
f

Turn off

interrupts

f

Identify
interrupt

that occurred

(eturn to A
Executive J

y
No

f

Relocate program
counter to address
given in user's

link

\
f

/lieturn to j
Ithat addressJ

fRetu rn from \
"1 executive )

Fig. 2. 1NTH routine

5. RTC
All interrupts requested by the user, save one, go through the
routine INTH. The one exception is the 10 millisecond clock.
The reason for this being that it is required by the executive and

therefore has to be handled in a different manner. When an
interrupt occurs on this line it is forced to the routine RTC.
Initially a check is made on whether the user has exeeded his
time allocation, a time slice of 40 milliseconds. If he has, a
check is made for requests for service from the other users. If
requests are present an exit is made to the user next due for
service, who has the next time slice allocated to him. However,
if service has not been requested by other users, a further time
slice is allotted to the current user. A check is made for him
requiring the 10 millisecond clock to interrupt.
If he does and the enable toggle is set, the toggle is cleared and

a return is made to the address given in the user's 10 millisecond
interrupt link. If he does not require this interrupt a normal
return is made.

Differences from normal running
The interrupt handling facility has obvious disadvantages for
the running of real-time programs. Two obvious ones are:

1. Time profile distortion. This is due to the encroachment of
the executive and the sharing of available time between
users. This in turn leads to 2.

2. Slow reaction rate. While this is a disadvantage, in the
applications handled in this system it proved to be a minor
one.

Despite these disadvantages, the system has proved an invalu-
able tool in increasing program throughput as powerful debug
facilities which would normally be available only for linear
programs may be applied to real-time ones.
It should be possible to implement this type of system on any

small computer with at least 16K words, a word being at least
16 bits long, possessing some form of memory protection hard-
ware and the facility for running user's programs in a different
mode to the executive, privileged instructions being able to be
run only by the executive.

Acknowledgement
The authors wish to thank Mr. S. Chisman for his help and the
Post Office Corporation and Scientific Control Systems for
permission to publish this paper.

Reference
Lima System for Honeywell DDP 516 GPO Research Station 1970. (Available from D. G. Bennett, c/o GPO Research Station, Dollis Hill.

Correspondence
To the Editor
The Computer Journal

Sir,
The claim is often made that the argument transmission method used
by certain FORTRAN processors (notably those for the IBM 360)
in which arguments are passed by value and the possibly modified
value copied back on return is non-standard. See for example the
comment in J. M. Chambers (1971), page 314.
This is not the case. The USA Standard FORTRAN Report (1964)

explicitly allows this mechanism in addition to the more usual call
by address (sometimes called call by reference). The relevant quot-
ations from the standard are as follows:

'Jf an entity created by argument substitution becomes defined or
undefined (while association exists) during execution of a sub-
program, then the corresponding actual entities in all calling
program units becomes (sic) defined or undefined accordingly.
(ANSI standard section 10.2.2.)
'If a function reference causes a dummy argument in the refer-
enced function to become associated with another dummy argu-
ment in the same function or with an entity in common, a definition
of either within the function is prohibited.' (ANSI standard section
8.3.2.)

With respect to the first requirement, the only difference between
the two methods rests on whether the corresponding entity definition
or undefinition occurs immediately or on subroutine exist. This
could only be distinguished by means of a definition of the type
explicitly prohibited in the second requirement quoted.
Thus both mechanisms must be regarded as meeting the standard

and any program written in accordance with the standard will be
insensitive to which of the two mechanisms employed.

Yours faithfully,
R. B. K. DEWAR

Department of Computer Science
Illinois Institute of Technology
Chicago
Illinois 60616
USA
30 September 1971

References
CHAMBERS, J. M. (1971). Another round of FORTRAN, The

Computer Journal, Vol. 14, No. 3, pp. 312-314.
USA Standard FORTRAN (1964). CACM, Vol. 7, pp. 591-625.

Volume 15 Number 1

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/15/1/7/418447 by guest on 19 April 2024


