
Real time languages for process control
J. G. P. Barnes

Imperial Chemical Industries Limited, Bozedown House, Whitchurch Hill, Reading,
Berkshire

This paper describes in outline a programming language designed for the description and implemen-
tation of real time programs on medium-sized process computers.
(Received May 1971)

The Central Instrument Research Laboratory of Imperial
Chemical Industries installed a Ferranti Argus 400 in 1966 for
the control of multiple laboratory experiments. An operating
system was devised and implemented by Cobb, Magee, and
Williams (1967); the main purpose of this system was to pro-
vide each of several users with a pseudo multi-processor
capability with storage protection from other users (see also
Magee, 1970). The technique evolved by Cobb to provide
storage protection by software in the absence of any assistance
from the hardware involved the effective interpretation of all
dynamic store and branch instructions in the users programs;
these instructions were then costly in space and time. It is
against the background of this operating system that the
development of SML (Barnes, 1969), the laboratory's first
attempt at a real time high level language, must be seen.
SML (Small Machine Language) was a simple variant of

ALGOL but with static storage allocation. It included a scaled
fixed point facility in addition to the normal ALGOL types.
Multi-tasking was provided via a set of standard procedures
(activate, delay, waitfor, etc.) essentially as proposed by
Benson, Cunningham, Currie, Griffiths, Kingslake, Long, and
Southgate (1967). Normal ALGOL parameter mechanism was
provided; this parameter mechanism was re-entrant but
coding was otherwise not re-entrant except inasmuch that
individual procedures could be executed in parallel.
A compiler to translate SML text into Ferranti Argus Initial

Orders Mk 3 was written in KDF9 ALGOL and programs
were originally thus compiled off-line. The compiler was later
rewritten in itself and bootstrapped to provide an on-line
compiler.

Experiences with SML on experimental plant in the author's
laboratory were entirely successful (Brisk, Davies, and Jones,
1969); subsequently the language was also used for program-
ming the control software of production plant (Garside, Gow,
and Perkins, 1969). In the latter case, however, the operating
system itself needed considerable modification and being
written in an assembly language this was a non-trivial exercise.
This earlier work provided the background to a new project

whose objectives are to develop a language/compiler/package
system for general use in process control and similar on-line
applications. It was decided to undertake this project in stages,
the language RTL/1, whose description now follows, is the
result of the first stage.

Terminology
In this paper, the word 'thread' is used to describe an identifi-
able execution of a set of instructions. Thus, broadly speaking,
a thread is defined by the sequence of values taken by a pro-
gram counter during the execution of a logically coherent job
by a processor.
A conventional computer with a single processor can be con-

sidered to be obeying at all times one unique thread. It is,
however, usually more convenient to consider the various

individual jobs as being serviced by separate threads and to
think of the scheduler as converting the one actual processor
into several pseudo-processors by the use of some algorithm.
The concept of a thread is called a task in PL/1 whereas we

use the word task to designate a set of instructions themselves
rather than their execution.

Criteria for RTL/1
The following were seen as the main criteria for the design of
RTL/1:

1. Algorithmic features available in high level languages such
as FORTRAN and ALGOL should be available and should
be implemented as efficiently as is usual in these languages.

2. The dynamic creation and synchronisation of threads
should be simple.

3. Subroutines should be re-entrant so that multi-thread
programming is simplified.

4. It should be practicable to write large parts of a conven-
tional executive in the language.

5. It should be possible to change, in a modular fashion, parts
of a program complex while it is actually running.

6. No unpredictable timing problems should arise as might
happen if a conventional garbage collector were used for
storage control.

7. An RTL program should be secure.

Overall structure
An RTL/1 program complex consists of a collection of sections;
a section may be of four types:

1. Task: this is a read-only block of coding; it is similar in
structure to a parameter-less type-less ALGOL procedure.

2. External procedure: this is a re-entrant read-only block
of coding similar in structure to an ALGOL procedure.

3. Data set: this is a static block of data which may be read
from or written to; it is thus similar to FORTRAN
labelled common.

4. Stack: this is an area used as workspace for the storage of
links, dynamic variables, scratchpad and other house-
keeping items; it can only be used by one thread at a time
and when not in use is unstructured. It has a definite length.

These four types of section are interwoven as follows:
Whenever a new thread is created a stack is nominated as

workspace and a task as coding to be obeyed. Later operations
on the thread may be made by reference to its stack. The coding
of the task may include calls of external procedures which may
in turn call other external procedures. Both tasks and external
procedures may access variables in data sets by the use of
appropriate statements.
External procedures and tasks may have internal procedures

declared within in the normal ALGOL style, but in order to
simplify the implementation of RTL/1 the number of lexico-
graphic levels of declaration has been restricted to four in all.

Volume 15 Number 1 15

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/15/1/15/418318 by guest on 19 April 2024



Data types
The simple data types provided are boolean, char, integer and
real. The integer type has been extended to provide scaled
fixed point arithmetic with automatic scaling provided by the
compiler. The char type is simply an 8-bit unsigned integer
which provides facilities for character handling. There is also
the section type. A section value is essentially a pointer to an
entry in a dictionary containing the information about the
various sections in the complex.

The only compound structures are arrays, multidimensional
arrays being treated as arrays of arrays. Sufficient information
concerning the bounds of arrays is retained at run time to allow
for subscript checking, but the philosophy of only checking
store operations (and not fetch, etc.) has been adopted. It
should be noted that strings are implemented as read-only one
dimensional char array constants.

The parameter mechanism is of the usual ALGOL type;
formal parameters may be scalars by value or reference, arrays,
labels and internal procedures. Actual parameters correspond
naturally with the notable addition of the ability to pass a slice
of an array as an actual parameter to a formal array.

Scheduler
A primitive scheduler has been written independently of RTL
to control the allocation of processor time to the various threads
in existence at any time.

Each thread has the following attributes:
1. Priority—a signed integer.
2. Stop/start flag.
3. Free/suspend flag.
4. Address.
A thread is eligible for service if and only if the stop/start

flag is in the start state and the free/suspend flag is in the free
state. The scheduler runs the highest priority eligible thread
with a 'round-robin' provision for several threads of the same
priority.The stop/start state was intended for use by a roll-in
roll-out algorithm but has instead tended to be used for pro-
gram testing. The free/suspend flag is used to co-ordinate
co-operation. A suspension (which may only be self imposed)
is either a delay for a specified number of time units or a wait
for a specified (software) event. The address attribute is inter-
preted by the scheduler as the scratchpad save area.

Access to the scheduler from RTL/1 programs is from pro-
cedure calls via an interface package. This interface interprets
the scratchpad address as the stack address (so that the low end
of the stack is used for saving the registers) and translates stacks
into thread numbers.
At the scheduler level the basic requests include:

makethread (address, priority) — > thread
start (thread)
stop (thread)
killme
delay (time units)
wait (event)
stimulate (event)

whereas at the RTL/1 level the first three become:
makethread (stack, task, priority)
start (stack)
stop (stack)

The makethread procedure requests a new thread from the
scheduler with the stack as address and with given priority;
the thread number returned is then stored in a fixed location in
the stack for future reference and the copy of the program
counter in the scratchpad is set equal to the task address. A
subsequent start (stack) statement will issue a start(thread)
request to the supervisor to set the thread going; it will then
enter the required task.

In order to kill a wayward thread it is necessary to induce it to
kill itself; this is achieved by altering the copy of the program
counter in the scratchpad to the address of a termination
routine.

Cross linkage
The cross linkage between all sections is via a dictionary which
includes the following attributes for each section:

1. Name.
2. Core address.
3. Usage count.
4. Type and length.
5. Status.
6. Disc address.
The status indicates whether the section is in core, on disc,

both or neither. The usage count indicates the number of
threads currently accessing the section; thus in the case of an
external procedure this count is incremented on entry and
decremented on exit.
The indirect linkage provided via the dictionary enables the

simple construction of systems from separately compiled
sections. Various supervisor procedures have been written to
manage the sections. These include:

1. Load; checks section not loaded and then loads a new copy
to specified address.

2. Unload; checks usage count zero and then changes status
to not in core/disc.

and various core to disc commands.

Implementations
RTL/1 has been implemented on the Ferranti Argus 500, ICL
System 4 and GEC-AEI M2140.
The Argus 500 implementation is the most complete and two

distinct systems have been written. There is a normal essentially
core-based system and a disc-based system with automatic roll-
in roll-out features. The latter has been used with success to
program the software for controlling two ICI production
plants (Law and Moloney, 1971). The System 4 implementa-
tion is intended for off-line compilation and single thread
program testing. Programs run under the standard J operating
system and none of the multithread features have been imple-
mented.

The M2140 implementation is incomplete and currently sus-
pended.

Experiences
The use of RTL/1 to date has indicated that it has all the
advantages normally associated with a high level language as
compared with an assembly language. Features of RTL/1 which
have proved of great value are:

1. Char type.
2. Re-entrant code.
3. Modular recompilation.
On the other hand some aspects of RTL/1 have not proved to

be wholly satisfactory;
1. The concept of a section as a type and the dynamic inter-

section linkage has caused the language to encroach on the
system.

2. The ALGOL block structure has imposed rather more over-
head than is really desirable.

3. The unpredictable stack size associated with dynamic
storage caused difficulties for the system designer.

4. The fixed point variables have not been useful.
In the light of experiences with SML and RTL/1 a successor

language (RTL/2) is being designed and is intended to be the
final version of RTL. It differs significantly from RTL/1 and
is judged to possess the correct balance of features needed for

16 The Computer Journal

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/15/1/15/418318 by guest on 19 April 2024



real time programming. It is planned to publish and implement
RTL/2 during 1971.

Acknowledgements
The author wishes to acknowledge the effort of the RTL
Project Team in implementing the compilers and systems pro-

grams (H. R. A. Brown, M. H. Lloyd, R. J. Long, R. N. Magee,
C. Miles, T. Mullett, and K. G. Whitehead). Particular thanks
are also due to the ICI Application Team (led by W. M. Law)
who elected to use RTL/1 on live process applications and thus
helped to contribute the essential practical feedback now being
incorporated in RTL/2.

References
BARNES, J. G. P. (1969). SML User's Guide. Imperial Chemical Industries Limited, Central Instrument Research Laboratory, Technical

Note JGPB/69/35.
BENSON, D., CUNNINGHAM, R. J., CURRIE, I. F., GRIFFITHS, M., KINGSLAKE, R., LONG, R. J., and SOUTHGATE, A. J. (1967). A Language for

Real Time Systems, The Computer Bulletin, Vol. 11, pp. 202-212.
BRISK, M. L., DAVIES, C , and JONES, M. (1969). Computer Control of Research Equipment for the Investigation of Gas-Solid Reactions,

Part 2—Computer Software, Instrument Practice, Vol. 23, pp. 117-120.
COBB, A. J., MAGEE, R. N., and WILLIAMS, R. C. (1967). Bozedown Argus Real Time Multi-User Programming System, Imperial Chemical

Industries Limited, Central Instrument Research Laboratory.
GARSIDE, J., GOW, J. S., and PERKINS, W. J. (1969). Computer Control of a Compound Fertilizer Plant, Proceedings of Nat. A.C.S. meeting,

New York.
LAW, W. M., and MOLONEY, T. (1971). Computer Control of a Multitrain Batch Plant, Third IFAC/IFIP Conference, Helsinki (to be

published).
MAGEE, R. N. (1970). Bozedown Disc Operating System on Argus 400—Users Instruction Manual, Imperial Chemical Industries Limited,

Central Instrument Research Laboratory. Research Note RNM/70/3.

Correspondence
To the Editor
The Computer Journal

Sir,
The article 'High level languages for low level users', (Evershed and
Rippon, 1971) was interesting, and 1 thoroughly agree with the
authors' aim that program writing should be made as simple as
possible. However, in detail, I find that I disagree with so many of
their points that it is worth submitting alternative views (not that
anyone will actually take any notice of either the article or this reply!)
The authors do not make clear the distinction between languages,

and implementations of languages. They claim that they are dis-
cussing languages, but many of the points made are of implement-
ation. Thus the complaint about Elliott 4100 ALGOL using < for
less than but 'LE' for less than or equal to is surely explained by the
hardware available not having a < character. Personally I should
prefer < = but this is a matter of implementation, not of the ALGOL
language as such.
I agree that FORTRAN input/output is absurdly, and quite

unnecessarily, complicated. Almost ideal, to my mind, are the input/
output procedures of the Atlas version of ALGOL 60. These are
based on the equivalent procedures of Mercury Autocode and do
almost everything a user could want with easily remembered
simplicity. One of their great advantages is that they are, in every
way, ordinary ALGOL procedures, and there is no need to remember
a single special rule. 1 find it incomprehensible that Evershed and
Rippon should prefer something like READ Z with a significant
space after the READ and no brackets around the parameter.
The authors regard FORTRAN as superior to ALGOL in not

requiring the programmer to declare variables. I regard this feature
as a severe defect of FORTRAN. At first sight it looks attractive
but experience convinces me that the disadvantages far outweigh the
advantages. Two of these disadvantages are:
(a) spelling mistakes go unnoticed but merely lead to a program

that does the wrong job;
(b) chaos can be caused by the trivial fault of starting an identifier

with an inappropriate letter of the alphabet. Superior forsooth!
The authors regard the semi-colons, and the underlining of basic

words, in ALGOL as avoidable nuisances. It is true that both these
things do seem a nuisance until you get used to them and, other
things being equal, they might be avoided. But other things are very
far from equal; it is these two features that allow ALGOL to be
totally layout independent and the advantages of that are immense.
An additional advantage of underlining is that restrictions do not

have to be placed on allowable identifiers. It is all very well for the
authors to be funny in claiming that one would not often wish to
write

DO 25 REAL = INTEGER, GOTO, END
but end is in fact quite frequently used as a label in ALGOL, I have

seen IF used as a. variable in a published FORTRAN algorithm
(the author really wanted to use F but needed an integer). Further-
more, languages are tending to introduce more and more words—
a recent extended version of ALGOL has 57 identifiers forbidden.
Underlining (or some equivalent device) means that the user does
not have to be continually on his guard, and looking up long lists of
words.
I am surprised that the authors approve of Atlas Autocode for

sensibly using = with two entirely different meanings. The realis-
ation that the operation of assignment is a different thing from the
relationship of equality is a very important step in learning com-
puting. The := symbol of ALGOL is thus a simplification, not a
complication.
I am quite at a loss to understand why the authors should prefer

LOOP K, I TO N BY M
to ALGOL 68's

for k from i by m to n do
Among the several disadvantages of their version we have one of
those fiendish arbitrary commas that are such a trap for the unwary
in FORTRAN.
I am even more at a loss to imagine why they should consider the

messy FORTRAN construction
DO 70 I = 1,5, 1

as the most satisfactory.
In complaining that when trying to print a 7-digit integer using

FORTRAN, after allowing only 16 as the format 'the programmer
is rewarded with six stars! This is extraordinarily unhelpful' they
should be grateful for their blessings. Most versions of FORTRAN
would print the six least-significant digits of the 7-digit answer, and
give no warning of anything wrong—to be unhelpful is better than
to be criminally irresponsible. As long ago as 1959 Mercury Auto-
code output had the ideal solution—when a number is too long for
the space allowed for it, print the correct answer at the expense of
the layout. When, oh when, will this become standard?
Lastly, I find it surprising that the authors should have ignored, in

their article, the language called BASIC. Some may like it, some may
not like it, but to ignore it, in an article on simplifying programming
languages, seems peculiar.

Yours faithfully,
I. D. HILL

MRC Computer Unit
242 Pentonville Road
London Nl 9LB
4 August 1971

Reference
EVERSHED, D. G., and RIPPON, G. E. (1971). High level languages

for low level users, The Computer Journal, Vol. 14, pp. 87-90.

Volume 15 Number 1 17

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/15/1/15/418318 by guest on 19 April 2024


