Restart of an operating system having a permanent file

structure
J. L. Smith and T. S. Holden

CSIRO, Division of Computing Research, P.O. Box 109, Canberra City, ACT, Australia

The problem of restarting an operating system after failure and recovering all files existing in the
system at the time of failure is discussed. Different recovery procedures are described which depend
among other things on the file address mapping scheme employed. Several models of general purpose
systems are analysed to yield comparisons in I/O and recovery overhead.

(Received May 1970)

1. Introduction

This paper is concerned with a computer system recovery
problem which has been termed ‘warm start’ (Needham and
Hartley, 1969). An error or a failure has occurred in some
system component which makes the contents of core store
suspect or at least operator intervention is needed to restart
the system. The system is one which provides permanent and
temporary file storage on direct access secondary store. The
administrative data necessary to control these files and storage
is also maintained on the secondary store and this is the prime
source of reinitialisation. The extent of the reinitialisation of the
system software and its working data base will depend on the
type of stoppage and the ongoing preservation action which is
built into the operating system. Items which such actions
might be designed to recover are:

1. Catalogued (permanent) files

2. Available secondary storage

3. Processes which were executing or awaiting execution

4. Uncatalogued (temporary) files associated with the above

processes.
Obviously the recovery of any item in (3) is useless without its
counterparts in (4) and vice versa. In (2) one is concerned with
free storage and storage assigned to files which are not re-
covered. We will be considering mainly (1) and (2).

In a recent paper Fraser (1969) has set forth some sound
principles for the recovery operations in a file system, covering
aspects from warm start to complete reload. Particular refer-
ence is given to the file system at Cambridge University
(Barron, Fraser, Hartley, Landy, and Needham, 1969) which
provides 8 million words of direct access storage for sequential
files and a flexible tape backup and archival system. Fraser
points out that there is a large amount of redundancy in the
administrative data base of a file system (for the purpose of
operating efficiency) and inconsistency in this information can
cause a catastrophic failure. Therefore his policy is to com-
pletely verify this data base at restart time and to carry out any
deletions necessary to ensure consistency. This key problem of
preventing inconsistency will be examined for various system
designs.

2, File system characteristics

Many current file systems are based on ideas set forth in con-
junction with the Multics svstem (Daley and Neumann, 1965).
The administrative data base is organised into two parts, the
dynamic part (Kerr, Bernstein, Detlefsen, and Johnson, 1969)
being core resident in the main and pertinent only to the cur-
rently active files, and the static part (Bernstein and Hamm,
1969) residing on mass storage and containing information
about all catalogued files in the system.

The static file structure may consist of one large directory file
containing for each catalogued file sufficient addressing
information to access it (whether in direct access or backup
store), an indication of whether it is currently active and its
control information (e.g. access control). The active file table
(AFT) resident in core will contain the location of each open
file, its length and its global control information.

Volume 15 Number 1

Secondary storage is allocated and released dynamically,
usually in fixed size blocks. Another component of the active
data base is a map, at least partly core resident, showing all
allocated and available storage. Logical to physical address
mapping necessary to access a file may be accomplished in
several basic ways:

1. Linking (L) The starting address of the file is contained in
the directory or AFT entry. All subsequent blocks are
accessed by a link address stored within each block of the
file. In conjunction with this scheme it is common to avoid
the use of a storage map and maintain free storage as a
linked list of blocks in the same manner as each file’s
storage.

2. Direct Indexing (DI) The file entry in the directory or
AFT contains the starting address of the file which must
reside in physically contiguous storage. The file length de-
fines the number of contiguous blocks allocated to the file.

3. Indirect Indexing (I1) The file is accessed through a table
containing the physical address of each block of storage
allocated to the file. The required table length is determined
by the file length. This table may be contained in the AFT
entry or the directory entry, but it is usual that these con--

tain a pointer to the table. I is the only address mapping.

scheme which allows the file addressing space to be used.
in the full sense of a virtual memory. Blocks can be allo--
cated and released in the middle of the file leaving the length:
unchanged.

4. Integrated Map and Index Tables IM) This scheme is
described by Fraser (1969) and itis essentially a combination
of schemes (1) and (3) above. The directory or AFT entry
points to a map cell. A map entry (cell) for each allocated
block of storage consists of a pointer to another cell of the
map, which represents the next block allocated to the file
concerned. This scheme removes the necessity for mani-
pulating index tables separately by integrating them with
the map.

Another indirect indexing scheme which has been successfully
implemented (Hargraves and Stephenson, 1969) uses a range
of block sizes increasing by powers of 2. Each index table entry
points to a successively larger block of contiguous storage.
However this will not be distinguished in this paper from the
previously defined II scheme.

Ignoring the buffering and logical record operations (which
may not be implemented in the main file system software) a re-
presentative set of primitive functions for file manipulation is:

catalogue and destroy file entries in the directory,

open and close a file,

read and write a file,

prune and insert records in a file,

lock and unlock a file.

Other primitives for access control are not relevant in the
present context.

A characteristic of the file systems defined here is the dynamic
allocation of storage for thousands of files stored on a small
number of random access devices. No guarantees can be made
as to which physical blocks of storage will be allocated to a file.

25

¥202 Iudy 61 U0 1senb Aq 29€8L1/G2/1/G L/aIoIe/|ulwoo/wod dno-ojwepeoe//:sdpy wolj papeojumoq

Therefore data organisation techniques designed for efficient
processing of large files may be negated by the particular
logical to physical address mapping which results in the system.

3. Computer system characteristics

The recovery problem may vary with different hardware
configurations and operating system characteristics. A classi-
fication of the main hardware components is now given.

L. Primary storage (PS) unit This is usually a number of
modules of core storage. It is immediately accessible (no
latency or positioning delays) to processors and channels
connected through a number of read/write ports.

2. Processor This is associated with one and only one PS
unit to which it is directly connected via a port. It may
initiate and receive notification of completion of block data
transfers via channels also connected to this PS unit.

3. Secondary storage (SS) unit Normally this is not immedi-
ately accessible and it always has only one access port. Data
transfers are usually executed in blocks for efficiency
reasons.

4. Channel This can be connected between two ports by a
processor, one port belonging to the PS with which the
processor is associated. A channel may be available to more
than one processor but only to one at a time. A block data
transfer via a channel proceeds as follows:

(a) it is initiated by a processor associated with the PS
connected

(b) the transfer proceeds without processor intervention

(¢) upon completion a notification is received by a processor
associated with the PS connected.

Multiprogramming, multiprocessing (more than one processor
directly connected to a PS unit) and parallel access to both the
administrative data base and user files are techniques which can
introduce complexities in the file system.

In the next section the recovery problem will be considered
for a basic configuration including only one processor and one
SS unit. Consideration of complexities arising in expanded
hardware or software configurations will be deferred until
Section 7.

;1. Consistency and information loss

There are several premises to the successful use of the recovery
procedures analysed here. At restart time the directory must be
unscathed, or if sections of it have been damaged this must be
recognisable when they are next read into PS (by constantly
using error checking procedures) and the affected file entries
deleted. Part of the preservation action will be to record on SS
regularly updated versions of the storage allocation situation
along with directory file updates. This information is used to
reinitialise PS at restart, and a similar assumption must be
made about the integrity of each section of these maps and
tables. Too much destruction of these recovery data bases will
necessitate a complete reload of SS from backup tapes. The
administrative data base on SS should be in fixed preallocated
areas not involved in the dynamic allocation scheme.

It is essential that the restarted administrative data base be
consistent and that it should be as up-to-date as possible. The
basic file system functions which cause the data base to become
out of date are allocation and releasing storage for a file and
cataloguing and deleting (uncataloguing) a file. If a failure
occurs while the administrative data base is out of date there
will be a loss of information on restart but some risk must be
accepted in this area in order to obtain an acceptable recovery
overhead. An inconsistent administrative data base can be
made consistent by verification procedures which result in the
deletion of files (Fraser, 1969)—the more inconsistent the data
base the greater the number of intact files that will have to be
discarded because of doubt about their integrity.

26

While the linked files and the direct indexing schemes have
strong appeal because they are simpler to implement, they have
serious deficiencies for large general purpose file systems.
Linked files have a very high overhead in random accessing
and the scheme requires threading of secondary storage in order
to verify the administrative data base (Lockemann and
Knutsan, 1968). Direct indexing cannot be used alone, especi-
ally when dynamic storage allocation is necessary, as contiguous
storage cannot always be obtained, but the scheme can be used
advantageously in conjunction with indirect indexing (Kerr
et al., 1969) and (Hargraves and Stephenson, 1969). In the
ensuing analyses only the IT and IM schemes will be considered,
but the results can be trivially obtained for the other schemes.

One could design update procedures to ensure continual
consistency of the administrative information on SS (perhaps
with the aim of restart without a consistency check or to
mintmise information loss after restart). To achieve such con-
sistency strict ordering would have to be observed in the update
of the various administrative modules, and conflicts exist
between the required order after allocation and that after
releasing storage. For example before updating a directory
entry to reflect an increase in file length one would assure that
the new allocation was properly recorded on SS, but the reverse
ordering would be necessary on truncation. Therefore a design
may call for an independent update for each file according to
urgency and consistency demands. However such schemes are
generally impractical because of the overhead involved (an
extreme case occurring with the use of virtual storage under II);
furthermore they are still vulnerable to certain types of error
which result in inconsistency (such as an obscure software bug
the effect of which is nullified by a consistency check) and
usually verification procedures are needed at restart in order
to recover storage assigned to uncatalogued files.

Most file system designs permit inconsistencies in the adminis-
trative information on SS, but these inconsistencies should
be detectable, isolated and fairly short-lived, and one accepts
the prospect of a complete consistency check at each restart.
The administrative updating procedure can then be organ-
ised as a global update with respect to all file storage modi-
fications which have occurred since the previous update. In
conjunction with this principle Fraser (1969) has increased
reliability by creating a restart point on SS at update which is a
separate copy of the administrative information; two or three
of the most recent copies are retained in case of gross corrup-
tion of some restart points.

Guaranteeing consistent administrative information at restart
does not ensure that corrupted files do not exist. These occur-
rences must be kept to a minimum and in some applications
they would represent a serious security breakdown. Fraser
(1969) has eliminated a prime source for the recovery of wrong
information under IM by preventing reuse of deallocated
storage until a global update has occurred. However if it is
necessary to fall back two restart points at restart there is
again scope for recovering wrong information. Apart from size
considerations, this is an added reason for not including a copy
of the directory file in a restart point, for those files which have
gone through a reallocation of storage since a particular
restart point was established could be recovered with wrong
information in them by using that restart point.

The problem has an additional dimension under II because
file corruption can be introduced through the index tables as
well as by the storage allocation strategy. For example an
implementation of I may include a file for storing index tables
on SS and each directory entry would contain a pointer to a
block in the index table file. Upon file deletion the associated
index table block would have to be locked until an update
occurred, for the same reasons that the actual released file
storage would have to be locked.

The frequency of global updates of administrative information

The Computer Journal

¥202 Iudy 61 U0 1senb Aq 29€8L1/G2/1/G L/aIoIe/|ulwoo/wod dno-ojwepeoe//:sdpy wolj papeojumoq

will be determined by a trade off between the overhead involved,
the cost of the potential information loss should a failure occur,
and possibly the need to reuse storage or index table areas
which have recently been released. At each update the option
exists to create a copy of administrative information which is
currently consistent with the directory contents.

5. Analysis of overhead

A measure of the file system overhead is the number of system
block data transfers involved for each function. This is felt to
be satisfactory without a weighting for the volume of data
transferred because latency and positioning delays associated
with current SS modules are likely to dominate actual data
transfer times. The purpose of the I/O transfers can be classified
into three areas (i) administrative update, (ii) support of user
file I/O and (iii) restart.
In any implementation of the IM scheme the map would be
subdivided into a number of segments each representing at
least several hundred blocks of SS. Only a small number of
these segments could be resident in PS but it would be essential
for efficient operation that all the storage allocated to any one
file be represented in one segment of the integrated map in the
majority of cases. Likewise only a limited number of index
table and map segments of an Il implementation could be
resident in PS. Because this map is more compact all the
storage allocated to a file is likely to be represented on one part
of the map. An analysis of each type of overhead is given below
and when derivations of the analytical expressions are required
they are given in Appendix 1.
The following symbols will be used in the analysis,
number of slots for index tables in PS
total numbers of index tables
number of slots for IM segments in PS
total number of IM segments
probability that a file reference causes a change in storage
allocation
p: probability that a file reference results in chaining through
i segments of the IM (3p; = 1)

m fraction of the map associated with II which can be
resident in PS

a number of active files

/ number of file entries per directory page

F total number of files

Administrative update
The aim of this function is to bring the working copies of all
administrative information on SS up to date with the status in
PS. It may be necessary to withhold file operations during the
update. The various steps under IM and II are given with the
estimated number of transfers in parenthesis.
IM (i) update the directory file from modified AFT entries
(=2a),
(ii) write out all modified resident IM segments, unlocking
storage (<s),
(iii) read-alter-rewrite remaining IM segments, unlocking
storage (25/s),
(iv) create restart copy of IM (S/s),
Il (i) update the directory file from modified AFT entries
(=2a),
(ii) write out all modified index tables (<k),
(iii) write out resident section of map, unlocking storage (1),
(iv) unlock and initialise deallocated index table storage
(=2K]k),
(v) read-alter-rewrite remainder of map, unlocking storage
@2/m - 2),
(vi) create restart copy of index table file (K/k).
This overhead could be considerably greater under II because
of items (iv) and (vi). The index table file will always be sparsely
occupied and so a large file has to be copied to create a restart

Sy h x>

Volume 15 Number1

point. It may even be necessary to temporarily obtain additional
buffer space in PS in order to copy it efficiently. If the number
of index tables to be initialised is small then item (iv) under 1T
is not so significant.

Support of user file 1/0

We will consider two models of the pattern in which files are
referenced. In model 1 it will be assumed that in any file
reference cycle there is only one primitive issued which results
in I/O, a change in storage allocation to the file or both; then
the file is unreferenced for a period of time such that under 11
there is no likelihood of its index table being preserved in PS
or under IM the probability that the relevant section of the
integrated map is resident in PS reaches a stationary value.
In model 2 it will be assumed that there is a fixed number of
active files in the system and there is equal probability that any
one of them will be referenced next. It will also be assumed
that each is referenced a sufficient number of times so that the
effect of initial reference (e.g. directory operations) can be
ignored. In this model the replacement strategy for index
tables or map sections will be to displace the oldest resident in
PS.

Model 1
Since there is only one reference to each file the long run aver-
age overhead will be approximately the same as if only one PS
slot were used for swapping index tables or IM sections. How-
ever the average overhead is dependent on the total fraction of
each map resident in PS. The expressions given below are for
overhead per file reference.
M

Define ¢, to be the probability that a displaced section of the
IM has been altered.

Expected number of directory transfers = 1 + ¢

Expected number of map section transfers

I3V ORCHEITEN
= (1 - g)(l + c)p

where
p=2pii
11
Expected number of directory transfers = 1 + ¢
Expected number of index table transfers

=l+c 3]
Expected number of map transfers
=2c(l — m) 3

Model 2
Define ¢, and ¢y to be the respective probabilities that a
displaced index table or IM section has been modified.

M
Expected number of integrated map transfers

DINVONCHIEE

- (1 - gs.)(H c)p @
I
Expected number of index table transfers
= (1. - E) (I + ¢y) (5)
a
27

¥202 Iudy 61 U0 1senb Aq 29€8L1/G2/1/G L/aIoIe/|ulwoo/wod dno-ojwepeoe//:sdpy wolj papeojumoq

Expected number of map section transfers

= 2¢(l — m) 6
Restart
During the normal operation of the file system, segments of the
working administrative data base will be displaced from PS to
SS. This working copy of the administrative information on SS
will be the most up to date from which to attempt a restart, but
also the most likely to have been seriously corrupted. Neverthe-
less the same procedures can be employed no matter which
copy of the administrative information is being used for
restart. The aim is to regenerate a consistent administrative
data base and one hopes to perform this with the minimum of
file deletions. The reasons for deletion will be (i) violation of
standard error checks on reading a segment of information,
(i) conflict because the same storage appears to have been
assigned to more than one file, (iii) conflict on the file length
determined from redundant information. Different imple-
mentation strategies may vary on when one of the above con-
ditions makes it necessary to delete a file.

The time taken to restart may be considerably reduced by
using the additional PS available at this time. Thus values of
the parameters k, s and m could all be increased for the restart
cperation. It will be assumed that the number of inconsistencies
discovered do not affect the overall restart time. Assuming that
all information can be read successfully from SS, typical
restart procedures are given below.

IM (i) read the directory, page by page, performing the

operations (ii) and (iii) below for each file entry,

(ii) thread the integrated map from the entry point indic-
ated in the directory, generating an additional map (for
the purpose of detecting conflicts) with cells containing
the identity of the file assigned the corresponding
storage block, o

(iii) if a storage conflict or length conflict is detected enter
the file identities in a table,

(iv) delete all files entered in the above table and release the
storage assigned according to the integrated map.

By a similar derivation to (1) it is seen that_ the expected
number of map segments swapped in threading one file’s
storage is (1 — s/S)n, where n is the number of segment
boundaries crossed (n = 1). Likewise the number of generated
map segments swapped is 2(1 — s/S)n.* This suggests an
intolerable overhead if each file entry is processed independ-
ently, unless s/S ~ 1. However, if n = 1 in most instances, an
alternative is to thread the storage map for all files of a directory
page which are connected with resident map segments before
swapping any map segments. Then the total number of trans-
fers would be approximately:

FIf{1 + 3(S/s — 1)] W)
II (i) read the directory, page by page, performing the oper-
ations (ii) and (iii) below for each file entry. .

(ii) read the index table, generating one map ».v1th each
cell containing the identity of the file assigned the
cortesponding storage block and another map with
each cell containing the identity of the file assigned the
corresponding index table file block,

(iii) if a storage or length conflict is detected enter the file
identities in a table,

(iv) delete all files entered in the table and transform the
two generated maps into bit maps, releasing the storage
involved in conflicts.

The major overhead is involved in accessing each index table
and generating the storage allocation check map. No threading
is necessary with index tables but each index table has to be

*It is assumed that the cell size of the generated allocation map (for
IM and II) is the same as the cell size for the integrated map.

28

retrieved independently. An efficient strategy would be to fill
all k index table slots with the index tables belonging to files
in a directory page, then swap the generated map segments
only once for the processing of all k index tables. The total
number of transfers is then approximately:

Flf + Flk[k + 2(S/s — 1)] 8)

6. Expanded systems

A number of SS units may be connected to a PS unit, but in
practice this should pose no complication to the recovery
problem. On the one hand a complete copy of the adminis-
trative data base could be stored in one SS unit describing the
state of every file and every block of SS in the system. There
seems to be no point in allowing this copy of the administrative
data base to cross SS boundaries. On the other hand a separate
administrative data base could be maintained on each SS unit
accounting for its own storage allocation with the additional
restriction that no file could cross SS boundaries. In the latter
case the recovery procedure would have to be exercised separ-
ately for each SS unit. -

The file system process may be capable of parallel accessing
of the administrative data base and thus capable of parallel
processing of file primitives. This presents a synchronisation
problem dependent on the logical structure of the data base
and it has been given consideration elsewhere (Shoshani and
Bernstein, 1969) and (Diijkstra, 1968). In a single processor
configuration these problems should not occur in the storage
allocation or recovery procedures. However in a multiprocessor
configuration they can and the synchronisation problems are
fairly obvious. The test and set lock instruction has been
evolved as an effective synchronisation aid (Lampson, 1968).

Another type of parallelism in computer architecture has been
described (Allen and Pearcey, 1969) and (Jones and Purcell,
1969), in which there is a network of processor-PS combin-
ations some sharing access to SS units and each dedicated to
particular system tasks. A simple example is where one process-
or-PS combination is devoted to file system management in
order that another more powerful processor-PS combination
may be devoted to more suitable computational tasks. The
recovery problem here reduces to that already defined pro-
vided that the latter processor deals only with logical file
manipulation, accepting all physical file parameters from the
file system processor. The problem is considerably complicated
if more than one such processor is involved in the file system
management and recovery. Then an implicit restriction is that
any file can be active only with one processor at a time. It is
also apparent that a further channel control is required in
which one processor can reserve a channel connection to a
particular SS until it has carried out several transfers; this
wonld allow coherent updating and access control.

The recovery and restart of executing processes in a general
purpose environment is a considerable problem. In a recent
paper (Crook, Smithies, and Raeburn, 1969) a thorough
treatment has been given for magnetic tape oriented systems
and the design goals can be applied to any such recovery
system. Within the framework of file system recovery, a rerun
point in a process may be established by creating and catalogu-
ing a file containing the components necessary to restart the
process (the segments of the process, its register settings and
the equivalent of a descriptor segment (Bensoussen, Clingen,
and Daley, 1969) with ali file references accompanied by their
catalogue name). It is implied that all scratch files known to the
process at the rerun point must be catalogued.

7. Example

In this section the overheads in two systems having single
processors are considered for the IT and IM address mapping
schemes.

The Computer Journal

¥202 Iudy 61 U0 1senb Aq 29€8L1/G2/1/G L/aIoIe/|ulwoo/wod dno-ojwepeoe//:sdpy wolj papeojumoq

3.0

TRANSFERS PER FILE REFERENCE

2 i 3 g 170
¢ - PROBABILITY OF ALLOCATION CHANGE

Fig. 1. File I/O overhead. (az) Model 1 configuration A

If b is the number of blocks of SS in the system then the size
of the map associated with I is 24 bits, b bits being necessary
for the locking of released storage until update. The size of an
integrated map including locking bits would be 5(2 + log,b)
bits.

It will be assumed that each index table can hold 64 entries
so that its size is 64 log,b bits, and it will also be assumed that
one segment of the integrated map contains 512 entries. Table
1 gives parameter values for two configurations. The amount
of PS chosen for administrative tables was an arbitrary deci-
sion not necessarily optimal.

In Fig. 1(a), (b), (c), and (d) the overhead for user file I/O is
plotted in terms of the expected number of transfers between
PS and SS per file reference for configurations A and B under
the file accessing patterns of models 1 and 2. Two curves are
given for II, these being for the optimal value of k, and for
k = 16 which roughly divides the PS area between map and
index tables. Two curves are also given for IM these being for
no file overflow between map sections (p, = 1) and for a case

Table 1
CONFIGURATION A CONFIGURATION B
b 214 217
PS for
administration 31 x 2'9 bits 38 x 29 bits
512 — 14k 608 — 17k
m T’k<36_W_’k<35
s 4 4
32 304
a 64 64

Volume 15 Number 1

3.0
=
(o}
=
2 2.0
1)
oy
~
2l
-
-
12
-9
=3
Ry
vl
o
=
Txe
é
=
1.0 L

—

.2 .4 .6 .8 1.0
c - PROBABILITY OF ALLOCATION CHANGE

(b) Model 1 configuration B

of considerable file overflow (p, = 0-6, p, = 03, p; = 01,
c¢* = 0:9¢) (see Appendix). A further curve is plotted for a
combined II and DI system where 759 of files are directly
indexed.

Provided that there is no file overflow between integrated map
sections (p; = 1) the I/O overhead is significantly lower with
IM than with II for either pattern of file accessing, with one
exception. When the likelihood of a change in storage allo-
cation on file access is small (¢ << 0-2) II shows to advantage
because references to the map are proportionately lower. If
the likelihood of file overflow between integrated map sections
is high, II becomes preferable for more typical values of
c. This situation can be brought about by a combination
of large files and storage fragmentation.

It is a simple matter to modify the models to reflect a fraction
of files addressed in the DI mode. A good approximation is to
reduce the number of index table swaps by this fraction (see
Figs). The overhead would be further lowered by the effect of
few index tables competing for the slots in PS.

The question arises as to how complete a comparison is
yielded by the models. In reality some file accessing patterns
will be in bursts so that replacement strategies should take
account of recent file references. In this case most improvement
will be gained by reducing index table swaps.

29

¥202 Iudy 61 U0 1senb Aq 29€8L1/G2/1/G L/aIoIe/|ulwoo/wod dno-ojwepeoe//:sdpy wolj papeojumoq

6.01
5.0
k-optimum »
s
/
/
Ve
/
Ve
/
»
=} s
3]
=
i
o /
o
i /
“ 4,0
< / .7
[’ e
o / 4
2] ’
= ,
4
2 ’
=1
<N
wl
2
3.0
7/
4
L7 /-k=16
s
v ’
s
s
’
/
2.0 & /
/ .

¢ - PROBABILITY oOF artdcarion cuafice
(¢) Model 2 configuration A

When one considers the recovery overhead, the total number
of files, the size of the directory pages and the size of the AFT
enter into calculations. Typically one would be dealing with
from 2,000 to 20,000 files with say 200 active files. From the
estimates for administrative update given in Section 5 this
overhead will be dominated by the components 3S/s for IM
and 3K/k for 1I. For the respective configurations under IM
this represents 24 and 228 transfers, and under II between 180
and 1,800 transfers. These values determine the frequency at
which one can afford to update the administrative information,
and so it would be imperative to reduce the overhead under II
by expanding the buffer area for index tables during the update
phase or by combining it with DI.

Equations (7) and (8) show that the number of transfers for
restart is directly proportional to F the number of files under I1,
and to F/f the number of directory pages under IM. Typically
this means at least a factor of 10 difference in the restart time
between II and IM.

By introducing directly indexed files (DI) the size of the index
table file is proportionately reduced and so is the adminis-
trative update overhead. Restart time is also directly pro-

30

3.0]

TRANSFERS PER FILE REFERENCE

2 % .6 8 1.0
¢ - PROBABILITY OF ALLGCATION CHANGE
(d) Model 2 configuration B

portional to F/f for the DI files, and so the recovery overhead
becomes comparable with IM, if most files are DI.

Conclusion

The IM scheme appeals strongly because its comparatively
simple overall logic and its obvious superiority to linked files
and direct indexing. It is likely to provide most efficient
operation when restricted to small files on medium sized
systems. Large files could cause the IM scheme to degenerate
and a separate index table is much more efficient for manipu-
lating a large file. Indexing offers two advantages when manipu-
lating files, first the random access mode does not differ in
overhead from sequential access, and second the file can be
traversed in either direction with the same overhead. However
the II scheme is likely to be impractical by itself particularly
because of the recovery overhead, but when combined with DI
it constitutes an efficient and versatile addressing scheme.

Obviously when files grow very large (such as in data base
management systems) their administration is outside the scope
of a general purpose file system. For large data base files
physical continuity of storage must be strictly controllable and
many applications call for painstaking reliability measures with
many levels of recovery and restart.

Acknowledgement
The authors are indebted to the referee for his helpful criticism.

Appendix 1

The derivations of probabilities ¢;, ¢, and c; are given. Let us
first consider ¢, which is associated with the process of index

The Computer Journal

¥202 Iudy 61 U0 1senb Aq 29€8L1/G2/1/G L/aIoIe/|ulwoo/wod dno-ojwepeoe//:sdpy wolj papeojumoq

tables competing for & slots (k < a) in PS. If we assume that the
process is in statistical equilibrium the probability of any index
table being resident in PS is k/a. When an index table is dis-
placed from PS it will have been resident during the displace-
ment of k — 1 other index tables under the strategy assumed.
If we denote by p, the probability that during its residence there
were r references to resident index tables we have (Feller,1957):

e

Then denoting by g, the probability that there were n references
to the particular index table being displaced we have

= m 1INk — 1\m " :
0= D () G e

qd, = D fork=1

Thus the probability that the displaced index table has been
modified is ¢, where

l—c= 3% g, (1 —o)*!
n=0

In order to similarly derive ¢, and ¢, we need to know the
probability c¢* that a reference to an integrated map section
causes it to be modified. In practice this probability is strongly
dependent on the primitive function; for example on storage
deallocation all integrated map sections which contain entries
for a given file will be modified. An average value for c* is
bounded above by ¢ and below by

c* <Y pcli

and this lower bound approaches ¢ as p; — 1.
Assuming c* is a constant probability it follows in the same
manner as above that

1—c3=3q,(1—c*)"
n=0

where s and S replace k and a in the expressions for g, and p,.
Thus we have

S e
n N N

References

4n = Pn fors =1

-

In the case where only one of s slots is used for swapping
integrated map sections we have

l—¢; =% g, (1 —cH)*!
n=0

where ¢, is as given above and

(=90

The derivation of equations (1) to (6) is typified by the follow-
ing derivation of equation (3). With probability p; a file
reference results in chaining through 7 sections of the map (it is
assumed that any stage in the chain the next section can be any
one of the other § — 1 sections with equal probability). The
probability that a required section of the map is already resident

in PSis S“f The probability that j of the sequence of i sections
will be non-resident when required is

W) (1 -5)

If j sections are non-resident these will have to be transferred
displacing j other sections. The displaced sections will have to
be transferred to SS if modified. Thus the expected number of
transfers is j(1 + ¢,). Summing over / and j yields

Z b Z @ (f:)i_j (1 - 'g)jj(l e

[
. N i—l si"j S‘i-l
=(1+cl>zipiz(1—§>§ (1—1)<§) (1_5)
=(1+c1)(1—§>;

where

5 Z::Pii

ALLEN, M. W, and PEARCEY, T. (1969). Developments in Machine Architecture, Proc. Fourth Australian Computer Conf., Vol. 1, Adelaide,

1969, pp. 227-230.

BARRON, D. W., FrRASER, A. G., HARTLEY, D. F., LANDY, B., and NEeDHAM, R. M. (1969). File Handling at Cambridge University, AFIPS

Conf. Proc., Vol. 30 (SJCC 1967), pp. 163-167.

BENSOUSSEN, A., CLINGEN, C. T., and DALEY, R. C. (1969). The Multics Virtual Memory, ACM Second Symposium on Operating System
Principles, Princeton University, October 1969, pp. 30-42. Sponsored ACMSIGOPS.

BERNSTEIN, A. J., and HamM, J. B. (1969). The design and implementation of a directory hierarchy for a general purpose operating system,
Internal Report, 1969, General Electric Research and Development Centre, Schenectady, N.Y. (to be published).

Crook, B. H., SmiTHIES, A. P., and RAEBURN, J. H. (1969). Program rerun facilities in magnetic tape systems. Proc. Fourth Australian

Computer Conf., Vol. 1, Adelaide, 1969, pp. 159-165.

DaLEy, R. C., and NEUMANN, P. G. (1965). A general-purpose file system for secondary storage, AFIP.S Conf. Proc., Vol. 27 (FICC 1965),

pp. 213-229.

DiuksTRA, E. W. (1968). The Structure of ‘THE’ multiprogramming system. CACM, Vol. 11, No. 5, pp. 341-346.

FeLLER, W. (1957). An introduction to probability theory and its applications, Wiley: New York.

FRASER, A. G. (1969). Integrity of a Mass Storage Filing System, The Computer Journal, Vol. 12, No. 1, pp. 1-5.

HARGRAVES, R. F., Jr., and STEPHENSON, A. (1969). Design Considerations for an Educational Time-Sharing System, AFIPS Conf. Proc.,

Vol. 34 (SJCC 1969), pp. 657-664.

Jongs, P. D., and PurceLt, C. J. (1969). Economics and Resource Parallelism in Large Scale Computing Systems, Proc. Fourth Australian

Computer Conf., Vol. 1, Adelaide, 1969, pp. 241-244.

KERR, R. H., BERNSTEIN, A. J., DETLEFSEN, G. D., and JOHNSTON, J. B. (1969). Overview of the R & DC operating system, Internal Report,
1969, General Electric Research and Development Centre, Schenectady, N.Y. (10 be published).

LampsoN, B. W. (1968). A Scheduling Philosophy for Multiprocessing Systems, CACM, Vol. 11, No. 5, pp. 347-360.

LockeMANN, P. C., and KNuTsaN, W. D. (1968). Recovery of Disk Contents After System Failure, CACM, Vol. 11, No. 8, p. 542.

NEeepHAM, R. M., and HARTLEY, D. F. (1969). Theory and Practice in Operating System Design, ACM Second Symposium on Operating
System Principles, Princeton University, October 1969, pp. 8-12. Sponsored ACMSIGOPS.

SHOSHANI, A., and BERNSTEIN, A. J. (1969). Synchronisation of a Parallel-Accessed Data Base, CACM, Vol. 12, No. 11, pp. 604-607.

Volume 15 Number1
2

31

¥202 Iudy 61 U0 1senb Aq 29€8L1/G2/1/G L/aIoIe/|ulwoo/wod dno-ojwepeoe//:sdpy wolj papeojumoq

