Optimal dynamic use of memory for PL/1 object
programs in a real memory environment

K. Dos and H. Otto

Systemprogramme, SIEMENS AG, Munich, Germany

Some basic considerations on dynamic memory handling are made and a method is described which
will improve the efficiency of dynamic memory allocations of PL/1 compiled object programs
on 360-type machines. Its main objective is the special treatment of storage items with proper
runtime stack behaviour by a runtime stack memory retailing subsystem using multiple, not
necessarily adjacent memory extents with an almost as high average allocation speed as when
using a single extent. This is achieved by the preference of a ‘current stack extent’ which requires
overhead only upon over- or underflow. The other storage items are handled by a non-runtime stack
memory retailing subsystem with the main goal of keeping memory scattering as low as possible.
A memory wholesaling subsystem interfaces the operating system and provides memory for both

the retailing subsystems.
(Received March 1971)

1. Introduction

PL/1 compiled object programs can have a rather complex
memory allocation structure:

There exist language facilities to prescribe explicitly—to a
certain extent—in which way and especially in which interval
at runtime—a variable must occupy memory space. It will
occupy it permanently throughout the program if its storage-
class is declared STATIC; its space will be allocated at block
prologue and freed at block epilogue if its storage-class is
AUTOMATIC, and its allocation state will be completely
controlled by program statements if its storage-class is CON-
TROLLED or BASED. Moreover, there are further storage
items not having an explicit counterpart in the source program
text, which will for some interval of runtime require storage.
Library routines require workspace, which unfortunately is
needed in multiple generations as recursive use is possible via
ON-units. Therefore, the simplest way would be to allocate
storage dynamically on invocation of any routine including
library routines and to free it on return. There are also items
used by library routines which survive a single activation, e.g.
file control blocks or buffers that are controlled by OPEN/
CLOSE statements. In many cases, temporary workspace has
to be allocated for storing intermediate results of a computa-
tion. All these storage-occupying items must be provided
with memory space with the restriction that active items must
not share parts of memory at any time, unless this is explicitly
intended. A large part of this work can be done by the storage
allocation routines of a compiler, but in a few more complicated
cases this must be left to runtime routines.

The following discussion will mainly deal with that part of
the problem that concerns runtime routines, especially from the
viewpoint of runtime and memory efficiency. In Section 2, the
problem will be presented by introducing some environmental
restrictions and basic considerations and in Section 3 a solution
will be described in detail.

2. Environmental restrictions and basic considerations

The design goals are largely dependent on the nature and
restrictions of the environment, in which the object programs
are running: In our case this will be a SIEMENS SYSTEM
4004 with non-pageable medium-size memory, with multi-
programming facilities including optionally shareable code.
(The SIEMENS SYSTEM 4004, is as far as the internal
structure is concerned, comparable with the IBM 360, the
RCA SPECTRA 70 or ICL SYSTEM 4))

In this environment, memory must be handled economically
and excessive pending of any task must be avoided, because

18

during the delay, memory is held inactive that could be used
for some other task. Moreover, the system could become para-
lysed, if a loaded task were waiting for additional system-
resources not actually available (e.g. main memory), which are
held by some other task, that in turn waits for resources held
by the first task. This deadlock can be prevented if waiting
for system resources is prohibited. Nevertheless, a facility
for dynamically providing additional memory will be avail-
able and useful both for increasing efficiency and for emer-
gency cases. If, however, a task is not able to continue
without further memory and this memory is not available, this
task must leave the system (e.g. by checkpointing or abnormal
termination).

Next, we will discuss the consequences of keeping parts or all
of the used memory contiguous:

1. Keeping contiguous all of the used memory, i.e. using only
one extent, results in most simple and time efficient memory
housekeeping since the allocation state is completely des-
cribed by a single boundary location between used and free
memory.

2. 0On the other hand, using multiple extents yields most
economic use of memory but requires more complicated
housekeeping.

We must strive to get an optimal compromise between these
conflicting points by allowing for use of multiple extents in
principle while holding the housekeeping overhead as low as
possible. One approach is to select groups of storage items at
compile time to become contiguous allocation units at runtime.
These units should not be larger than necessary for data access
with a single base covering all items contained. For instance,
simple data of a block can be assembled at compile time and
addressed via a common base. One may also assemble at
compile time the simple data of a procedure together with those
of all its nested BEGIN-blocks, thus simplifying the runtime-
access to global data within any nested BEGIN-block. Those
assembled groups of simple data, be they for an entire pro-
cedure or for single BEGIN-blocks, will form independent
allocation units as, e.g. single arrays will do. By this type of
grouping it is possible to avoid too large contiguous units
without increasing the data access overhead.

Another basic problem is that increased scattering of used and
free extents is inevitable if freeing does not always occur in the
reverse order of allocation. In fact, some features in PL/1 make
such scattering possible. But fortunately a large part of PL/1
storage items is freed only in the reverse order of allocation.
As this is the property of a ‘last in first out’ stack, this part
which is based on the block activation structure is conveniently

The Computer Journal

¥202 Iudy 61 U0 1senb Aq 8ee8L/81/1/G L/aIoIe/|ulwoo/woo dno-ojwsepeoe//:sdpy wolj papeojumoq

handled in a so-called runtime stack. In order to preserve the
contiguity of such runtime stack memory, it is very useful to
separate it from the remaining memory structure as strictly as
possible. Typical storage items not fitting into the runtime
stack are CONTROLLED and BASED variables, I/O sup-
porting items (as buffers or file control blocks) that are con-
trolled by OPEN/CLOSE statements and results of value-
returning procedures if the lengths of the results are not known
in the calling block. But even if runtime stack management is
treated separately, the runtime stack may have a multi-extent
structure.

If multitasking is used, there is no longer any guarantee that
the freeing of items allocated in a random order by several tasks
will occur in reverse order. However, it may be expected that
each task will itself have its own runtime stack behaviour
pattern. It is therefore profitable to separate the runtime stacks
of different tasks from each other to reduce memory scattering.

In addition there are of course other individual stacks, one
belonging to each of the CONTROLLED variables, which
should not be confused with the runtime stack described above.

3. A suggested solution of a memory management system

As mentioned, we expect a special treatment of runtime stack
storage items to be most efficient. Let us subsequently refer to
runtime stack memory as zype-1 memory while referring to the
remainder as 7ype-2 memory. We need to introduce a few
further definitions: An extent will be a contiguous area of
memory. In particular, there will be frequent references to three
types of extents: A free extent is one that is recorded to be
available for allocations. A used extent is any extent previously
allocated and not yet freed. A stack extent is one limited by a
bottom- and a top-location with used space from the bottom
up to an allocation level and free space from this allocation
level up to the top.

The solution presented subsequently will have two levels of
memory management: An upper level wholesaling subsystem

that interfaces the operating system and provides memory for
any of the two retailing subsystems on the lower level: The one
for handling type-1 memory and the other for handling type-2
memory. We will first discuss these two retailing subsystems
separately and later discuss the functions of the wholesaling
subsystem.

The list structure used by the following memory management
subsystems is shown in Fig. 1.

The type-1 memory retailing subsystem
We have to realise the following functions:

1. Allocation of contiguous memory for an allocation unit
of specified size out of a free memory pool and returning
its starting location.

2. Freeing any specified amount of not necessarily contiguous
memory starting from the top of the runtime stack in
reverse order of allocations. As more than one allocation
unit may be freed on a single function call, this facilitates
block epilogue actions as well as non-local GOTO-
processing.

These functions would be simplest in the case of a single large
stack extent as defined before. But this scheme would reduce
flexibility of memory management because of its rigid demand
for contiguous memory.

Both time, efficiency and flexibility however can be combined
by the following method which is based on a current stack
extent the state of which is maintained in a pointer triple con-
sisting of bottom, top and allocation-level.

Beside this current stack extent, further stack extents not
necessarily adjacent to the current one may exist. Most changes
of the allocation state may be performed by simply updating
the current allocation-level, thus obtaining a very quick
allocation process on the average. Only if a change of the
allocation state violates the current stack extent-bounds will
additional actions become invoked: On allocation, the re-
maining free space within the current stack extent may not be

oW 7777

7

»

\

° IR
i AT ;/////////A T : 4r i
! oY _—:______\ I
WX 7774 2.)
Be Ac T ¥---71 |
ol \\ ! " —
\ Cod
‘\ : /l
current extent/bottom 13 list-head ' | ‘\
pointer triple |alloc - level next candidate |-~
top v

Type-1 stack extent list
(retailers’lists)

Fig. 1. The list structure used by the memory management system

Type-2 free extent list

(wholesaler's) free extent list

Volume 15 Number 1

19

¥202 Iudy 61 U0 1senb Aq 8ee8L/81/1/G L/aIoIe/|ulwoo/woo dno-ojwsepeoe//:sdpy wolj papeojumoq

large enough to satisfy the request resulting in an overflow. In
this situation, another free extent must be found by the memory
wholesaler, as will be described later, and it will be made the
new current stack extent which contains a link back to the old
current stack extent. Conversely, on freeing memory, a request
to free more used space than is present in the current stack
extent may occur. Now, this old current stack extent will be
given back to the memory wholesaler and the previous stack
extent to which the old current stack extent was linked is made
the new current stack extent for additional freeing of used
space within the runtime stack.

This type of runtime stack memory handling will on average
need only a few machine instructions per function call. We
consider this feature to be very important, since type-1 alloca-
tions occur very frequently at runtime and optimisation
facilities are rather limited or lead to clumsy structures (e.g.
when using rigidly distributed common workspace for library
routines with nested calling structure).

The type-2 memory retailing subsystem

Here, scattering of memory to some extent is inevitable. One
could indeed consider to ignore ‘holes’ of free memory gener-
ated on ‘non-top’-freeing, but this could be wasteful in memory
if there would be no compacting facility. Compacting as well
as garbage collection, however, is only possible, if all pointers
to active storage can be retrieved. This would cause much
housekeeping overhead (e.g. when PL/1 list processing facilities
are used). Thus, the concept should be discarded.

If free memory holes are to be used for allocations, the most
natural way of recording free memory is to maintain a linked
list of all the holes as free extents. There exist a number of
methods using such lists of available memory which are more
or less sophisticated. They are discussed in detail by Knuth
(1968). An important consideration for any method chosen is
that the memory structure formed should not be too scattered.
Especially those methods are dangerous, which permanently
try to allocate by searching the free extents in the same sequence.
This leads to a free memory list structure with many small free
extents near the head of the list. According to Knuth, a favour-
able statistical distribution of extents is achieved, when search-
ing is always started from that free extent, which follows the
one previously used for allocation, with turn around supposing
the list to form a ring. In addition, holes too small should not
be added to the free extent list.

The memory wholesaling subsystem

We still have left open the problem of how memory is obtained
from the operating system by the wholesaling subsystem and in
which manner it is supplied to both the different retailing sub-
systems described above. In Section 2 we mentioned the
environmental restriction, that programs must be able to run
with the memory resources obtained at load time. Although
memory requests at runtime are possible, the program will not
be allowed to wait for subsequent delivery if any request is
rejected owing to actual shortage. Thus, the only admissible
reasons for dynamically requesting additional memory are to
increase efficiency (e.g. by getting workspace for additional
1/O buffers) or in an emergency try to continue. In general it is
assumed that initially there exists only a single extent of free
memory. Nevertheless, all memory management routines
should assume that several extents of available memory can be
present, since that is the only way to make emergency solutions
possible.

The initial state will be as follows: In the non-multitasking
case, the whole free memory space obtained at load time is
made the current stack extent for type-1 (i.e. runtime stack)
housekeeping. The initial free memory list for type-2 alloca-
tions will be empty. In the multitasking case, for each task, at
attaching, a current stack extent of standard size (e.g. 2048
Bytes) will be allocated for runtime stack housekeeping and

20

an empty type-2 list is obtained. Available free memory is
recorded by the wholesaler in a linked list similar but not
identical to that list used for type-2 allocations. This list is
emptyafter initialisation of non-multitasking programs but will
be filled during the program. If any stack extent for type-1I
allocations is exhausted and the list of available memory is
able to satisfy the actual storage request, a new type-1 stack
extent is delivered by the wholesaler with either standard size
or requested size or remaining size depending on the amount
of storage requested and on the size of available memory.
Otherwise, an emergency routine of the wholesaler will try to
obtain additional memory from the operating system, or even
from the space actually available in the code area in case of
code segmentation. Unused parts of the old stack extents can
be added to the free memory list, if they have reasonable size.

There is some freedom of choice how type-2 memory can be
obtained. The best way is to cut the requested memory from
the top of the current stack extent if the list of available type-2
memory is not able to satisfy the request (which is the normal
case after program initialisation, when the list is empty).

4. Conclusion

The solution discussed here has been suggested by the methods
used in two compilers: The SIEMENS SYSTEM 4004 DOS/
TDOS ALGOL compiler and the IBM OS/360 F-level PL/1
compiler.

As ALGOL does only deal with data of AUTOMATIC type,
the SIEMENS SYSTEM 4004 ALGOL compiler is mainly
concerned with runtime stack requests, although there exist
some type-2 storage requests for 1/O supporting items which,
however, can be handled including hole usage in quite an easy
way owing to the restricted number of simultaneously active
data sets. The SIEMENS DOS and TDOS operating systems
have no facility for dynamic request of memory resources. Thus,
the rather simple and time efficient method of handling only one
memory extent was chosen with runtime stack memory growing
from the bottom upwards and type-2 memory growing from the
top downwards within this single extent obtained at load time.
It only remains to prevent these two parts from overlapping at
any allocation. Storage overflow leads to abnormal termination.

On the other hand, the PL/1 compiler seems to make exten-
sive use of the OS/360 GETMAIN/FREEMAIN supervisor
calls:

BASED- and CONTROLLED-storage is handled via these
supervisor calls with the exception of AREA allocations, while
AUTOMATIC storage is also delivered by the operating
system but in blocks of reasonably large size. Thus, AUTO-
MATIC memory retailing is achieved in most cases without
issuing of a supervisor call. The pointer structure used for this
purpose, however, requires updating of many pointers on each
allocation and freeing, thus creating considerable overhead for
these actions. This overhead can be reduced by introducing the
method of the current stack extent which increases allocation
speed to almost that of the 4004 ALGOL compiler but more-
over is able to use memory in the most efficient way as does the
IBM PL/1 compiler. In addition to that, the use of supervisor
calls for each type-2 allocation event is undesirable. This type-2
memory should be obtained from an own type-2 free extent
list. The PL/I list processing facility, which represents a very
useful new language facility compared to conventional pro-
gramming languages, ought not to be made too slow.

Acknowledgement
The authors would like to thank Mr. Howard Webb for giving
some assistance in preparing the manuscript.

Reference

Kn~uTH, D. E. (1968). The Art of Computer Programming, Vol. 1:
Fundamental Algorithms, Addison-Wesley: Reading, Mass., pp. 435-
455

The Computer Journal

¥202 Iudy 61 U0 1senb Aq 8ee8L/81/1/G L/aIoIe/|ulwoo/woo dno-ojwsepeoe//:sdpy wolj papeojumoq

