
The MU5 instruction pipeline
R. N. Ibbett
Department of Computer Science, The University, Manchester, M13 9PL

MU5 is a high speed general purpose computer designed to meet the requirements of high level
languages. The order code is such that several distinct operations are involved in accessing an operand.
Operands specified directly by instructions are accessed by the instruction processing unit described in
this paper. This unit is designed as a pipeline in which several instructions are in different stages of
processing at any one time. A significant improvement in performance is obtained by this technique
although detailed requirements of the order code deteriorate the performance in practice. An
assessment of the expected overall performance is given.
(Received July 1971)

1. Introduction
The instruction processing unit described in this paper forms
part of the central processor of the MU5 computer system
currently being developed in the Department of Computer
Science at Manchester University (Kilburn, Morris, Rohl, and
Sumner, 1968). MU5 is a research computer intended to have
a performance improvement of at least a factor of 20 over
Atlas. A number of features of the system design contribute to
this improvement, but particularly important amongst them
are

1. the order code, and
2. instruction overlapping.

1. The order code

The current trend in computing is towards greater use of high
level languages (ALGOL, FORTRAN, COBOL, etc.) rather
than simple autocodes or basic machine codes. Thus there is
considerable virtue, in terms of ease of compiling and economic
running of the processor, in designing an order code with the
structure of such languages in mind (Brooker, 1970; Lindsey,
1970). Important structural characteristics of high level
languages are (i) the use of names, to identify the variables and
arrays in a program, and (ii) the structuring of programs into
independent sub-programs or routines.
A program therefore consists of one or more routines (each of

which consists of a set of instructions which must be carried
out to produce some required output data from the input data
supplied) and forms part of a larger entity—a process. In MU5.
a process consists of one or more programs, each of which may
be a user program or a system program (i.e. one concerned
with the running of the processor), together with their asso-
ciated data. Addresses within a process consist of two parts—
a 14-digit Segment Number, and a 16-digit address denning the
required 32-bit word within a segment. (These addresses are
virtual addresses and are translated into real addresses by a
'paging' mechanism developed from that used on Atlas
(Kilburn, Edwards, Lanigan and Sumner, 1962).) Since several
processes may occupy the available storage space at any one
time, every virtual address also contains an additional 4-digit
Process Number. Only one process may be in execution at any
one time, however, and its process number is held in a special
Process Number Register. All addresses generated within the
central processor have the content of this register concatenated
with them before any store access is made, thus preserving the
uniqueness of processes. Processes may share segments of
information with other, specified processes, however, and some
segments are common to all processes.

Instructions in MU5 are basically of the single address format.
In single address instructions in earlier generations of com-
puters, i.e. in instructions of the form F/N, F represented the

function to be carried out (in an implied arithmetic unit in the
computer) and N represented the address in the computer
store from which the operand was to be accessed. In the MU5
order code, N represents the name of a variable associated
with a specific routine within a program, and the address of the
variable is obtained by adding this name to a Name Base. The
value held in the Name Base register is unique to the data
storage space associated with each routine and is altered at each
routine change. The advantage of this technique is that N
referring to a name can be much shorter than N referring
directly to an address anywhere in the computer store, so that
instructions are kept short whilst the address field remains
large, and the program itself requires minimal storage space.
N may be 6 or 16 bits long (requiring a 16- or 32-bit instruc-

tion) while NB, the Name Base register can address any word
within one segment (usually zero) and is 16 bits long. Other
segments are allocated to array quantities and to the program
instructions, and access to variables in segments other than the
'name' segment is made either via a data descriptor (itself
accessed by an array name) or via an Extra Name Base (XNB)
which is used in the same way as NB except that it contains an
additional 14 bits to indicate the required segment.
Studies of accesses for variables made by programs run on the

Atlas computer indicate that the majority of these accesses are
to the named variables within a routine, and that only a small
number of these variables is in frequent use at any one time
(Odeyemi, 1970). In order to reduce the time taken to access
these variables in MU5, a high speed 'name store' has been
incorporated into the central processor.
The name store is made up of 32 associative registers

(Aspinall, Kinniment, and Edwards, 1968) containing the
addresses (excluding segment number) of named variables, and
32 conventional registers containing the corresponding values.
When the variable name has been added to the Name Base it is
concatenated only with the Process Number, and the resulting
address is presented to the associative field of the name store.
If the address is identical with an address in one of the associ-
ative registers, an equivalence occurs and the value of the
variable is read out of the conventional field of the store. If the
required address is not in the associative store, an access is made
to the main store, using the full virtual address including seg-
ment number, and the value obtained, together with the appro-
priate parts of its address, are written into an empty line of the
name store. Any subsequent access for the same name does not
then require an access to the main store. Although the main
store itself has a comparatively short cycle time (250 nsecs), an
access to it can take up to 800 nsecs due to address translation,
priority circuitry, cable delays, etc., and this is an order of
magnitude longer than the time required to access the name
store.

42 The Computer Journal

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/15/1/42/418396 by guest on 19 April 2024

2. Instruction overlapping

The execution of a single instruction requires various activities
to be performed, e.g. instruction accessing, interpretation,
operand accessing, arithmetic. If separate hardware units carry
out these activities their operations can be overlapped to give
an increased rate of completion of orders. This technique, first
introduced in computers such as Atlas (Kilburn, et al., 1962),
and Stretch (Buchholz, 1962), has become known as 'pipeline
concurrency'. In a pipeline computer, several partially com-
pleted instructions are in progress concurrently, and although
the time to complete any one order is still limited by the sum of
the times for the various activities, the rate at which instruc-
tions progress through the pipeline is only limited by the time
for an individual activity.
In Atlas and Stretch the number of concurrent operations is of

the order of four. More recently the pipeline concurrency
principle has been extended to several tens of instructions in
computers such as the CDC Star (Graham, 1970), which is
designed principally as an array processor in which the same
arithmetic operation is performed on many items of data in
successive store locations, and in the IBM System/360 Model
195 (Murphy and Wade, 1970), which is a general purpose
processor containing five overlapped functional units, each
overlapped internally to give improved rates of execution.
In the MU5 processor, six functional units carry out the

various activities involved in executing an order (Fig. 1).
Accesses to store are made via the Store Access Control Unit
(SAC), which is linked to the Local Store of the processor (I6K
words of 250 nsecs cycle-time plated-wire store), and also to an
Exchange Unit (not shown) which can link several processors
and mass storage units together. The SAC contains a set of
Current Page Registers which translate the virtual addresses
generated by the central processor into the real addresses
required by the store. These registers are similar to the Page
Addresses Registers used in Atlas. Instruction accesses are
made by the Instruction Buffer Unit (IBU) in 128-bit groups,
and these are then passed on in 16-bit groups to the Primary
Operand Unit (PROP). This unit, which contains the Name
Store, and is the one with which we are principally concerned
in this paper, processes each instruction by (i) interpreting it,
and (ii) accessing the operand specified directly by the instruc-
tion (i.e. the Primary Operand). This operand may then be used
directly by the Primary Operand Unit itself or by the B (or

Index) Arithmetic Unit (B-ARITH), or indirectly by the
Secondary Operand Unit (SEOP). The latter treats the primary
operand as a data descriptor to be used for accessing data
structures, such as arrays, and consists of two parts. The first
part interprets the descriptor, and carries out index modification
using the content of the B arithmetic unit as the modifier, and
then makes the necessary store request(s). The second part
receives the requested word(s) back from the store and assemb-
les the operand in the format dictated by the descriptor which
caused the access. From the output of the Secondary Operand
Unit the operand may be routed to the Accumulator Unit
(ACC), the B-Arithmetic Unit, or back to the Primary Operand
Unit. The Secondary Operand Unit may also use operands
directly in order to carry out store-to-store functions. These
functions perform various forms of data manipulation without
involving any of the other computational facilities of the
processor, e.g. 'table look-up', which scans through a table of
data elements and identifies any with a value equal to the
operand.
The Accumulator Unit contains a number of accumulators to

accommodate different types of arithmetic. The structure of the
order code allows all of the functions associated with these
accumulators to be implemented in hardware but some,
principally decimal arithmetic functions, are carried out by
software in MU5. When a primary operand is to be used
directly by the Accumulator Unit it is routed through the
Secondary Operand Unit without affecting the data structure
accessing mechanism.

2. The order code
The order code of MU5 uses two basic instruction formats, one
for computational and store-to-store functions and one for
organisational functions. These are distinguished by the value
of the 'type of function' bits of the instruction half word (Fig. 2)
and use 4 and 6 bits respectively to specify the function. The
remaining 9 or 7 digits specify the primary operand. The main
consequence of this difference in format is that for computa-
tional functions 16-bit orders are generally sufficient, where-
as organisational functions must use the extended operand
specifications, and therefore 32-bit orders, for all except short
literal operands. In either case, however, considerable flexi-
bility is allowed in operand accessing methods.
Amongst these methods are the use of named 32-bit (e.g.

I

DATA

ADORE

B U

PATHS

SS PATHS

PROP

NAME

STORE

• 4
1
i
1
1

1 • -

B - A R 1 T H A C C

S E O P

T"
t

j ;

S A C

- - • *
. . .

LOCAL STORE

Fig. 1. The MU5 central processor

Volume 15 Number 1 43

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/15/1/42/418396 by guest on 19 April 2024

2 3 4 5 6 7 8 9 1O 11 12 13 14 IS

TYPE OF FUNCTION

operand specif icat ion

computational or store—to-store functions, e . g .
= , x = , =0 , + , - , x , / , COMP, MOVE

Store-to-Store
ACC Fixed Pt.

ACC Logical

ACC Decimal

ACC Floating Pt

KIND OF OPERAND

6 bit l iteral

Internal Register

Variable 32 ' Name n
Variable 64 Name n
Data Structure Name n

Data Structure(mod)Name n

Extended Operand Spec.

I Organisational 6 bit Literal n

Organisational functions, e .g .
absolute unconditional control transfers
relative unconditional control transfer
relative conditional control transfers
= »+»=* ' > registers NB, XNB, SF
Boolean setting orders

Extended Operand Spec.

operand specification

KIND OF OPERAND

Literal
Variable 32

Variable 64
Data Structure

Data Structure(Mod)

Privtledged Operand

16 bit Name

BASE

N B
X N B

S F

16 bit signed/unsigned

32 bit signed/unsigned
S4 bit signed/unsigned

O 1 2 3 4

Fig. 2. The MU5 order code

JEL n
5 6 7 8 9 1O 11 12 13 14 15

integer) and named 64-bit (e.g. floating point) variables, the
specification of a data structure by means of a named des-
criptor (which may or may not be modified), and the use of an
internal register within the central processor or a literal quan-
tity. A facility also exists for stacking partial results in the store.
This is achieved by means of a function 'STACK and LOAD'
<*=) which is interpreted as two orders:— (i) 'STACK'—
increments the content of a special Stack Front register and
then stores the content of the arithmetic register at the address
indicated by the Stack Front; (ii) 'LOAD'—loads the arith-
metic register with the operand specified by the instruction.
Operands are unstacked, and the Stack Front register decre-
mented, when an operand is accessed using SF as the base
register in the extended operand set.

The extended operand specification also allows the use of
XNB or zero as base register (as well as NB and SF), and the
use of literals of length 16, 32 or 64 bits. Thus, in general, the
use of an extended operand specification also implies the use of
additional groups of 16 bits in an instruction. The privileged
operands are available only to the system programs and consist
mainly of registers concerned with the Interrupt facility
(Section 3) and storage hierarchy management.

The computational functions include normal 'load' (=) and
'store' (= >) orders as well as the double function 'stack and
load' (* =). Arithmetic functions + , —, x , /, and logical
operations are provided, together with a test instruction
'COMP' which compares the context of the central register
with the incoming operand (by subtraction) and records the
result (zero, negative, or overflow) in a single test register held
in the Primary Operand Unit. The store-to-store functions are
carried out by the Secondary Operand Unit and fall into three
classes:— string-string, byte-string and table-string orders. The
string-string orders operate on a source string and a destination

string and the strings can be moved, compared or logically
combined. The byte-string orders are basically the same as the
string-string orders but use a byte (8 bits) repeated as often as
necessary, as the source string. The table-string orders make
it possible to translate the characters of a string into a different
code specified in a table, or to check a string to see if it contains
any of the characters specified in a table.
The control transfer functions are implemented in the Primary

Operand Unit and the conditional transfers use the contents of
the test register in determining the jump/continue condition.
Separate functions are provided to test for =0, #0, >0, >0,
<0, <0 and overflow in the test register, so that any of the
conditions stated in a high level language program can be
compiled directly into a machine order. An additional test
digit, the 'Boolean' digit may also be used as a test condition,
and may be set either directly as a logical combination of the
operand value and the previous Boolean value, or as a result
of one of a set of conditions, identical with the conditional
control transfer conditions, being satisfied. This facility allows
multiple conditions, used for a single test in a high level lan-
guage program, to be combined directly in the hardware before
the appropriate control transfer function is obeyed.

3. The primary operand unit
The Primary Operand Unit is an instruction processing unit
which interprets the various operand and function specifications
and produces an appropriate operand in each case. Fig. 3
shows the basic sub-units required to process a typical instruc-
tion specifying a named variable as the operand, and also the
various stages of operation involved—initial decoding, addition
of name to base, association of address, reading of value, and
assembly of operand. In addition, this unit is concerned with
carrying out the organisational orders and it also contains

44 The Computer Journal

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/15/1/42/418396 by guest on 19 April 2024

much of the hardware concerned with the 'Interrupt' facility of
MU5.
An interrupt signal occurs whenever some operation in a

process, or in part of the processor, cannot continue without
the intervention of a supervisory system program. The occur-
rence of an interrupt signal causes the processing of instructions
in the Primary Operand Unit to be inhibited and a pair of
fixed instructions to be obeyed instead. These instructions
preserve the contents of the Control (instruction address)
Register, and overwrite it with one of eight addresses referring
to the first instruction of an appropriate system program. Each
of these system programs corresponds to a specific type of
interrupt and once entered, determines the exact cause of the
interrupt and takes some appropriate action.
The four interrupt types arising from the operation of the

processor (system malfunction, address non-equivalence in the
Current Page Registers, end of an Exchange block transfer,
peripheral servicing request) are of higher priority than the
four types of interrupt arising from the running of a process
(end of time allocation, illegal instruction, arithmetic overflow,
system software interaction). A program entered as a result of
one of the latter can be interrupted by the occurrence of one of
the former, but not vice-versa. Similarly, an interrupt signal of
one priority cannot interrupt a program previously entered as
a result of an interrupt of the same priority, except that a
processor based interrupt program can be interrupted by a
system malfunction signal.
At the end of a program entered as a result of an interrupt

signal the Control Register is restored to its former value and
the previously inhibited instruction is re-accessed and processed.
All instructions are received from the Instruction Buffer Unit

into registers DF(function) and DN(name) and the first sub-
unit carries out the decoding and interpretation of the instruc-
tion required to deal with multi-length orders and double
functions. It also selects the appropriate base (Name Base,
(NB), Extra Name Base (XNB), or stack front (SF)) and the
appropriate name part of the instruction. For accesses to a
32-bit variable the name is shifted down one place relative to
the base and the least significant digit is then used by the fifth

sub-unit to select the appropriate half of the 64-bit word
obtained from store.
The second sub-unit is simply a 16-bit parallel adder which

adds the name to the base to give the 15-bit address of a 64-bit
operand within the Name Store segment. NB, etc., are also 15
bits long in MU5, rather than 16, since the order code is
designed for a range of processors and assumes a basic 32-bit
word. The 16th bit in the adder is used as an interrupt con-
dition indicating overflow from the Name Segment. The
adder is also used to increment and decrement the Stack Front
register for orders which stack or unstack operands, and to
carry out the organisational orders which load or increment the
Name Base, Extra Name Base and Stack Front Registers
(Fig. 2).
In the third stage of processing the 15-bit operand address is

concatenated with the 4-bit Process Number (PN) and pre-
sented to the content addressable (associative) 'virtual address
field' of the Name Store. Segment Number is not used since
this is constant for all names in a process. A logic ' 1' appears
from the line which has a content identical with that presented
at the input and this signal is then used in the fourth sub-unit to
access the operand value from the 64-bit wide conventional
'value field' of the Name Store. In parallel with this operation
a check is made to determine whether an equivalence actually
occurred in the associative field. In determining this equivalence
an additional digit associated with each line indicates whether
or not the content of the line is meaningful, i.e. whether the
line is in use or empty. If no equivalence is found, i.e. the
required named operand is not in the Name Store, an access is
made to the Local Store and the Name Store is updated.
The fifth stage of processing is the assembly of the operand

into its correct format, e.g. a 32-bit integer may be taken from
either half of the 64-bit value held in the store, but must always
appear at the least significant end of the data highway when
presented to a succeeding unit in the central processor. The
register HI forms the input to this highway and the register HO
is connected to one of its outputs to receive store order oper-
ands returned from the succeeding units and also operands
used by organisational orders.

I.B.U.

1N l T IAL

1
1
| ADD NAME

| DECODE ' TO BASE

1 1
1 I

D

F

16

. ,

D
N

16

DECODE

SHIFT (one place right to
loccess 32 bit operands)

•o

X

N

B

2 9

N

B

15

S

F

15

16

] ASSOC1 ATE

| ADDRESS

r
1 P l_

N 1
VIRTUAL
ADDRESS
F I E L D

(19)

1

1 R E A D

1
1
1

1 VALUE
1

I !

ASSEMBLE

OPERAND

S H I F T (32 bit operands

r i g h t

' "1
1

VALUE

F I E L D

(6 4)

1

1

1

1
J

1
1
1
1

|_ NAME STORE _ |

justified) 1

A
\J

F
N

16

H

I

64

H

O

64

Fig. 3. Basic component parts of the primary operand unit

Volume 15 Number 1 45

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/15/1/42/418396 by guest on 19 April 2024

I.B.U.

DECODE

O

SHIFT

DECODE

2

DECODE

3

DECODE

4

N
M

B

S
ADDER

VIRTUAL

ADDRESS

F I E L D

VALUE

FIELD

SHIFT

Fig. 4. Overlapped version of the primary operand unit

Each of these five stages involved in accessing an operand can
be made independent of the others, and each requires a time
comparable with that required for the execution of simple
functions in the arithmetic units. Thus, not onlycan the access-
ing of an operand for one instruction be overlapped with the
execution of another, but the various activities within the
Primary Operand Unit itself can also be overlapped for different
instructions. The Primary Operand Unit then becomes a
'pipeline', with five instructions proceeding through it at any
one time. The maximum rate at which instructions are processed
within it is accordingly increased by a factor of five (theoretic-
ally), although in practice the method of implementing the
overlap limits this factor to 4-1 (Section 4).

4. Pipeline design
The overlapping of the various operations in the Primary
Operand Unit is achieved by staticising the information
obtained at the end of each stage in an appropriate flip-flop
buffer register, the output of the register at the end of any one
stage forming the input to the next stage. The flip-flops used in
the buffer registers are 'D' type devices, which take up a state
determined by the signal on the 'information' input when a
pulse is applied to the 'strobe' input. Fig. 4 shows the basic
Primary Operand Unit with the additional buffer registers
incorporated. The function itself is also staticised at each stage
and the decoding circuits are distributed to the various stages
in which they are required.
In order to prevent interference of one instruction with another

the result obtained at the end of any one stage can only be
presented to the following stage when the result of that stage
has itself been staticised. The strobes used to copy information
into the buffer registers must therefore be staggered, the overall
timing diagram being as shown in Fig. 5. The shaded portions
show the progress of one instruction through the Primary
Operand Unit. It is first copied into DF and DN (Function and
Name respectively) and after sufficient time has elapsed for the
outputs of the stage to have settled, the registers Fl (function),
NM (name), and BS (base) are strobed. The addition of name
and base now takes place and after the appropriate time has
elapsed the result is copied into IN, the Interrogate Register.
The output of IN is concatenated with PN, the Process Number
to form the input to the associative field of the Name Store.
The result of the association is then copied into the Line
Register, LR, the output of which accesses the appropriate

46

line in the value field of the Name Store. The value field out-
put is copied into the register VF and thence, after assembly,
into HI, the Highway Input register.
The output of HI is propagated through the highway linking

the Primary Operand Unit to the subsequent units of the MU5
Central Processor. Each of these units sends a control signal
to the Primary Operand Unit indicating whether or not it can
accept an instruction. Once accepted by the Unit the instruction
is guaranteed to go to completion, so that the Control Register,
also contained within the Primary Operand Unit, can be incre-
mented for the instruction. An adder is associated with the
Control Register and the addition of the increment to the value
held in it occurs in parallel with the transfer of the instruction
across the highway. (These operations form a sixth stage of the
pipeline, so that the theoretical performance ratio is increased to
six.) The actual strobing of the Control Register occurs at the
same time as the strobing of the input buffer of the following
unit. The register HI, and hence all other registers in the Prim-
ary Operand Unit, cannot be re-strobed for a succeeding in-
struction until this action has occurred. Instructions therefore
proceed through the Primary Operand Unit in a series of beats,
the rate at which these beats occur being determined by the
acceptance rates of the succeeding units, i.e. when an instruc-
tion is accepted by the appropriate following unit a beat is
initiated. Each instruction in the Primary Operand Unit is then
moved onto the next stage by a pulse which propagates back
along the pipeline (heavily drawn in Fig. 5).
The Primary Operand Unit itself imposes a minimum on the

time between pulses propagating along the pipeline. This time
is that required for the operation of the stages and must clearly
be equal to that required for the longest stage. It is given by:

/stage = tr + t, + ts (1)

tr is the time required for the information presented at the
input of a buffer register to appear at its output (typically
5 nsecs), and /, the time required to complete the logical oper-
ation carried out by the stage. tt is principally determined by
the time required for the associative store to operate (typically
25 nsecs). Once the output of a stage has settled it must then
be maintained steady during the strobing of the following
buffer register, i.e. for time ts. ts must be longer than tr for
reliable operation of the flip-flops (typically 10 nsecs), and
since it must be assumed that tmin, the minimum time for a
signal to propagate through a stage, could in principle be zero,

The Computer Journal

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/15/1/42/418396 by guest on 19 April 2024

the strobe applied to any one register cannot begin until the
strobe applied to the succeeding register has ended,
'stage is thus typically 40 nsecs, and represents the minimum
54666

time between the completion of successive orders by the
Primary Operand Unit. In practice, this time is affected by two
conflicting factors: (i) /min is not zero and some overlapping of
strobes is acceptable; (ii) each stage requires several strobe
generator circuits and these actually have pulse widths and
inherent delays which are not all equal, i.e. the time allowed
for ts must be the maximum expected value.
The total minimum time required for an order to be completely

processed by the Primary Operand Unit, i.e. the time from
entering the Primary Operand Unit to acceptance at the far
end of the highway by the following unit, is given by

rPROP = 6.tr + 6./, + ts (2)rP R O P = 6.tr
7897

i.e. typically 190 nsecs. Without overlap within the Primary
Operand Unit, i.e. without the internal buffer registers, this
time would be reduced in principle by 5tr, i.e. to 165 nsecs,
although in practice some of the registers provide fan out
between stages which would otherwise require additional logic
gates incurring similar delays. The advantage gained from
overlapping the stages of processing within the Primary
Operand Unit is thus an increase in execution rate of at least
165/40, i.e. 41.
In practice, the maximum rate cannot be maintained due to

(a) the limited capacity of the Name Store and (b) the detailed
requirements of the order code. The limited capacity of the
Name Store means that the required operand is not always
available within it, and an access must be made to the Local
Store of the MU5 Central Processor. When the operand is
returned from the Local Store it is written, together with its
address, into an empty line of the Name Store and is then
available for use after a delay of approximately 800 nsecs. In
general, all lines of the Name Store are in use and a line must
therefore be chosen for emptying. Various algorithms could be
used for this purpose but any that is used has to be implemented
in hardware, otherwise the time required to select the line
would seriously affect the overall effectiveness of the store.
The simplest algorithm to implement is a cyclic one in which
lines are chosen in rotation and this is the one actually used.
In addition, however, a digit associated with each line indicates
whether or not its content has been altered by the action of a
store order since it was copied from the Local Store. When the
line is selected for emptying it is simply over-written if it has
not been altered, but the address and value are read out and
sent back to the Local Store if it has.

Names contained in the Name Store are actually B/D-names,
i.e. names of integer variables or arrays, destined for the
B-Arithmetic Unit or base registers, or the Secondary Operand
Unit. Simulation studies carried out on Atlas (Odeyemi, 1970)
indicate that with a 32-line B/D Name Store an access to the
Local Store for a B/D-name must be made for approximately
2% of all accesses. The average time per order is therefore
increased to [98 x 40 + 2 x 800]/100 nsecs, i.e. 55 nsecs.
A-names, i.e. names of real variables (floating point, decimal,

etc.) destined for the Accumulator Unit are held in a separate
name store associated with the Secondary Operand Unit. All
accumulator orders pass through this unit and up to 12 orders
can be overlapped within it. This means that if a name held in
the B/D store were used to accumulate a total calculated by a
program loop using accumulator orders, at least 12 orders
would have to separate the order storing the total and the order
re-accessing it if the overlapping of orders was not to be held up.
This situation is unacceptable, whereas holding the A-names in
the Secondary Operand Unit reduces the minimum separation
to two orders and involves considerably less effect on the over-
lap.
Certain effects of name store usage which would deteriorate

overall performances have thus been avoided. An additional
effect, that of store orders involving names which are held in
the B/D name store, is discussed in the next section, together
with other effects on performance which arise from the detailed
requirements of the order code.

5. Requirements of the order code
The description of the pipeline action so far has assumed that
the order being processed is a simple 16-bit order specifying a
named variable. Whilst this type of order is expected to occur
comparatively frequently in practice, the order code has pro-
vision for considerable variations, and the effectiveness of the
pipeline varies according to the type of order being executed.
The most important types of order to be considered in terms

of their effect on pipeline performance are the following:

1. Long orders.
2. Double orders.
3. Store orders.
4. Base manipulation orders.
5. Control transfers.

1. A short order can only specify one of 64 named 64-bit or
32-bit variables or a literal of value + 32. To access more names
an extended operand type (Fig. 2) is specified, and the name
used is then specified by an additional 16 bits. These additional

• AD D

STAGE 1 STROBE MIA///////// L _
• - A S S O C I A T E *

STAGE 2 STROBE

STAGE 3 STROBE | f

IUITTTTTT7

k/J////777/
• R E A D -».

• ASSEMBLE •>

STAGE 4 STROBE

STAGE 5 STROBE |

Fig. 5. Basic timing diagram of the primary operand unit

IZ/J/7//////
•4- H I G H WAY

XLJJTTTTTTTTY-

Volume 15 Number 1 47

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/15/1/42/418396 by guest on 19 April 2024

F

4

S

4

DECODE

4

I.B.U

Fig. 6. Complete primary operand unit

16 bits are obtained from the Instruction Buffer on a second
beat of the pipeline after the long order has been decoded, and
are loaded into DN. (DF and DN are both 16-bits long, and
for a short order contain the same information. DF is always
used for decoding, however, and the appropriate number of
name digits is selected from DN according to the length
of the order.) As the long order cannot proceed to the second
stage of the pipeline until the name becomes available, a
dummy order must be created in the second stage, ahead
of the long order. This is achieved by setting an additional
function digit—the 'Valid Digit'—to zero. On the next beat of
the pipeline the long order proceeds to the second stage of
operation as for a short order, accompanied by a Valid Digit
set to 1.
Literals greater than + 32 may be specified as being 16-, 32-

or 64-bits long in an extended order, the additional bits being
obtained in units of 16. The actions in the first and second beats
are identical to those for long orders, but in the third beat the
content of DN is copied into LI (Fig. 6), the first of three special
literal registers. The function proceeds through on this beat, and
after five beats appears in F3. The literal is now in L3 if it is
16-bits long, L3 and L2 if it is 32-bits long or L3, L2, LI and
DN if it is 64-bits long. On the following beat the literal is
assembled into VU, the function now being in F4. In the next
pipeline stage the appropriate register, VU for a literal, or VF
for a name, is selected for routing into HI. The literal does not
go directly into VF since this would require additional logic
gates at the input to VF, thereby increasing the logic time be-
tween LR and VF to longer than the design figure of 25 nsecs.
The time taken to complete any long order is clearly increased

according to the number of beats required, and the net com-
pletion rate of orders correspondingly decreased.

2. The *= function has been described in Section 2. It
requires access to two distinct operands, and hence must involve
two separate pipeline beats. The stacking operation also in-
volves an additional complication: the Stack Front register SF

is incremented for an order while there are still several orders
ahead of it not yet completed (i.e. the Control Register CO, at
the end of the pipeline, has not yet been incremented for these
orders). Any one of these orders may be a control transfer
order requiring that the partially processed orders in the pipe-
line be abandoned in favour of a different sequence. Should this
situation occur, the SF register will contain an incorrect value.
The problem of maintaining the correct SF value can be over-
come by preventing overlap in such situations, but this would
seriously deteriorate the pipeline performance, and the altern-
ative solution adopted is to allow the SF register to be incre-
mented when required and to carry along with the stacking
order the value of SF created by it (registers S3, S4, S5 in Fig.
6). When the control register is incremented for that order, S5
is copied into S6. Now when a control transfer occurs the value
in SF may have been altered by orders which are abandoned,
but the value in S6 is correct and is used instead of that in SF
for the first stack access of the new sequence.

3. In the case of store orders using B/D-names, the order does
not reach the unit from which the operand is to be stored until
some time after the required access has been made to the
Name Store, i.e. the operand is not available at the appro-
priate time. In the case of store orders within the organisational
function set this is not important since these orders occur
infrequently and simply causing a hold-up does not seriously
affect the pipeline performance. Store orders within the com-
putational function set occur quite frequently, however, and
causing a hold-up in the pipeline to await the return of the
operand would involve a delay of around 240 nsecs. Since this
delay is long in comparison with the basic order time of 40
nsecs, a different technique has been adopted.
To avoid the need for a hold-up in the operation of the pipe-

line, the content of the Line Register is preserved, for a B
store order, in an additional register BW (not shown in Fig. 6).
A special digit is set in F2 and the order proceeds unimpeded.
The special digit in F2 prevents any further B store orders

48 The Computer Journal

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/15/1/42/418396 by guest on 19 April 2024

from proceeding beyond F2 until the first store order has been
completed.
When the operand required by the store order becomes

available from the central register, it is returned to HO and the
Primary Operand Unit interrupts its normal instruction
sequence. The information held in BW is then used to re-access
the appropriate line in the value field of the Name Store and the
contents of register HO is written into it. (The information in
BW is also used to hold up any further orders accessing the
address for which a store order is outstanding.) The additional
time required to execute a store order is approximately 80 nsecs,
in this case, making a total of 120 nsecs per store order.

4. When a base manipulation order is decoded in stage 1 the
overlapping of instructions in the pipeline must be abandoned,
since the next order in sequence must use the correct base value.
The base operations are performed by copying the operand
(received from the highway in HO) into NM, and the base (for
an addition) into BS. The adder is then activated, and the result
routed back to the appropriate base register. The delay
involved for such orders is of the order of 400 nsecs, but since
these orders occur infrequently no special action has been taken
to reduce the delay.

5. The execution of control transfer orders requires a hold-up
in the pipeline operation until the appropriate operand is
is received in HO. When it is available, this operand is routed
to one input of the adder associated with CO and CO itself
(for a relative transfer) is routed to the other input. After such
an order has been executed the succeeding orders in the pipe-
line will be incorrect if the transfer is (a) unconditional, or (b)
conditional and. the condition is satisfied. The 'Valid Order'
digits associated with each function register are all re-set to
zero under these conditions and a gap of at least 940 nsecs is
created, i.e. 750 nsecs for the store access for the new instruc-
tions and 190 nsecs for the time through the pipeline.
Since control transfers occur as about 10% of all orders

(Sunderland, 1970), a delay of this order is unacceptable. The
Instruction Buffer Unit is therefore designed to reduce the
number of occasions on which this delay is incurred by pre-
dicting the result of the control transfer (Taylor, 1969). The
prediction technique is based on the use of an associative store
containing addresses of instructions which have previously
caused control transfers to occur and a corresponding conven-
tional store containing the addresses of instructions to which
control was actually transferred. Before an instruction pre-
fetch cycle is initiated by the Instruction Buffer Unit a check is
made in the associative store to determine whether any of the
instructions currently in the buffer has caused control to be
transferred. If equivalence is found in any of the associative
registers the address of the next instruction to be pre-fetched is
read from the corresponding register in the conventional store
rather than being evaluated by incrementing on from the
previous pre-fetch address.
Now when a control transfer is obeyed the orders in the pipe-

line are correct if either (a) the transfer condition is satisfied
and the following order is the first order of the new sequence, or
(b) the transfer condition is not satisfied and the following
order is in normal sequence. In either case the Control Register
is set to the appropriate value and after a delay of 120 nsecs in
excess of the basic 40 nsecs the normal pipeline action is
re-started and the succeeding orders in the pipeline are obeyed
normally. An additional digit accompanies each order from
the Instruction Buffer Unit to indicate to the control transfer
logic that an order is the first order of a new sequence of
instructions rather than a continuation of the previous
sequence.
If the transfer condition is satisfied and the following order is

in normal sequence, i.e. the prediction has not been made, then
provided that the operand used in the control transfer order is

a literal (i.e. is invariant), the Primary Operand Unit signals
the Instruction Buffer to set up the appropriate addresses in its
store for future prediction. At the same time the actions of
re-setting the 'Valid Order' digits and accessing the store for the
next instruction occur as before. These actions also occur if the
control transfer condition is not satisfied and the following
order is the first of a new sequence, i.e. the transfer has been
incorrectly predicted. Simulation studies show that correct
prediction occurs in approximately 75 % of cases where it can
be applied.
Other detailed requirements of the order code also affect the

performance of the pipeline, but these are expected to occur
relatively infrequently in practice and do not need to be taken
into consideration here.

6. Conclusions
The principal aim of designing the Primary Operand Unit of
the MU5 computer as a pipeline is to increase the rate at which
orders can be passed on to succeeding units (and to match this
rate to the operating rates of those units), and a factor of 4-1
has been achieved for simple orders. In assessing the overall
effectiveness of the pipeline technique, however, its performance
for all types of order, and the additional equipment and com-
plications involved, must be considered.
The amount of equipment required for operand accessing by

the Primary Operand Unit (apart from the Name Store) is
approximately 1,500 MECL integrated circuits, and some 500
of these are incorporated to allow the various stages of oper-
ation within the unit to be overlapped. The Name Store itself
is made up of more complicated integrated circuits than those
used in the rest of the Primary Operand Unit, and the total
number required is equivalent to 1,000 MECL circuits. Thus
the additional amount of equipment required to achieve an
increase of 41 in the basic Primary Operand Unit performance
is one quarter of the amount of equipment required for the
basic unit itself. The inclusion of this equipment clearly
involves additional complication in the timing and control
logic, but this factor is onset by the fact that the unit can be
easily partitioned into its various sub-units, thereby allowing
the detailed design and manufacture of the sub-units to be
carried out independently. . . J
The overall performance of the Primary Operand Unit pipe-

line is determined by the relative frequency of occurrence of
the types of orders described in Section 5. Information about

Table 1 Overall

TYPE OF ORDER

Long
Store
Organisational
(except Control
Transfers)
Control Transfer
(Predicted)
Control Transfer
(Unpredicted)
Name Store J

performance table

EXCESS TIME %

40 nsecs
80 nsecs

360 nsecs

120 nsecs

940 nsecs

800 nsecs

Toial net

OCCURRENCE

10
15
1

6

4

2

time added

NET TIME
ADDED

4 nsecs
12 nsecs
36 nsecs

7-2 nsecs

37-6 nsecs

16 nsecs

804 nsecs

The types of order listed in column 1 require the times shown in column
2, in excess of 40 nsecs, for their execution.

Column 3 shows the expected percentage occurrences for these orders,
and column 4 the net time added to the execution time of an average
order due to each type. The overall average execution time is thus
expected to be approximately 120 nsecs/order.

Volume 15 Number 1 49

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/15/1/42/418396 by guest on 19 April 2024

these frequencies of occurrence is difficult to obtain since (a)
no existing computer has an order code structure comparable
with that of MU5; and (b) tracing simulated MU5 code on an
existing conventional computer requires an excessive amount of
computing time in order to obtain meaningful statistics. Such
figures as are available have therefore been obtained by tracing
existing programs on the Manchester University Atlas com-
puter and assessing their meaning for MU5 by a comparison of
the corresponding compilers. These figures are summarised in
Table 1. Column 2 indicates the extra time in excess of the
basic 40 nsecs required for the various types of order, and
column 4 the net time added to the order time due to each
cause. Thus the net time for the completion of an average order
is 40 nsecs plus the sum of the figures in column 4 of the table.
The excess times are principally incurred by long orders, store

orders, organisational orders and orders which give non-
equivalence (J) in the Name Store. Long orders are mainly
used for named variables (a) with organisational orders, and
(b) when the number of named variables within a routine
exceeds the number addressed by a 6-bit name, i.e. 64. These
situations occur infrequently, however, since (a) organisational
orders generally use short literal operands, and (b) routines
tend either not to use that many names, or else to use the
names declared first (and therefore allocated to 6-bit names)
most frequently. The other use of long orders is for literals, and
these incur a 40 nsecs penalty for each 16 bits used. The net
effect of these factors is estimated at 10% of all orders requiring
an additional 40 nsecs for their execution. The overall average
length of an order may also be assessed from these figures as
[90 x 16 + 10 x 32]/100, i.e. 18 bits approximately.
Store orders to the B/D Name Store can be expected to occur

as about 15% of all orders. Store orders to the A Name Store
occur rather more frequently (around 25 %) but this does not
directly affect the performance of the Primary Operand Unit.

References
ASPINALL, D., KINNIMENT, D. J., and EDWARDS, D. B. G. (1968). Associative memories in large computer systems, reproduced in Information

Processing 68, Vol. 2 (Morrell, A. J. H., editor), Amsterdam: North Holland Publishing Co.
BROOKER, R. A. (1970). Influence of high-level languages on computer design, Proceedings I.E.E., Vol. 117, pp. 1219-1224.
BUCHHOLZ, W. (1962). Planning a Computer System, New York: McGraw-Hill Book Co.
GRAHAM, W. R. (1970). The parallel and the pipeline computers, Datamation, Vol. 16, pp. 68-71.
KILBURN, T., EDWARDS, D. B. G., LANIGAN, M. J., and SUMNER, F. H. (1962). One level storage system, reproduced in Computer Structures—

Readings and Examples (Bell, G. G., and Newell, A., editors), 1971, New York: McGraw-Hill Book Co.
KILBURN, T., MORRIS, D., ROHL, J. S., and SUMNER, F. H. (1968). A system design proposal, reproduced in Information Processing 68, Vol. 2

(Morrell, A. J. H., editor), Amsterdam: North Holland Publishing Co.
LINDSEY, C. H. (1970). Making the hardware suit the language, reproduced in Algol 68 Implementation (Peck, J. E. L., editor), Amsterdam:

North Holland Publishing Co.
MURPHY, J. O., and WADE, R. M. (1970). The IBM 360/195, Datamation, Vol. 16, pp. 72-79.
ODEYEMI, I. A. (1970). Experiments on Operand Buffer Stores, Ph.D. Thesis, University of Manchester.
SUNDERLAND, E. (1970). Automatic Program Tracing, M.Sc. Thesis, University of Manchester.
TAYLOR, L. A. (1969). Instruction Accessing in High Speed Computers, M.Sc. Thesis, University of Manchester.

Organisational orders other than control transfers occur as
about 1 % of all orders. Control transfers account for 10% of
all orders and are either predicted or not predicted or are non-
predictable. Assuming that 80 % of control transfers are of the
predictable type then 75 % of these, i.e. 60 % of all control
transfers, will be predicted and thus 6% of all orders will be of
this type. Similarly 4% will be unpredicted control transfers.
Some orders will be combinations of these types, but this does

not affect the final figure since the individual excess times are
additive. Thus the total time taken to complete an 'average'
order in excess of the basic 40 nsecs is, from column 4 of the
table, 80-4 nsecs, giving an average time per order of approxi-
mately 120 nsecs.
This figure is necessarily speculative, but since the MU5

computer is a research machine, attention is being given to
hardware monitoring techniques for determining the frequen-
cies of occurrence of events which affect the system perfor-
mance during normal running, and to methods of increasing the
overall completion rate by modifying the existing design for
dominant types of order. This information will then allow a
better assessment to be made of the relative importance of
incorporating particular features of design into the system
and therefore allow the best use to be made of central processor
equipment in future computers.

Acknowledgements
The MU5 Project is supported by SRC and ICL. The author
would like to thank all members of the joint University-ICL
design team for many helpful discussions, but particularly
Professors T. Kilburn, D. B. G. Edwards, F. H. Sumner and
D. Aspinall (now at University College, Swansea) for their
advice and encouragement and Mr. R. B. Lee for his valuable
assistance throughout the project.

50 The Computer Journal

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/15/1/42/418396 by guest on 19 April 2024

