what I have classed as ‘successful’ has been in organisations
that have a great deal of technological ‘know-how’ and have
realised that a similar approach might be useful here also. The
engineer’s attitude to quality control and product testing also
has much from which the computing profession could learn
with profit.

We must learn from both the successes and the failures. It
is for these reasons that I think scale and approach are so very
important, and that the requisite knowledge and experience
must be available within the university.

Before I close, I want to mount one last hobby-horse. So much
of one’s efforts in preparing a problem for a machine go into the
organisation of the necessary arithmetic that many people
appear to lose sight of their final objective. The intermediate
entities are all numbers and it is all too easy to produce vast
quantities of printed sheets, filled with numbers but very difficult
to interpret. Humans have developed some skill in calculating
but not many are good at interpreting complex relationships
when these are expressed only in numerical form. If the related

parts are several pages apart the task is practically impossible.
Yet the presentation of output in an intelligible format is rare.

Graphical output is most valuable for presenting results in an
informative way and microfilm plotters, producing films, are
excellent for showing the behaviour of time dependent proces-
ses. There is no other way of doing this, pages and pages of
printed figures are useless in this respect. It is generally believed
that such plotters are very expensive, yet their cost is com-
parable with that of the very high speed printers that are now
available and which are regarded as indispensable by most
installations. I find there is very little realisation of the poten-
tialities of such film-making devices.

Although my own experience has been confined almost entirely
to scientific use of computers I believe that much of what I have
said about the approach to and organisation of computing
projects applies equally to commerce.

To sum up my remarks I can do no better than quote Richard
Hamming’s famous and elegant epigram, that ‘The purpose of
computing is insight, not numbers’.

Correspondence

To the Editor
The Computer Journal

Sir,

In spite of the ad hoc nature of the FORTRAN language, it is
widely used: many proposals for ‘improving’ the language have
unfortunately been adopted unilaterally by compiler writers.
Chambers (1971) is to be congratulated for exposing his proposals
to public scrutiny, and I should like to add some comments to the
inevitable clamour which will follow. Paragraphs of Chambers’
paper are referenced in square brackets [ .

[2.1] Character data:

It is proposed that quote signs be accommodated in a character
constant by the use of a processor-dependent mechanism. This
defies the requirement of upward compatability : the escape mechan-
ism should be fixed by the standard. Actually, it would appzar that
the old Hollerith constant remains unambiguous in the new language
and could be kept as an alternative representation of a character
constant.

[2.1(d)] Chambers proposes operators for comparing character
expressions of arbitrary length: his footnote concedes that the
results will be implementation-dependent. We ask (A) can the
dependence be avoided and (B) can a similar result be achieved in
a different way. Certainly (A) can be achieved, either by demanding
that ASCII be the internal representation or by having a com-
plicated comparison algorithm which effectively translates into
ASCII before making the comparison. Let us, however, ask what is
the purpose of X « Y, where w is a relational operator and X and Y
are character expressions of possibly-different length. One major
application would be sorting character strings into ‘alphameric’
order. But a comparison technique which encourages the user to
compare the whole string at once is likely to be less efficient than
one where characters are compared one at a time from the left. The
only essential facility is the comparison of single characters in ASCIIT
order. 1 propose that this be done, not by hiding a complicated
algorithm in a simple-looking facility, but by providing a built-in
function IFIXCH, of type INTEGER, which takes a single argument
of type CHARACTER and returns the ASCII code value. Note that
the internal representation remains arbitrary but the function always
returns the ASCII code. Then operations of the type .GT. on the
resulting integers will be performed efficiently and will be implement-
ation-independent.

92

On this arguement alone, the proposal for IFIXCH does not look
very exciting. But it permits characters to be used for indexing—a
very powerful technique which would be impossible under Chambers’
proposals. Hash table management would also be possible. (An
inverse of IFIXCH would be provided.)

On the other hand, relational expressions can be formed between
character expressions using .EQ. or .NE. without regard to the
internal representation, and this construction could therefore be
implemented in the new language.

[2.2] Internal formatted conversion, and [2.6] Data transmission:
To eliminate unnecessary restrictions, I propose that, instead of the
format statement number f, the specification should permit a label
expression . (specifying a labelled format statement in the current
program body) or a character expression% (specifying the characters
of a format specification explicitly). A FORMAT statement could
then be selected on the basis of an indexed label array, ora FORMAT
specification generated dynamically in a character array by use of
ENCODE.

[2.7] Array assignment:

The footnote to section [2.7] mentions an objection made by the
referee. Unfortunately the cure is worse than the disease! Chambers’
proposal would require the results of the right hand side to be built
up in temporary storage and only afterwards transferred to the array
specified on the left hand side. Surely the only practical cures are:

(a) to complete the evaluation of one element of the array at a time,
and to determine the result of pathological cases by fixing the
order of evaluation in the specification, or

(b) to state in the specification that the effects of pathological cases
suchas A = A [ A(l, 1) are undefined.

Yours faithfully,
A.J. FLAVELL
Max-Planck Institut fiir Physik und Astrophysik
8 Miinchen 23
Fohringer Ring 6
31 August 1971

Reference
CuAMBERS, J. M. (1971). Another round of FORTRAN, T/e
Computer Journal, Vol. 14, pp. 312-314.

The Computer Journal

¥202 Iudy 61 U0 1sonb Aq 98981 /26/1/G L /8101 e/|ulwoo/woo dno-ojwsepeoe//:sdpy wolj papeojumoq



