has been pointed
out by the referee and others that this algorithm is quite
similar to that used by Sheridan (1959).

14 The Computer Journal

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/15/1/13/418304 by guest on 19 April 2024


