Insight, not numbers

P. A. Samet

Computer Centre, University College London

This paper is based on an inaugural lecture given at University College London on 19 October 1971.
The text discusses the growth of Computer Science as an academic subject and the benefits a university
derives from operating its own computing service, in relation to the training of competent practitioners

of the computing profession.
(Received October 1971)

Charles Babbage, who first had the idea of building an auto-
matic computer, died exactly 100 years ago, almost to the
day.

T);le first stored program electronic computers began opera-
ting in the late 1940s. At that time the late Professor Hartree
predicted that a single machine of the same modest size as
the EDSAC machine then under construction at Cambridge
University, placed in London, would be adequate for all of
Britain’s computing needs. In the intervening 20-odd years
machines have been speeded up by a factor of 1,000 or more,
they have increased enormously in capacity, sophistication and
complexity (rather less so in cost), there are several thousand
machines operating in this country, and we still have a shortage
of computing power. This is not just Parkinson’s Law in action.
Computers are now widely used in fields that previously had
little apparent need for computational ability, in commerce, in
social science, in arts subjects, as well as in scientific subjects.
In a sense, Hartree was right—a single machine could have
done the computing that was being done. What he did not
foresee was the explosive growth of our ability to use machines.

Initially, programming was a skill to be acquired only by
persons with high technical, not to say mathematical, ability.
Early machines were too limited for anything like algebraic
programming languages to be viable, although R. A. Brooker
in Manchester was an early pioneer with Autocode. The
spread and acceptance of programming languages was un-
doubtedly a major factor in making computing more widely
accessible, a topic I return to later.

Naturally, it was not long before the new techniques began to
be taught. At first to postgraduate students, then rather ten-
tatively to selected undergraduates, during the 1960s we saw
the beginning of specialist courses in Computer Science, and
recently, in September 1970, came the publication of a UGC-
Computer Board report urging that all university undergradu-
ates should be taught about computing. We have also seen the
growth of the computing profession and our own British
Computer Society has recently started its system of profes-
sional qualifications in computing, the first of its kind in the
world. I want to spend some time discussing the growth of
Computer Science, a subject which in a few years has developed
from nothing to an important position in our universities, being
available as a specialist field of study in more than 20 institu-
tions in Britain and many more abroad.

The early courses were almost entirely concerned with Numer-
ical Analysis, a branch of mathematics that had long been
despised by many conventional mathematicians but had sud-
denly assumed importance when it was realised that the com-
puters offered the ability to find numerical solutions to major
problems. Small and limited as the early computers were, they
were so fast that problems which could not even be contem-
plated a little earlier could now be solved in a matter of days,
even hours. My astronomer friends tell me that the calculations
that were done by John Adams in the 1840s in predicting the

position of Neptune, taking about two years of exceedingly
intricate work, could be done in their entirety and considerably
more accurately on the IBM 360/65 here in College in
well under 2 minutes. Adams won world fame and lasting re-
nown for his calculation, a 2 minute calculation on the 360 is a
‘short job’ and we handle hundreds every day.

The next topics to be included in courses were programming
techniques and logical design, explaining features that make the
machines work. They were still aiming at the mathematically
inclined student, mostly because few computer people knew
anything else.

It was only in the early 1960s that enough had been learned
about the underlying principles of things like language design,
compiler construction—a compiler is a special translation
program for programming languages—and the handling of
non-numerical information that a coherent body of knowledge
began to emerge, to knit together the isolated facts and tech-
niques that had been found. It is worth recording the names of
those whose research and exposition of their work has had such
a great effect: Dijkstra, Naur and his collaborators in the de-
sign of ALGOL, McCarthy, and Strachey. Any list like this
is incomplete, I have given the names of those that have had
the greatest influence on my own understanding of Com-
puter Science.

And so I come to my first question, ‘What is Computer
Science? It is a question I am often asked and find difficult to
answer in a few words. However, I can shirk the task no longer,
a professor giving his inaugural lecture ought to know what his
subject is about. The trouble, of course, is that I know what it
is about, at least I know what I class as being inside Computer
Science and what is outside. The best definition I can think of is
“The systematic study of constructive methods—algorithms—
and of systems for the automatic performance of such algor-
ithms’. The relationship between Computer Science and inform-
ation is like that between physical science and energy. Algor-
ithms transform information in the way physical processes
handle energy.

The mathematician will claim that he, too, is concerned with
the study of algorithms. There is some justice in this claim but
I do not think that constructive methods occupy the same cen-
tral position for the mathematician as they do for the computer
scientist. The mathematician is concerned with structure, with
existence. I speak as a mathematics graduate, these were the
things that excited me when I was a student. They still do
excite me, but mostly in relation to the constructive method
approach I have learned from working with computers.

There is a difference between an algorithm and a formula. A
formula, if it exists at all, gives the nature of the solution where-
as an algorithm, which exists for any soluble problem, tells us
how to achieve the solution. An analogy may be helpful: the
formula for sulphuric acid is H,SO,, the ‘lead chamber process’
is an algorithm for making it.

Well, then, if Computer Science is the study of algorithms, is

The Computer Journal

¥202 Iudy 61 uo 1senb Ag G981 /88/1/G L /8|01 e/|ulwoo/wod dno-ojwepeoe//:sdpy wolj papeojumoq

it an academic discipline, a subject worthy of study in a
university ? Or is it, ‘merely’, a technique fit for learning in a
technical college or its equivalent? I cannot deny that there is
a certain amount of skill that has to be learned. That, however,
applies to many other subjects, too. One could say that
Engineering is also, ‘merely’, a collection of techniques, so is
Medicine—with Surgery as a craft skill that has to be learned—
and I could go through all university subjects like this, subjects
where we do not question their fitness to be in the academic
catalogue. Of course, we continually wish to apply what we
learn in Computer Science and test it with programs on a
computer, but the medical student and the engineer also have
to put their knowledge to the test in practical situations. I
believe the confusion arises in many people’s minds because
they confuse Computer Science and programming or, rather,
coding. Coding is a skill, it can be very rewarding (aesthetically,
as well as financially!) and very difficult, but really has little
intellectual content. What most people have experienced so far
is the coding of problems in a particular programming language.
I do not deny the importance and value of this skill. However,
its relationship to Computer Science is like the ability to speak
a language, say French, and what is studied in a language
department in any university.

Notice the way I have used the word ‘coding’, rather than the
more usual ‘programming’. To my mind, ‘programming’ is the
formulation of an algorithm to do a particular job, whereas I
reserve ‘coding’ for the task of implementing the algorithm in a
form suitable for a specific machine, the strategy and the tactics
of problem solving. One of the causes of confusion is that
programming languages, like FORTRAN and ALGOL, serve
both as a way of describing the algorithm and as an acceptable
input to a computer for the implementation.

I feel that the distinctive contribution that these languages
have made is the provision of unambiguous notation for algor-
ithms. Previously, a procedure for carrying out a process
might have been expressed in words, or as a series of mathe-
matical formulae, or in a variety of other ways. Particularly
tiresome and difficult to describe were repetitive process, where
one needed words like ‘and so on’, and recursive processes,
where one of the subsidiary stages of the whole process is a
‘smaller version’ of the whole process. It is not easy to give
meaningful non-technical examples of a recursive process. The
parsing of sentences is such a process, because subclauses have
the same general structure as the main sentence, in particular
they can also have subclauses. The process stops because sooner
or later we reach words rather than clauses or phrases, so there
is no further subdivision. In London University one might
suspect that the whole process of running the university is
recursive, with the University dealing with the UGC, the
Colleges with the University, departments with the Colleges,
etc., and a cynic might feel that there are times when the recur-
sion has no end.

Programming languages allow us clear, concise descriptions
of what has to be done. We are able to describe the state of our
process at any stage during its execution, or at least how one
gets there and what is to happen next. We can now be sure that
the description of the algorithm means the same to two different
persons and also that it means the same to their, possibly quite
different, computers. (Well, it should, and does so except for
possible errors in their translation programs and differences
caused by holding numbers to different accuracies.) An inter-
esting by-product has been the international acceptance of some
programming languages.

The key to this precision of description is that we have learned
how to describe the languages themselves. The early languages
were described, in effect, by their implementation on specific
machines. The big step forward was the publication in 1960
of the ALGOL report, (ALGOL stands for ‘Algorithmic Lan-
guage’), which gave a machine independent description of

Volume 15 Number 1

a complete language. It was all so new and revolutionary that
it took a long time for people to understand what it was all
about. Apart from some basic symbols, the definitions of all
terms were themselves recursive, which did not help initial
understanding. It need not concern us at the moment that some
obscurities and ambiguities were found in the definitions, and
that revised reports have had to be issued. There is also a
flourishing school of theologians who spend much time dis-
puting with great vigour about what exactly is meant by various
obscurities.

ALGOL itself had fairly wide acceptance in Europe but not in
the USA, and never really among some of the large machine
users (mostly because they used American equipment without
ALGOL compilers). The influence of ALGOL, however, has
been immense, in setting a standard, in language-definition, in
the communication of algorithms and in being the starting
point of concepts and techniques that have proved invaluable
ever since.

Having an adequate notation for describing the work one
wishes to do is necessary. There are many examples in science
where progress was slowed down because no appropriate
notation was at hand. A famous example, for mathematicians,
is the development of calculus by Newton and Leibniz.
Newton’s dot notation was not up to the task in the same way
as Leibniz’s ‘d/dx’. I remember one of my own teachers
explaining that Newton would have been able to discover
Laplace’s equation, which is central to much of mathematics
and physics, more than 100 years before Laplace if he could
have written down partial derivatives, he had all the necessary
physical intuition and mathematical insight. It is my contention
that one of the reasons why computers have become indis-
pensable tools to so many activities is that it has become rel-
atively easy to describe complicated algorithms for carrying
out these activities. This has been the distinctive contribution of
programming languages. Not for nothing do we also call them
‘problem oriented languages’.

Through the study of programming and programming lan-
guages we are thus led to the study of the whole field of problem
solving, what is to be done, how we set about it and what tools
we have available. This is an important, basic and worthwhile
area of academic study. The fact that it is young as an organised
discipline is irrelevant.

I have heard cogent arguments, from people that I respect, that
it is impossible to teach Computer Science properly at present
because it is so young. The argument goes roughly that all we
can teach is the state of the art, there is so much we do not know
and there are no theorems to prove. Actually, of course, much
the same criticism could be applied to all subjects and on that
basis nothing could be taught in a university. ‘State of the art’
will not stand up as valid criticism. Few things could be taught
if we took much notice of ‘There is so much we don’t know’.
What about the ‘no theorems’ part ? This, too, is shaky ground.
It is not theorems that are important, but the ability to design
a system and predict its behaviour. If the objectors had con-
fined themselves to pointing out the shortage of suitable student
texts they would have had a stronger case!

Having said something of what we study, I must say something
about the general attitude that we ought to take. It is my view
that in attempts to make Computer Science academically
respectable too many people have forgotten what Computer
Science is all about. The result has been a series of highly
theoretical courses, devoid of practical content and application,
lacking in all inspiration, producing graduates who could
answer theoretical examination questions but with no idea of
how to solve even the simplest problem. I was surprised, not
long ago, when visiting another university to find that its
Computer Science undergraduates complained—rightly, I
feel—that in their whole student career they had never once
actually seen the computer system operated by the university,

89

¥202 Iudy 61 uo 1senb Ag G981 /88/1/G L /8|01 e/|ulwoo/wod dno-ojwepeoe//:sdpy wolj papeojumoq

I do not think any medical school would feel it right to produce
doctors who have never seen a patient.

It seems to me that we should adopt the engineering approach,
rather than that of pure science. Let me explain. Pure science
observes the real world, and constructs a theoretical model of
this for analysis. Predictions derived from the model are com-
pared with occurrences in the real world, leading to refinement
of the model. On the other hand, whatever the engineer derives
from any model he may have made, in the end he had to work
in the real world. He may calculate the stresses in an arch dam,
constructed of perfect materials in a symmetrical U-shaped
valley, but when the dam is actually built it is not possible to
have perfect materials or the shape of the valley one would
like. The engineer has to work within the confines of the real
world. So it is with the Computer Scientist. One may plan all
sorts of things, but when it comes to implementation one has to
take note of the hardware that is available, of the operating
systems and compilers that are available. For myself, I have
found consicerable satisfaction in having to work within the
limitations imposed by the world and its tools. I do not think
I am alone in this.

There are other advantages in the ‘engineering’ or ‘technology’
attitude, that I shall return to a little later.

Now I want to turn to the problem of doing a university’s
computing. The operation of a computer centre absorbs large
sums of money—in London the annual running costs of all of
the university’s facilities come to about £1} million quite apart
from the capital sums needed—there are requirements for
expert and experienced staff, there are requirements fc?r space.

In the early days there were few computers and universities
had little choice but to install their own. Now, however, there
are several service bureaux operating powerful machines and
access to facilities is not too difficult from almost anywhere in
the country. One may reasonably enquire whether it makes
sense for a university to operate its own computing system. Is a
properly equipped computer centre an essential part of a
university, like a library, or is it only an expensive status
symbol for the Vice-Chancellor? There are actually two parts
to the question, does a university get a better service by doing it
in-house and does a university lose something useful and
important through not having its own facilities ? In London the
problem comes in yet another form, whether it is better to
centralise all facilities or should there be some distribution
between the colleges? As Director of a college Computer
Centre I can hardly fail to have strong views!

The first point to note is the curious nature of the workload
of a typical university. Experience in several universities, in all
parts of the world, shows that there is a predominance of small
and short programs. Typical figures are 509, by npmber qf
jobs taking in all only about 107, of the available time. This
type of load distribution occurs very rarely in commerce and
industry, but is also found in some research establishments.
Few of these programs have a long lifetime, mostly they are
written ad hoc for particular calculations. A consequence is that
the percentage of compilation runs is quite high—economically
this is equivalent to saying that development costs are not
spread over a long production life. There is a constant demand
for the results of these short jobs to be returned to the user
within a very short time and many systems now try to piovide
this fast ‘turn round’. Some years ago we used to think that turn-
round times of about 3 hours were very good, now we try to do
it in a matter of a few minutes. A technical development of the
past few years has been the introduction and increasing use of
interactive systems, offering several users simultaneous access,
often through consoles in their own offices. In this case, turn-
round—now called ‘response time’—can be cut to a matter of
seconds. While such systems are very useful not all jobs are
suitable for the interactive mode of work, just as the telephone
and the postal service are complementary aspects of the com-

munication system we all use. The ability to get one’s computing
done quickly and to have the results in one’s hands in such a
short time is a great help to many people. The short interval
between job submission and receipt of results means that one is
still ‘in touch’ with the whole problem. Equally important,
although often overlooked, is the requirement that this type of
service be available whenever it is needed, all day and every day.
In other words, computing power must be as conveniently
available as electricity or water supplies.

I think the question I have asked, about doing the computing
in-house or not, is now transformed into the equivalent problem
of how best to provide the kind of service I have described. It
will certainly be necessary to provide equipment in various parts
of the university to give convenient access to the computing
machinery, wherever the processing is done.

After this, we come to questions of equipment limitations,
such as available data transmission speeds. It is possible to get
reasonably fast transmission lines, at a price, but the general
data transmission speed is quite low. Of course all these things
will improve in time. At the moment the generally used speed in
London University’s own network offering ‘batch processing’
on the CDC 6600,a mile away at Guilford Street, is 2,400 baud
which corresponds to 300 characters per second. The faster
lines operate at about 5,000 characters per second. Compare
this, however, with the input/output capacity we have in our
own computer room, with only two card readers, two printers,
a papertape reader and a card punch, of about 8,500 characters
per second (and we have several links as well). For large periods
of the day we find that all of this gear is in continuous oper-
ation, there is often a backlog of card reading or printing, and
we really could do with some more equipment of this kind. If
we had to rely on transmission links to a machine elsewhere,
our present input/output loading would suggest that, to give a
service comparable to what we can offer now, we would need
28 of the slow links or two of the faster type. Without pro-
vision on this scale, turn-round would deteriorate—i.¢. people
would have to wait longer for their jobs even if the processing
speed were infinite. Well, the CDC 6600 has provision for a
total of four fast links and about 20 slow links to cover all parts
of the university, so if the equipment for UCL were on the
same scale as for other colleges the local users would suffer
considerably. And it does not matter, really, that the links
would be to a university-operated machine. The point is that
one of the constraints on our decision making must be whether
the information can be transmitted sufficiently quickly to a
remote site to give the service our colleagues require. Not only
require, the service their colleagues, and rivals, elsewhere get.
As an aside, it has often struck me that the real attraction that
sucks scientists into the Brain Drain is the availability of
superior equipment and facilities, rather than higher pay. If I
am right in this, the most effective counter-attraction is the
provision of well-equipped laboratories with adequate sup-
porting facilities, including technical and secretarial staff.

To resume my argument. We have just seen that if the load is
heavy we may need several wide-band transmission links. If
these have to go over any appreciable distance (more than say
10 miles), the cost is very high indeed. Then there is the service
that is provided. Here, of course, the answers depend on just
how much one does. An organisation that can keep a large
machine occupied for 24 hours per day, every week, is not going
to save by hiring the same amount of time on a machine of the
same capacity. In London we are in a very special position: the
machines operated by the university—and fully occupied—are
larger than most service bureau machines in this country, so
we would gain nothing by going outside even if we could. But
this need not be the case elsewhere, and it may well be that
some of the work that now fully occupies a small machine at
the University of X might be done better (speed, turn-round,
cost) on a large machine at Y. It may make good sense for a

The Computer Journal

¥202 Iudy 61 uo 1senb Ag G981 /88/1/G L /8|01 e/|ulwoo/wod dno-ojwepeoe//:sdpy wolj papeojumoq

proportion of large jobs, requiring more resources than can
comfortably be made available locally, to be sent elsewhere for
processing. In some cases the post or the railway may prove to
be a satisfactory link. Many universities have operated good
services like this.

All of this has been concerned with the technical problem
of getting work to and from a computer. At the present time we
are constantly being urged to pay much attention to cost. I do
not dispute the necessity of this but would like to see some
empbhasis being placed on value for money, not just money.
Following the theme I have been developing, I now ask whether
a university actually gains anything useful by running its own
computing service. In other words, even if it is cheaper to send
it all to another location, what other factors do we have to
consider ? A similar question could arise regarding libraries—if
there are good facilities for high speed facsimile transmission,
do we still want our own library or could we rely on a central-
ised national library?

Although it is difficult to quantify, what we gain is expertise.
This is important. The presence of a large computer and its
associated specialist staff within the university community
brings a greater awareness to other disciplines of how auto-
matic computing equipment can help in their fields. Having
experts readily available, people one meets in the refectory and
the common room, is one of the principal facilities a university
service can offer its users. It is very hard to attract such people
to a location where they themselves are not in continuous close
contact with the problem of the computing system, as much as
anything because their own knowledge does not stay up to date.
Let me add immediately that the computing service also gains
very greatly, by being kept in constant touch with the problems
of its users.

There is another side to this, involving the scale of the oper-
ation. One of the difficulties that faces all university staff in
science and engineering departments is this one of scale. What
you do in the laboratory is only a small model of what goes on
in industry. As a result, our students are not as well trained as
we would like them to be. For example, we can make a model of
a skyscraper block, but there is a world of difference between
making the model and building the real thing. Again, producing
a drug in quantities suitable for laboratory testing is a very
long way from having the ability to manufacture the same drug
for national use on a large scale. It is not just that the industrial
process is a larger version of the laboratory process. Very often,
a completely different technique is required.

Just as it is impossible to give students experience of problems
of a size comparable to what they will meet later, so it is
equally hard for the staff to maintain what experience they have.
Unless one has constant contact one’s knowledge is soon out of
date, so great is the rate of change.

One of the few technical areas where our students are taught
in an environment of the right scale by staff with constant
exposure to it is medicine. I think that Computer Science can be
another. Installations in universities compare in size, com-
plexity and general facilities with the most advanced equipment
available anywhere, if anything they are more sophisticated
than many installations in industry or commerce. The chance
for students to do work at the right level—of difficulty and
size—under people who are constantly faced by genuine
problems is one that should not be missed. To take advantage
of the opportunity to extend and improve our activities like this
we must have the facilities readily available.

There is one point I want to mention here, in passing, which is
of great concern to many of us involved in the teaching of
Computer Science and that is the provision of computing equip-
ment specifically dedicated to the teaching of specialists. I have
already commented on the value of having large-scale equip-
ment in our universities. However, there are occasions when the
Computer Science specialist requires to do something out of the

Volume 15 Number1

normal run of things and it is extremely difficult to accommo-
date such legitimate requirements within the normal operating
schedule of a computing service. What is needed is some
equipment without service commitments. Generally speaking,
the amount needed is really very modest, with a cost of only a
few per cent of the university’s main equipment. It is a sur-
prising fact that whereas subjects like Physics, Chemistry,
Engineering and the like are able to get small machines of the
kind I havein mind, because these are essential to the proper
teaching of their students or for their research with the com-
puter being used in connection with other equipment and are
able to treat these just like their other items of laboratory
apparatus, Computer Science is assumed to have no such
needs and is expected to use only the main computing machin-
ery available. Indeed, although the Science Research Council
quite rightly classes Computer Science as a technological
subject the University Grants Committee does not yet accept
it even as an experimental subject!

I now have to answer the implied question in all this, why I
think it is of use for students (and staff) to know about prob-
lems of ‘the right size’. To do so we must look at the history of
large enterprises, and I shall concentrate on those projects that
have involved massive amounts of computing. Some have been
successes, some failures. My list is, of necessity, very selective.
Among the successes we have to count the space science pro-
gramme and systems like airline bookings. On the other side,
I am afraid that some systems with much contact with the
public, like local authority work, the banks, publishers’ book
lists and the like, the Stock Exchange, can hardly be classed as
being outstanding examples of what one would like to do.
Neither are the integrated management information schemes,
which were to use the new technology to do things that were
impossible earlier. And if you think, that I believe all successes
are in technology while the failures are in commerce, let me
say I do not think very much of the software industry either,
with its monstrously large and generally inefficient operating
systems, which are almost invariably late as well. I cannot get
much closer to the computer than that!

What makes some enterprises work while others fail? To say
‘management’ is only partially correct. Certainly, in the very
successful projects, the skill has been in organisation as much
as in possessing the necessary techniques. The staggering thing
with the Apollo projects to my mind is not that the rockets and
men have gone to the moon and come back safely, nor that one
could calculate precisely where they would be at certain times,
but the sheer human triumph of organising a project involving
such a vast number of people. I believe that over 1,100 pro-
grammers were employed on the flight mission project alone:
most projects find difficulty in getting 10 people to co-operate
successfully.

Good organisation and discipline are obviously needed. But
don’t these qualities occur in commerce and industry? Of
course they do, so we must look for something else. I like to
think it is the approach to problems, and this brings me back to
my earlier remarks about the engineer’s attitude. A very large
number of organisations just have not realised that program-
ming is not only a clerical activity. Programs constitute a large
technical and financial investment, and are really in the nature
of capital equipment. Yet it is very common to find a firm that
buys a large computer, costing perhaps £} million, and then
relies on a few inexperienced, incompetent, untrained but
highly expensive programmers to make it all work. The result
is predictable disaster. Symptomatic of this approach is the
attitude to documentation, which is very hard to come by in
most installations. Yet the self-same firms will insist on highly
qualified accountants to look after their money and highly
skilled engineers to design their products. It seems curious that
they do not take similar care over their computing when it is to
take a central role in the company’s operations. I notice that

91

¥202 Iudy 61 uo 1senb Ag G981 /88/1/G L /8|01 e/|ulwoo/wod dno-ojwepeoe//:sdpy wolj papeojumoq

what I have classed as ‘successful’ has been in organisations
that have a great deal of technological ‘know-how’ and have
realised that a similar approach might be useful here also. The
engineer’s attitude to quality control and product testing also
has much from which the computing profession could learn
with profit.

We must learn from both the successes and the failures. It
is for these reasons that I think scale and approach are so very
important, and that the requisite knowledge and experience
must be available within the university.

Before I close, I want to mount one last hobby-horse. So much
of one’s efforts in preparing a problem for a machine go into the
organisation of the necessary arithmetic that many people
appear to lose sight of their final objective. The intermediate
entities are all numbers and it is all too easy to produce vast
quantities of printed sheets, filled with numbers but very difficult
to interpret. Humans have developed some skill in calculating
but not many are good at interpreting complex relationships
when these are expressed only in numerical form. If the related

parts are several pages apart the task is practically impossible.
Yet the presentation of output in an intelligible format is rare.

Graphical output is most valuable for presenting results in an
informative way and microfilm plotters, producing films, are
excellent for showing the behaviour of time dependent proces-
ses. There is no other way of doing this, pages and pages of
printed figures are useless in this respect. It is generally believed
that such plotters are very expensive, yet their cost is com-
parable with that of the very high speed printers that are now
available and which are regarded as indispensable by most
installations. I find there is very little realisation of the poten-
tialities of such film-making devices.

Although my own experience has been confined almost entirely
to scientific use of computers I believe that much of what I have
said about the approach to and organisation of computing
projects applies equally to commerce.

To sum up my remarks I can do no better than quote Richard
Hamming’s famous and elegant epigram, that ‘The purpose of
computing is insight, not numbers’.

Correspondence

To the Editor
The Computer Journal

Sir,

In spite of the ad hoc nature of the FORTRAN language, it is
widely used: many proposals for ‘improving’ the language have
unfortunately been adopted unilaterally by compiler writers.
Chambers (1971) is to be congratulated for exposing his proposals
to public scrutiny, and I should like to add some comments to the
inevitable clamour which will follow. Paragraphs of Chambers’
paper are referenced in square brackets [.

[2.1] Character data:

It is proposed that quote signs be accommodated in a character
constant by the use of a processor-dependent mechanism. This
defies the requirement of upward compatability : the escape mechan-
ism should be fixed by the standard. Actually, it would appzar that
the old Hollerith constant remains unambiguous in the new language
and could be kept as an alternative representation of a character
constant.

[2.1(d)] Chambers proposes operators for comparing character
expressions of arbitrary length: his footnote concedes that the
results will be implementation-dependent. We ask (A) can the
dependence be avoided and (B) can a similar result be achieved in
a different way. Certainly (A) can be achieved, either by demanding
that ASCII be the internal representation or by having a com-
plicated comparison algorithm which effectively translates into
ASCII before making the comparison. Let us, however, ask what is
the purpose of X « Y, where w is a relational operator and X and Y
are character expressions of possibly-different length. One major
application would be sorting character strings into ‘alphameric’
order. But a comparison technique which encourages the user to
compare the whole string at once is likely to be less efficient than
one where characters are compared one at a time from the left. The
only essential facility is the comparison of single characters in ASCIIT
order. 1 propose that this be done, not by hiding a complicated
algorithm in a simple-looking facility, but by providing a built-in
function IFIXCH, of type INTEGER, which takes a single argument
of type CHARACTER and returns the ASCII code value. Note that
the internal representation remains arbitrary but the function always
returns the ASCII code. Then operations of the type .GT. on the
resulting integers will be performed efficiently and will be implement-
ation-independent.

92

On this arguement alone, the proposal for IFIXCH does not look
very exciting. But it permits characters to be used for indexing—a
very powerful technique which would be impossible under Chambers’
proposals. Hash table management would also be possible. (An
inverse of IFIXCH would be provided.)

On the other hand, relational expressions can be formed between
character expressions using .EQ. or .NE. without regard to the
internal representation, and this construction could therefore be
implemented in the new language.

[2.2] Internal formatted conversion, and [2.6] Data transmission:
To eliminate unnecessary restrictions, I propose that, instead of the
format statement number f, the specification should permit a label
expression . (specifying a labelled format statement in the current
program body) or a character expression% (specifying the characters
of a format specification explicitly). A FORMAT statement could
then be selected on the basis of an indexed label array, ora FORMAT
specification generated dynamically in a character array by use of
ENCODE.

[2.7] Array assignment:

The footnote to section [2.7] mentions an objection made by the
referee. Unfortunately the cure is worse than the disease! Chambers’
proposal would require the results of the right hand side to be built
up in temporary storage and only afterwards transferred to the array
specified on the left hand side. Surely the only practical cures are:

(a) to complete the evaluation of one element of the array at a time,
and to determine the result of pathological cases by fixing the
order of evaluation in the specification, or

(b) to state in the specification that the effects of pathological cases
suchas A = A [A(l, 1) are undefined.

Yours faithfully,
A.J. FLAVELL
Max-Planck Institut fiir Physik und Astrophysik
8 Miinchen 23
Fohringer Ring 6
31 August 1971

Reference
CuAMBERS, J. M. (1971). Another round of FORTRAN, T/e
Computer Journal, Vol. 14, pp. 312-314.

The Computer Journal

¥202 Iudy 61 uo 1senb Ag G981 /88/1/G L /8|01 e/|ulwoo/wod dno-ojwepeoe//:sdpy wolj papeojumoq

