
disc; further, the 'split cylinder' technique can be used to
reduce time-consuming seeks in this case. For example, a
two-disc configuration might match the throughput of a
five-tape configuration (but possibly might still be the more
expensive of the two).

3. Even sequential disc files have the flexibility of direct access
when required, if only by the 'binary chop' technique; this
facility might save passes of the file. For example, amend-
ments to record keys can require that the file be resequenced
in the current run; a tape file will require an extra pass to
achieve this, whereas the direct access facility can be used to
avoid this for the disc version.

4. There are many more arguments that favour disc sequential
processing but, on the other hand, tape sequential process-
ing often (but not always) proves to be more economical.
Generally, a costed saving in computer run time must be
weighed against increased hardware and stationery costs.

Conclusion
The rules of thumb have been disproved. A methodology of
computer systems design must necessarily commence with
careful consideration of the objectives and continue through an
iterative, decision-making procedure which attempts to meet
these objectives; the CAM project is developing such a method-
ology. It appears doubtful that any short-cuts can justifiably
be taken to achieve an efficient design other than stopping the
design procedure when an acceptable solution has been
achieved.
Finally, the author wishes to acknowledge the assistance of

his colleagues at LSE, particularly Mr. F. F. Land and Dr. A.
H. Land of the Statistics, Mathematics, Computing and Oper-
ational Research Department. The author would be pleased to
discuss the details of this paper with any interested organis-
ation, particularly in relation to specific computer systems
design problems.

References

DANIELS, A., and YEATES, D. (1969). Basic Training in Systems Analysis, London: Pitman (for National Computing Centre).
LOSTY, P. A. (1969). The Effective Use of Computers in Business, London: Cassell.
MARTIN, J. (1967). Design of Real-Time Computer Systems, New Jersey: Prentice-Hall.
WATERS, S. J. (1970). Physical Data Structure. Paper 6 of Proceedings of BCS Conference on Data Organisation.
WATERS, S. J. (1971). Blocking Sequentially Processed Magnetic Files, The Computer Journal, Vol. 14, pp. 109-112.

Correspondence
To the Editor
The Computer Journal

Sir,
High level languages are unnecessarily complex for the inexperienced
user, D. G. Evershed and G. E. Rippon say in a paper in Vol. 14,
No. 1,1971 of this Journal. The authors of the paper discuss a number
of modifications to FORTRAN, ALGOL and other high level
languages. The goal of most of the suggested modifications is to
make it easier to write programs which are acceptable to the com-
piler. Many of the suggestions made by the authors are very valuable.
However, the authors do not seem to be aware of a basic conflict
underlying some of their suggestions.
The basic conflict is the following: The errors in a computer

program can be divided into two categories:
1. Language errors, which can be detected by the compiler.
2. Logical errors, which can only be detected by erroneous results

during the execution.
The second category, the logical errors, are much more troublesome

than the language errors. The reason for this is that the compiler
gives a good and useful diagnostic for most language errors, which
makes it very simple for the programmer to correct his errors. For
logical errors, on the other hand, the process of finding and correct-
ing them is often much harder. There is even a large risk that logical
errors are not discovered until production use of the program has
begun. Sometimes, logical errors are not discovered at all, which
means that the results of the runsof the program maybe dangerously
false.

Because of this, it is much more important to design a computer
system which gives few logical errors than to design a system which
gives few language errors.
In many cases, a programming language construct can be designed

either to give few language errors or to give few logical errors. The
reason for this is that the language can be designed in such a way that
as many common logical errors as possible will also cause language
errors. If a programming language is designed in this way, then the

compiler has much larger possibilities to help the programmer avoid
logical errors.
A very simple example; the following ALGOL program contains an

error:
integer abcde;

abcde : = abode + 1;

The intention of the programmer was to increase abcde by 1.
However, by mistake, he instead wrote abode on the right hand side.
This may cause a logical error which is very difficult to discover, if
the sequence above was written in FORTRAN. However, in
ALGOL, a language error occurs: abode is an undeclared variable.
Thus, the compiler can detect the programming error in ALGOL
but not in FORTRAN.
A second example; the following construct is allowed in both

ALGOL 60 and FORTRAN but not in ALGOL 68:

real a; integer i;

/ := a;
The difficulty with this statement is that real variables can be

converted into integers in many different ways. You can make a
correct rounding (using different ways of rounding) or you can take
the nearest lower integer, either with sign (as the ALGOL entier
function) or without sign (as the FORTRAN int function). In fact,
the program above will be executed in one of these ways in ALGOL
60 and in another way in FORTRAN. A very common programming
error is to assume one conversion when the real conversion is another
than the one assumed. This error cannot occur in ALGOL 68.
A third, more complex example, is the handling of pointer variables

in various languages. If these pointer variables are typedeclared and
typechecked (like in ALGOL 68 and in Simula 67) then the risk of
undetected logical errors is much smaller than without such checking
(like in PL/1 or in SIMSCRIPT). Also, a garbage collector (like in
LISP, SNOBOL, ALGOL 68, SIMULA 67) gives smaller risk of
programming errors than explicit deallocation of list structure
records (which is done in PL/1 and SIMSCRIPT).

(Continued on page 36)

The Computer Journal

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/15/1/4/418391 by guest on 19 April 2024

time slicing strategy is further modified to include a 'least time
to go' strategy for the end of the interval, then a tolerance T(1)

will be produced for that interval. Condition 1 implies that if
T(1) < T then a quantity (0(1)/0) T(1) of processor activity at the
end of ATj1^ is freed for utilisation by process P(2). It is easily
shown that a tolerance T(2) is allowed in the time to spare
before the next event in i>(2) if

x(2)

This may be summarised by
Condition 3:

such that

T (2 >

min (x, ^ T*1* + (1 - 0

j p T(1) + (1 - 0) min

0(2)
0
^ j - , T(2) + (1 - 0) min

T (1)

A more compact but stronger condition is
Condition 3a:

T (1
/0(D 0(2)\

- mini ^ 3 , ^ I < (1 - 0) min ATt)

Conditions 1, 2 and 3a are adequate to show that the set-up in
which 0(1) = 0(2) = i and ATW:ATW = 3:2 with events

maximally staggered leads to a tolerance of one sixth of the
longer period.

More than two processes

With a greater number of processes (n > 2) much more
complex combinations of possibilities exist. The problem may
be regarded as involving combinations of n(n — l)/2 pairs of
processes, each pair using a share 2/n(n — 1) of the total pro-
cessor power. The argument implied is again based on system-
atic development of a strategy starting with 'infinitesimal
time slicing'. The tolerance x is at least that time in any interval
which can be saved by some pair of processes out of its limited
power 2/«(« — 1). A weak but easily derived set of conditions
is therefore as follows:

Condition 1*:

max|T/ j) - T}S>\ all j , i, i'
n(n-l) j

Condition 2*:

n(n — 1)

Condition 3a*: 3 j , j '

such that

AT'

References
BCS Specialist Group (1967). A language for real-time systems, The Computer Bulletin, Vol. 11, No. 3, pp. 202-212.
CONWAY, R. W., MAXWELL, W. L., and MILLER, L. W. (1967). Theory of scheduling, Addison-Wesley Publishing Company.
FINEBERG, M. S., and SERLIN, O. (1967). Multiprogramming for Hybrid computation, Proc. AFIPS, Fall Joint Computer Conference.
JACKSON, J. R. (January, 1955). Scheduling a production line to minimise maximum tardiness, Research Report 43, Management Sciences

Research Project, U.C.L.A.
MIDDLETON, M. D. (March, 1971). A Note on Scheduling Real Time Processes, Cambridge University Engineering Department.
WIRTH, N., and HOARE, C. A. R. (1966). A contribution to the development of Algol, CACM, Vol. 9, No. 6, pp. 413-31.

Correspondence
(Continued from page 4)

The basic principles behind these examples are two:
1. A programming language should include much redundancy,

which means that when a correct program is erroneously
modified, then as many of the logically false modifications as
possible should introduce not only logical errors but also
language errors into the program.

2. When a programming language construct is ambiguous, that is
can be interpreted in more than one way (like a : = / in the
example above), then the whole construct should be forbidden,
forcing the programmer to use other, unambiguous constructs
instead (like a : = round / in ALGOL 68).

These two principles have one common aspect: The larger ability
to detect errors for the compiler is gained by restricting the freedom
of the programmer to write anything he likes and have the compiler
try to understand what he means. Such an understanding compiler is
very dangerous, since it will not be as good at detecting logical
errors.

This is the basic conflict which the authors of the paper in your
February issue did not discuss. The authors want to change high
level languages to be more understanding. But the disadvantages with

such changes are sometimes much larger than their advantages.
Especially with the advent of time-shared computers, the correction
of compiler-detected errors becomes very simple. The real risk is
not the compiler-detected errors, as the authors seem to think, but
the logical errors not discovered by the compiler.

Yours faithfully,
J. PALME

Datalogy Section
Research Institute of National Defense
S-10450 Stockholm 80
Sweden
16 August, 1971

References
PALME, J. (1969). What is a good programming language? FOA P

Report C 8231. Research Institute of National Defense, S-10450
Stockholm 80, Sweden.

PALME, J. (1971). Simula 67—An advanced programming and
simulation language, Norwegian Computing Center, Forskning-
sveien lb, Oslo, Norway.

36 The Computer Journal

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/15/1/4/418391 by guest on 19 April 2024

