
Some observations on least time to go' scheduling

J. F. Lubran and J. D. Roberts
University Engineering Department, Cambridge

The mechanism of scheduling time critical programs by a 'least time to go' algorithm is shown to
provide an attractively simple and secure facility for use by object programs which is practicable
to implement. It is also shown to possess advantages of robustness as well as optimality.
(Received December 1970)

In real time applications of computers such as hybrid compu-
tation and process control, a single processor may be required to
execute several time critical processes. A typical single process
will include short highly time critical phases such as the oper-
ation of ADC's or DAC's on an analog computer. These phases
of duration 5T1, 8T2, • • . must be performed in immediate
response to events at times TUT2,.... A process may also
include intermediate phases, such as the computation of the
next values to be written to the DAC's, which must be executed
at any time within the intervals (7\, T2), (T2, T3) For the
purpose of this description a 'crisis' as discussed by Middleton
(1971) is considered to be an extra event which trggiers a null
phase of computation. This paper considers the problem of
scheduling several time critical processes in parallel. The prem-
ises on which the present discussion is based are given below.
They perhaps apply less equivocally to hybrid computation in
which there are well-defined quantitative accuracy consider-
ations than to other real time applications.

1. There is no problem of overlap between the different pro-
cesses in the highly time critical intervals (Tt, Tt + 5Tt). For
this condition, either the interval 5Tt must be negligible or
the timing must have been so planned that no event associ-
ated with another process occurs in the interval (Tt, Tt +
8Tt). The latter condition is easy to fulfil deliberately in
hybrid computation.

2. An intermediate time critical computation phase may be
distributed in any way with equal effectiveness over the
interval (Th Ti+1). The only criterion is reliability in com-
pleting it before Tl+1.

3. The event times and amounts of computation are so distri-
buted as to make it possible for some scheduling decision to
fulfil criterion (2).

4. Subject to conditions (1) and (3) events may occur at non-
tabular intervals.

A common simple scheduling scheme associates each process
with a priority 'level', this notion being embodied in the interrupt
processing hardware of many computers. The need to generalise
this scheme is indicated in the BCS Report (1967) which pro-
poses that priorities be manipulated dynamically by the user. A
difficulty in this approach is that to allow sufficient privilege to
schedule effectively also allows sufficient facility for processes to
interact completely arbitrarily and to generate unreproducible
effects.
An alternative method of scheduling is to work in terms of

time to go rather than priority. A simple but effective scheme is
to run the process associated with the earliest next event out of
those processes which have yet to complete their current phases
of computation. The conceptual simplicity of this scheme has
been emphasised by Fineberg and Serlin (1967) with reference
to the problem of running two or more time critical com-
putations simultaneously on a single processor. These authors
advocate that in hybrid computation multi-level interrupt hard-

ware is 'highly overrated'. In 'least time to go' scheduling the
only link which a process need make with the scheduler is to
give information about the urgency of its next event time. In
this way the composition of a real time program does not
involve explicit references from within a process to different
processes. It resembles more closely the implementation on a
set of dedicated processors. Another advantage of this methodis
that alterations of priorities take place only in response to
events, and not at undefined times. Programs which achieve
effective scheduling should not need to be complicated and even
erroneous design of a program will not produce the same degree
of chaos as could be produced by completely arbitrary manipu-
lation of priorities. Note that it is the time before the next
event that determines the urgency and not the process run time,
therefore the application is not impeded by ignorance of
fluctuations of process run time.
A statement and proof of the optimality of thi? kind of

scheduling (but using a different terminology) is given by
Conway, Maxwell, and Miller (1967). Referring to a manage-
ment sciences report of Jackson (1955) they state that 'The
maximum job lateness (the negative of the closest margin before
a deadline) . . . is minimised by sequencing jobs in order of non-
decreasing due-dates ('least time to go' scheduling)'.
Sometimes properties of particular scheduling strategies are

exploited for purposes other than scheduling. For example,
fixed priority structures can be used to mutually exclude pro-
cesses at the same level from use of the same resource. This is
more selective than complete inhibition of interrupts but less
selective than a more general semaphore system. Since advances
in hardware and software design are being made which enable
the latter completely selective kind of system to be implemented
efficiently, the authors feel that scheduling methods should be
assessed for their properties as schedulers alone.
These considerations present a strong prima facie case for

incorporating 'least time to go' scheduling at a fundamental
level in a real time computing system. It may be that the reason
why it has not received more widespread interest is that it is
considered to be inefficient or to possess concealed disadvan-
tages. It is the purpose of this paper to show that:

1. 'Least time to go' scheduling can be reasonably efficient on
present day computers with good multiprogramming hard-
ware.

2. 'Least time to go' scheduling possesses less obvious advan-
tages in its robustness to various types of perturbation. These
could include delays caused by higher priority interrupts
outside the scheme of 'least time to go' scheduling.

Implementation
Each process must be in one of the following states:
(A) waiting for a particular event to occur
(B) running indivisibly in immediate response to an event

32 The Computer Journal

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/15/1/32/418374 by guest on 19 April 2024

(C) (i) running during an intermediate computation phase
(ii) ready to run but awaiting completion of a more

urgent phase of another process.

Transitions from phase A to phase B are controlled by inter-
rupts signalling the occurrence of events. Transitions from B to
C and from C to A are controlled by instructions in the code
defining each process. In any one process these transitions
must occur in the cyclic sequence A B C viz:

phase (A)

phase (B)

phase (C)

phase (A)

interrupt (< event >)

continue (<time to go>)

await (< event >)

If any event occurs before the corresponding 'await' statement
has been executed, it means that the programmer has either
specified his time to go incorrectly or that he is demanding more
computing power than is available.
The information required to resume a process is stored in a

vector of contiguous locations reserved for that process. Each
vector also contains information about the urgency (event time)
and a pointer which can be used to chain the processes together
in a queue. Each process in phase (A) is linked to a pointer in an
interrupt table specially reserved for the appropriate event. A
process in phase (B) is linked to the 'current process pointer'.
All other processes are chained together in a one-way queue
in order of urgency. The most urgent process is linked to the
'head process pointer'which takes the same value as the 'current
process pointer' when there is no process in phase (B). The least
urgent process is always the 'idle loop' with infinite event time.
The function of the scheduler is to maintain the configuration

of linked vectors on each transition. When an interrupt occurs
the process linked to the appropriate element of the interrupt
table becomes the current process. This element of the interrupt
table is then cleared. On the 'continue' instruction, a search is
made down the chain of active processes and the current pro-
cess is inserted before the first process with a later event time.
The head of the chain becomes the current process. On the
'await' instruction the current process which is also the 'head'
process is removed from the chain of active processes and linked
to the appropriate pointer in the interrupt table.
The only action presenting any problem of speed is the

'continue' instruction which involves a search down a chain
of vectors with interrupts inhibited. The following favour-
able points must be taken into account here:

1. The most frequent event will typically be those with short
computations to be performed with great urgency and these
will be inserted near the head of the chain of active processes.

2. The 'continue' instruction will take place at a short time
after the highly time critical interrupt routine has been com-
pleted. There is no danger of coincidence with other time
critical events if condition (1) of the introduction is satisfied.

The precise algorithm is conveniently expressed in the record
handling notation of Wirth and Hoare (1966); although it is
emphasised that no automatic translator was used in imple-
mentation. In fact, many of the functions are incorporated
within the hardware of the computer which was used. The pro-
cess reference 'current' is represented by a certain location
which is built into the hardware of the machine. The procedures
'restore hardware registers' and 'reactivate current process' are
combined in a single hardware function.
integer procedure time nowf; comment time measured in 1/1024
sees;

record class process;
begin integer array hardware registers;

integer event time;
ref (process) successor

end;
ref (process) currentf, head;
procedure preserve hardware registers; comment the hardware
registers in the current process vector are set from the actual
hardware registers in the central processor;
procedure restore hardware registers!; comment the reverse of
the above;
procedure reactivate current process"!";
procedure alarm; comment in hybrid computing it is useful to
put the analog into 'hold' mode and in any case to give a
warning such as ringing the bell on the typewriter;
procedure await (integer value event class);
begin table [event class] : = current;

current : = head : = successor (current)
end;
procedure interrupt (integer value event class);
begin preserve hardware registers;

if table [event class] = null then alarm else
begin current : = table [event class];

table [event class] : = null;
reactivate current process

end
end;
procedure continue (integer value time to go);
begin integer t;

t : = event time (current) : = time to go + time nowf;
queue (t)

end;
procedure queue (integer value t);
if t < event time (head)
then begin successor (current) : = head;

head := current;
reactivate current process

end
else begin ref (process) last, next;

last : = head; next : = successor (head);
while not /< event time (next) do

begin last : = next;
next : = successor (last)

end;
successor (last) := current;
successor (current) : = next;
current := head; restore hardware registers; re-
activate current process;

end;
On an ICL/Elliott 4130 computer* with a 2 //sec core store,

timing for the various operations is as follows:
switch to executive mode 20 ^sec (hardware)
(preserving hardware registers)
determine interrupt event class 37 to 84 /isec (has to be

performed by
software
because of
current nature
of interrupt
linkage)

setting current pointer etc. 30 /isec
reactivation of process 22 /isec
(restoring hardware registers)

Total overhead for 'interrupt' 109 to 156 /isec

t Denotes built in hardware functions.
•The digital part of the Cambridge University Control Group hybrid computer 'Cassandra'.

Volume 15 Number 1 33

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/15/1/32/418374 by guest on 19 April 2024

20

68

110

22
22

110
+ 22

20

31
22

73

//sec

/zsec

//sec
//sec

to 152
//sec x

//sec

//sec
//sec

//sec

//sec
(final position in

chain - 2)

switch to executive mode
(preserving hardware registers)
insertion of vector at top of
chain
insertion of vector in 2nd
position in chain
for each additional search
down chain
reactivation of head process
(restoring hardware registers)

Total overhead for 'continue'

switch to executive mode
(preserving hardware registers)
link to interrupt table etc.
reactivation of head process
(restoring hardware registers)

Total overhead for 'await'

A count is kept of the time in one of the locations in core
which is incremented by a pulse generated every 1/1024 sec. In
this particular computer, the count was driven by the same
hardware as is used for sharing autonomous input and output
of all slow devices and the overhead incurred of three core
cycles per pulse amounts to less than 2/3 % of the core store.
The overheads listed above do not include the normal checks

which are necessary to provide complete protection between
different programs. If this protection is required extra times
must be added equivalent to the normal overheads on trapped
instructions in general purpose multiprogramming executives.
Experience with the particular computer used would indicate
that these two types of overhead are of comparable order of
magnitude. The scheduling system described does not therefore
make unreasonable demands on the processor. In any case, the
only part of the scheduling system which would not be needed
by a 'fixed priority' system is the searching triggered by the
'continue' instruction, and even this would appear to be unlikely
to dominate the other parts.
It should be noted that the above algorithm works in absolute

times and that a 24-bit integer allows counting for 5 hours
without overflow. With shorter word length or longer working,
the algorithm could be modified to work in times relative to
the previous event.

Robustness of 'least time to go'
An example given by Fineberg and Serlin (1967) illustrates the
ability of 'least time to go' scheduling to make full use of
processing power by avoiding idling. Here two tasks require
equal proportions of processor time in regular intervals in the
ratio 3:2. While 'fixed priority' scheduling would allow only
6/7 of the processor time to be used, 'least time to go' schedul-
ing allows 100% processor utilisation. Fig. 1 shows that an
attempt to achieve 100 % processor loading under fixed priority
scheduling results in one process failing to meet its deadline.
Fig. 2 shows how 'least time to go' scheduling achieves 100%
processor loading without lateness. The ordinate of each graph
indicates the amount of uncompleted computation before the
next event. The gradient is zero when a process is suspended
and — 1 when actually running.

If the critical times of the two processes do not coincide, then
the utilisation of the processor obtainable with 'fixed priority'
scheduling may be bigger than 6/7. It may even approach 100%
when there is the maximum distance of one quarter of the
shorter period between critical times associated with the two
processes as shown in Fig. 3. Under these conditions, however,

ZERO
TOLERANCE

% LOADING - 5 0 %

% LOADING

Fig. 1. Fixed priority with coincident events

ZERO
TOLERANCE

% LOADING - 5 0 %

LOADING - 50% j

Fig. 2. Least time to go with coincident events

ZERO
TOLERANCE

L0ADING-50&

% LOAD ING-50?.

zz . .
K T;,,

Fig. 3. Fixed priority with staggered events

'least time to go' scheduling possesses more subtle advantages.
These arise when one takes into account tolerances in the time
by which phases of computation are completed. In a real
situation, the scheduler may need to allow for any of the
following hazards:

1. Short higher priority interrupts from asynchronous devices.
2. Effective degradation of processor power through loss of

core cycles to higher priority I/O processors.
3. Coincidence of use of non-reenterable subroutines by

parallel tasks.
In case (3) the tasks will exclude each other by a Dijkstra

semaphore and the most urgent task may be kept waiting for a
period up to the duration of the subroutine. In this case, time is
only 'borrowed' by the environment. Even if there is continual
100% loading of the processor, the critical times are met
provided that the time borrowed is within a certain tolerance.
This tolerance is the minimum to spare which any process has
when it becomes ready for the next time critical event (for
example, as shown in Fig. 4). In the first two cases, time is
actually 'stolen' by the environment. It can be recovered only
during time which would otherwise be idle, therefore it can
only be recovered if the loading is actually less than 100%.

The Computer Journal

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/15/1/32/418374 by guest on 19 April 2024

TOLERANCE -
0-25 -SHORTER PERXO

LOAD:NG-5C%~

% FADING-50?

TL.

Fig. 4. Least time to go with staggered events

it, LOADINC-50% !

% LOADING-50%

Fig. 5. Least time to go with staggered events after maximum
perturbation

Table 1 Table of the maximum loading and tolerance of two
processes under the 'Fixed priority' and 'Least time to
go' schedulers

Coincident
events

Staggered
events

'FIXED PRIORITY'
SCHEDULING

6/7 loading: no
tolerance
100% loading: no
tolerance (Fig. 3)
OR
6/7 loading: £ short
period tolerance

'LEAST TIME TO GO'
SCHEDULING

100% loading: no
tolerance (Fig. 2)
100% loading: £ short
period tolerance
(Fig. 4)

Isolated demands of this type within the relevant tolerances
may still nevertheless be accepted even if the loading is only
very slightly less than 100%. The timing for 'least time to go'
scheduling is shown in Fig. 4. Here every phase of computation
is completed with at least one quarter of the shorter period to
spare and this time may be 'borrowed' quite freely by the
environment. The effect on the timing when the environment
claims the maximum tolerance is shown in Fig. 5. The timing
returns to that shown in Fig. 4 when the time is reclaimed
assuming the loading to be slightly less than 100%. In contrast,
there is no tolerance at all with fixed priorities (Fig. 3) and to
obtain a tolerance of one quarter of the shorter period, the
processor would again have to be only 6/7 loaded. With 'least
time to go' scheduling, the tolerance interval is zero only if
critical events in different processes coincide. These obser-
vations are summarised in Table 1. The formula for the toler-
ance in general, derived in the Appendix, shows that with more
than two processes the tolerance is in general non-zero even if
events in some of the processes coincide. There is zero tolerance
only if there is a simultaneous coincidence of the time critical
events of all the processes. While it may not be good practice to
run the processor at 100 % loading as indicated in the examples,
these are extreme limits of a range of feasible loadings. For

more reasonable processor loadings margins of tolerance will
be correspondingly greater.

Conclusion

'Least time to go' scheduling presents an attractively simple
linkage with tasks governed by time critical events. It is
efficient and realistic even on some present day general purpose
real time computers, and could easily be made even more
efficient with hardware implementation of parts of the algor-
ithm. It allows the maximum possible use of the computing
power available and possesses less obvious but probably more
important advantages in robustness and insensitivity to the
kinds of perturbation to timing which occur in a multiprogram-
ming environment. The role of fixed priorities is not completely
eliminated but its significance is both reduced and clarified
in the context of higher priority interrupts as one kind of
perturbation. 'Least time to go' scheduling will also allow
effective scheduling when events occur at irregular intervals.

Appendix

The notion of percentage loading of a processor is meaningful
if for each process PU) the amount of computation to be
performed during each interval AT\J) is 9U) AT(

U) where
AT(.j) = TfJ

+\—T\J) and 0O) which represents the process
loading is the same for every interval in the process />(-'). The
overall processor loading is defined by:

0 = £ 0(J)

j

To obtain a compact but strong result which gives the toler-
ance, i.e. the minimum time spare before a critical event,
remains a research problem. Nevertheless, the following
results are strong in some useful cases and do demonstrate the
essential point that the tolerance is always non-zero even with
100% loading provided that there is never a total coincidence
of events in all the processes. The method used is to generate
successive improvements on an initial strategy of 'infinitesimal
time slicing' (Fineberg and Serlin, 1967). The strategy to which
the results are shown to apply is intermediate between 'least
time to go' and 'infinitesimal time slicing'. The results apply a
fortiori by the theorem of Jackson (1955) discussed earlier to
'least time to go' scheduling.

Two processes

The most convenient way is to state the required result not as
a simple formula but as a set of sufficient conditions which
when satisfied simultaneously allow a tolerance x to be obtained.
Condition 1:

t < I T / 1 ' - 7;.<2)| an i, v

i.e. T must be a lower bound to the smallest gap between any
pair of critical times.
Any interval in a process will either (a) be nested in an interval

of the other process or (b) by condition 1, overlap a period of at
least T in each of two successive intervals of the other process.
For case (a) the computation is rearranged to give absolute
priority to the nested phase in accordance with 'least time to go'
scheduling. The state of the processes at the end of the longer
interval is unchanged. The nested phase will terminate with
tolerance >x under the following condition:
Condition 2:

For case (b), consider an initial strategy of 'infinitesimal time
slicing' with processor power allocated to each of the processes
of 0 (l) /0 and 0(2) /0 . Any tolerance x(2) in an interval AT\»>
can be shown to propagate a tolerance T(2) in the interval in
P(2) overlapping the end of AT^.lf in the interval J r / l > the

Volume 15 Number 1 35

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/15/1/32/418374 by guest on 19 April 2024

time slicing strategy is further modified to include a 'least time
to go' strategy for the end of the interval, then a tolerance T(1)

will be produced for that interval. Condition 1 implies that if
T(1) < T then a quantity (0(1)/0) T(1) of processor activity at the
end of ATj1^ is freed for utilisation by process P(2). It is easily
shown that a tolerance T(2) is allowed in the time to spare
before the next event in i>(2) if

x(2)

This may be summarised by
Condition 3:

such that

T (2 >

min (x, ^ T*1* + (1 - 0

j p T(1) + (1 - 0) min

0(2)
0
^ j - , T(2) + (1 - 0) min

T (1)

A more compact but stronger condition is
Condition 3a:

T (1
/0(D 0(2)\

- mini ^ 3 , ^ I < (1 - 0) min ATt)

Conditions 1, 2 and 3a are adequate to show that the set-up in
which 0(1) = 0(2) = i and ATW:ATW = 3:2 with events

maximally staggered leads to a tolerance of one sixth of the
longer period.

More than two processes

With a greater number of processes (n > 2) much more
complex combinations of possibilities exist. The problem may
be regarded as involving combinations of n(n — l)/2 pairs of
processes, each pair using a share 2/n(n — 1) of the total pro-
cessor power. The argument implied is again based on system-
atic development of a strategy starting with 'infinitesimal
time slicing'. The tolerance x is at least that time in any interval
which can be saved by some pair of processes out of its limited
power 2/«(« — 1). A weak but easily derived set of conditions
is therefore as follows:

Condition 1*:

max|T/ j) - T}S>\ all j , i, i'
n(n-l) j

Condition 2*:

n(n — 1)

Condition 3a*: 3 j , j '

such that

AT'

References
BCS Specialist Group (1967). A language for real-time systems, The Computer Bulletin, Vol. 11, No. 3, pp. 202-212.
CONWAY, R. W., MAXWELL, W. L., and MILLER, L. W. (1967). Theory of scheduling, Addison-Wesley Publishing Company.
FINEBERG, M. S., and SERLIN, O. (1967). Multiprogramming for Hybrid computation, Proc. AFIPS, Fall Joint Computer Conference.
JACKSON, J. R. (January, 1955). Scheduling a production line to minimise maximum tardiness, Research Report 43, Management Sciences

Research Project, U.C.L.A.
MIDDLETON, M. D. (March, 1971). A Note on Scheduling Real Time Processes, Cambridge University Engineering Department.
WIRTH, N., and HOARE, C. A. R. (1966). A contribution to the development of Algol, CACM, Vol. 9, No. 6, pp. 413-31.

Correspondence
(Continued from page 4)

The basic principles behind these examples are two:
1. A programming language should include much redundancy,

which means that when a correct program is erroneously
modified, then as many of the logically false modifications as
possible should introduce not only logical errors but also
language errors into the program.

2. When a programming language construct is ambiguous, that is
can be interpreted in more than one way (like a : = / in the
example above), then the whole construct should be forbidden,
forcing the programmer to use other, unambiguous constructs
instead (like a : = round / in ALGOL 68).

These two principles have one common aspect: The larger ability
to detect errors for the compiler is gained by restricting the freedom
of the programmer to write anything he likes and have the compiler
try to understand what he means. Such an understanding compiler is
very dangerous, since it will not be as good at detecting logical
errors.

This is the basic conflict which the authors of the paper in your
February issue did not discuss. The authors want to change high
level languages to be more understanding. But the disadvantages with

such changes are sometimes much larger than their advantages.
Especially with the advent of time-shared computers, the correction
of compiler-detected errors becomes very simple. The real risk is
not the compiler-detected errors, as the authors seem to think, but
the logical errors not discovered by the compiler.

Yours faithfully,
J. PALME

Datalogy Section
Research Institute of National Defense
S-10450 Stockholm 80
Sweden
16 August, 1971

References
PALME, J. (1969). What is a good programming language? FOA P

Report C 8231. Research Institute of National Defense, S-10450
Stockholm 80, Sweden.

PALME, J. (1971). Simula 67—An advanced programming and
simulation language, Norwegian Computing Center, Forskning-
sveien lb, Oslo, Norway.

36 The Computer Journal

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/15/1/32/418374 by guest on 19 April 2024

