
A facility for real-time program development

D. G. Bennett* and R. A. Davenportf

A facility is described which, within a multi-access system, allows real-time programs to be devel-
oped. The manner of operation is such that to the user it appears that his program has complete
control of interrupts. In actual fact, they are monitored by the system's executive to prevent
his program interfering with those of other users.
(Received August 1971)

As part of a multi-access system, a facility was developed to
assist in the preparation of real-time programs for a specialist
application. The multi-access system (GPO, 1970) is located
within the Electronic Switching Group GPO Research Station,
Dollis Hill. This group is presently engaged on the develop-
ment of a computer-controlled telephone exchange.
As can be imagined, a considerable software effort is involved

even in the initial stage, which consists initially of a four-line
exchange controlled by a small computer via a data switch.
Plans are in hand to test the system simulating much larger
traffic.
This software comprises the exhange system executive, a large

number of operating routines, of the order of 100, and a com-
plex test program used in the development of the data switch
and the other pieces of hardware which make up the exchange.
Powerful debug facilities were available and it was desired to
extend their use to real-time programs.

Because of the programming effort required to implement the
system for the exchange and also because the system was to be
implemented on a small computer, it was necessary to produce
initially an operating system that would provide both multi-
access capabilities and comprehensive debug facilities. A
further advantage was that it would permit hardware and soft-
ware development to proceed simultaneously.

The first provision is an obvious one since all computing is
done in a 'hands-on' situation, i.e. each programmer is allotted
time, during which he may assemble, edit or debug his program.
Particularly during the last stage, the computer will be idle for
appreciable periods during which the programmer cogitates.
Multi-access, therefore, is an obvious method of increasing the
efficiency of use of the machine, The comprehensive debug
facility ensures that the programmer uses his time as efficiently
as possible.
The small machine concerned was a Honeywell DDP 516

with 32K words of storage. A high speed punch and reader are
connected together with two Teletype ASR 33 and one KSR 35.
Optional features which are incorporated in the system are
memory lock-out and standard and priority interrupt lines.
The high speed reader and punch are connected to the standard
interrupt line, while the teletype, real-time clocks, data switch
and other hardware links are connected to the priority lines.
In the Honeywell interrupt system, when an interrupt occurs,

it causes the contents of the program counter, which contains
the address of the current instruction to be executed, to be
automatically changed, thereby changing the sequence of
instruction execution. Interrupts have unique memory locations
dedicated to them, whose contents are interpreted as an indirect
address. The action of an interrupt causes the program to
branch to the location whose address is stored in the dedicated
location. These dedicated locations are held in the base sector.

•GPO Research Station, Dollis Hill
fScientific Control Systems Limited

The standard interrupt has one dedicated location for all lines
while priority interrupt have one location per line. The obvious
advantage of the priority interrupt system is that it eliminates
the need for a service routine to determine which one of the
available interrupt lines caused the interrupt.
For an interrupt to occur, two requirements must be met.

These are the interrupt mask flip-flop must be set and the CPU
must be in the permit interrupt condition.
The first requirement is met by means of the SMK instruction,

which transfers the contents of the accumulator to the mask
flip-flop of various devices. Each bit position of the accumu-
lator controls a unique device. A one sets the mask and a zero
resets it. The second requirement is achieved by means of the
instruction ENB. This permits interrupts to occur on any line
for which the mask is set. This does not take effect until one
instruction after the ENB.
The instruction ENB sets the machine status to allow inter-

rupts to occur while the instruction INH prohibits interrupts
from occurring.
When an interrupt does occur, no further interrupts are per-

mitted until after the execution of an ENB. That is, an interrupt
causes an automatic INH instruction.
The memory lock-out option provides base sector relocation

and also equips the CPU with a mode of operation called
'restricted mode'. Base sector relocation allows each user to
have assigned to him a sector which to him appears a base
sector, i.e. addresses less than octal '1000. Restricted mode has
the properties that:

1. Instructions which normally write into memory locations
can be locked out of protected sectors.

2. Certain instructions are considered illegal and cannot be
performed.

If either of these occurs an interrupt is generated, the memory
lock-out violation. Because of this feature, all users' programs
can be run in restricted mode. Any instruction which attempts
to write into a memory location triggers the memory lock-out
violation interrupt. When this occurs, the executive determines
whether or not it is legal for the user to alter the contents of that
location. The effect is, then, that the user can corrupt only that
area of store that has been assigned to him and not the areas
occupied either by other users or the executive.

Interrupt facility
The multi-access system allows the user to assemble, load, edit
and debug his program via the teletype and the high speed
reader. It also allows him to dump the contents of his core via
paper tape which can be reloaded into the machine, All oper-
ations and running of programs by the user are carried out in
restricted mode. Since it was decided that as much real-time

Volume IS Number 1

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/15/1/5/418407 by guest on 19 April 2024



work as possible should be run on the system, an essential
requirement appeared to be the monitoring of interrupts. This
would then allow real-time programs to be tested in isolation
without affecting the running of other users' programs. In order
to implement this requirement the system therefore had to
detect and analyse interrupts occurring during the running of
the real-time program. The interrupts which were monitored
were priority interrupts only. If the user wishes to have his
program interrupted, it should be done in a way to approximate
as closely as possible to the situation where his program is in
sole command of the machine. As has been stated, on the multi-
level priority interrupt system, the need for determining which
interrupt line has interrupted is eliminated. The lines may be
selectively enabled or inhibited by means of masking. The
instruction INH suppresses all interrupts whether the mask
flip-flop for a particular line is set or not.
The other feature of restricted mode besides memory protec-

tion is that certain instructions are privileged. If an attempt is
made to execute such an instruction a memory lock-out vio-
lation occurs. It would have been possible to allow the executive
to find the cause of the interrupt if both INH and ENB caused
such a violation. However, since INH produces the violation
while ENB does not, it was necessary to incorporate a pro-
cedure within the executive which searches for these two instruc-
tions in the user's program befoie attempting to run the pro-
gram. The search is made on the assembled text between limits
stated by the user. Each location which has a bit pattern corres-
ponding to either INH or ENB is typed out and is altered to a
transfer to the executive if appropriate by the user. The reason
for this is that the locations which have these bit patterns may in
fact contain data. If the user does not replace all the INH
instructions by transfers, the normal interrupts will not be
inhibited because of the memory lock-out facility. During the
running of the user's program, the INH instruction will be
detected and an error message printed out. This, then, pro-
vides further protection of the system from misuse.

There are five routines involved. These are:
l.SMK
2. ENBI
3. INTH
4. INHI
5. RTC

1. SMK

The instruction SMK sets the priority interrupt lines which the
user wishes to be allowed to interrupt, i.e. it is a masking
instruction. This instruction is detected in the user's program
during running by memory lockout violation. The executive
determines what lines the user required set by examining the
contents of his accumulator. This is stored, and if the real-time
clock (10 millisecond) interrupt is required a toggle is set.
Return is then made to the user's program.

2. ENBI

Since ENB will not be detected by memory lockout violation, a
search is made prior to the running of the program for such
instructions. If any are found, they are replaced by transfers to
the ENBI routine. When the program is run and such a transfer
is made, the next instruction after the ENB is executed inter-
pretively and the interrupt lines requested by the user are
enabled and then inhibited one instruction later. The leason
for this action is to simulate the actual hardware, since if an
interrupt is pending it will take effect one instruction after the
ENB. The interrupts are inhibited immeditely to prevent further
interrupts occurring in executive time. As far as possible, an
approximation, therefore, is made to the true time profile of
the user's program. After inhibiting interrupts, a check is made
for whether or not an interrupt has been logged by the INTH

routine. This indicates that the interrupt occurred when the
lines had been enabled within this routine, ENBI. Therefore a
return is made to the address given in the user's interrupt link,
which is located in his relocated base sector. Otherwise, a
toggle, called the enable toggle, is set and a normal return is
made to the user's program, but now with the user's interrupt
lines masked in and enabled. The flow chart of this routine
appears in Fig. 1.

3. INTH

When any priority interrupt, other than the normal 10 milli-
second clock or the teletypes, occurs it is forced to this routine.
The interrupt which has occurred is first identified and logged.
If the enable toggle is not set it indicates that the interrupt must
have occurred in the ENBI routine so a transfer to that routine
is made. A test is also made for whether or not the interrupt
occurred during executive time. If it did a return is made to the
executive which, when it has completed its tasks, returns control
to the INTH routine. This enable toggle is then cleared and a
return is made to the address given in the user's interrupt link,
held in his base sector. The flow chart of this routine appears
in Fig. 2.

4. INHI

In the same manner as for ENB instructions a search is made
before the running of the program for INH instructions and if
any are found, they are replaced by transfers to the INHI
routine. When the program is run and such a transfer is made,
the enable toggle is cleared and a mask is set for the priority
interrupt lines which allows only the real-time clock and the
teletypes to interrupt. Thus interrupts are not actually inhibited
but are masked out. A record is kept of those lines so treated in
order that they be masked in when the interrupts are enabled.

Relocate program
counter to address

given in user's link

(Return to ^ \
users program^

Fig. 1. ENBI routine

/Return to ^
I that address J

6 The Computer Journal

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/15/1/5/418407 by guest on 19 April 2024



f

Turn off

interrupts

f

Identify
interrupt

that occurred

(eturn to A
Executive J

y
No

f

Relocate program
counter to address
given in user's

link

\
f

/lieturn to j
Ithat addressJ

fRetu rn from \
"1 executive )

Fig. 2. 1NTH routine

5. RTC
All interrupts requested by the user, save one, go through the
routine INTH. The one exception is the 10 millisecond clock.
The reason for this being that it is required by the executive and

therefore has to be handled in a different manner. When an
interrupt occurs on this line it is forced to the routine RTC.
Initially a check is made on whether the user has exeeded his
time allocation, a time slice of 40 milliseconds. If he has, a
check is made for requests for service from the other users. If
requests are present an exit is made to the user next due for
service, who has the next time slice allocated to him. However,
if service has not been requested by other users, a further time
slice is allotted to the current user. A check is made for him
requiring the 10 millisecond clock to interrupt.
If he does and the enable toggle is set, the toggle is cleared and

a return is made to the address given in the user's 10 millisecond
interrupt link. If he does not require this interrupt a normal
return is made.

Differences from normal running
The interrupt handling facility has obvious disadvantages for
the running of real-time programs. Two obvious ones are:

1. Time profile distortion. This is due to the encroachment of
the executive and the sharing of available time between
users. This in turn leads to 2.

2. Slow reaction rate. While this is a disadvantage, in the
applications handled in this system it proved to be a minor
one.

Despite these disadvantages, the system has proved an invalu-
able tool in increasing program throughput as powerful debug
facilities which would normally be available only for linear
programs may be applied to real-time ones.
It should be possible to implement this type of system on any

small computer with at least 16K words, a word being at least
16 bits long, possessing some form of memory protection hard-
ware and the facility for running user's programs in a different
mode to the executive, privileged instructions being able to be
run only by the executive.

Acknowledgement
The authors wish to thank Mr. S. Chisman for his help and the
Post Office Corporation and Scientific Control Systems for
permission to publish this paper.

Reference
Lima System for Honeywell DDP 516 GPO Research Station 1970. (Available from D. G. Bennett, c/o GPO Research Station, Dollis Hill.

Correspondence
To the Editor
The Computer Journal

Sir,
The claim is often made that the argument transmission method used
by certain FORTRAN processors (notably those for the IBM 360)
in which arguments are passed by value and the possibly modified
value copied back on return is non-standard. See for example the
comment in J. M. Chambers (1971), page 314.
This is not the case. The USA Standard FORTRAN Report (1964)

explicitly allows this mechanism in addition to the more usual call
by address (sometimes called call by reference). The relevant quot-
ations from the standard are as follows:

'Jf an entity created by argument substitution becomes defined or
undefined (while association exists) during execution of a sub-
program, then the corresponding actual entities in all calling
program units becomes (sic) defined or undefined accordingly.
(ANSI standard section 10.2.2.)
'If a function reference causes a dummy argument in the refer-
enced function to become associated with another dummy argu-
ment in the same function or with an entity in common, a definition
of either within the function is prohibited.' (ANSI standard section
8.3.2.)

With respect to the first requirement, the only difference between
the two methods rests on whether the corresponding entity definition
or undefinition occurs immediately or on subroutine exist. This
could only be distinguished by means of a definition of the type
explicitly prohibited in the second requirement quoted.
Thus both mechanisms must be regarded as meeting the standard

and any program written in accordance with the standard will be
insensitive to which of the two mechanisms employed.

Yours faithfully,
R. B. K. DEWAR

Department of Computer Science
Illinois Institute of Technology
Chicago
Illinois 60616
USA
30 September 1971

References
CHAMBERS, J. M. (1971). Another round of FORTRAN, The

Computer Journal, Vol. 14, No. 3, pp. 312-314.
USA Standard FORTRAN (1964). CACM, Vol. 7, pp. 591-625.

Volume 15 Number 1

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/15/1/5/418407 by guest on 19 April 2024


