
The MU5 compiler target language and autocode
P. C. Capon, D. Morris, J. S. Rohl, and I. R. Wilson
Department of Computer Science, University of Manchester, Manchester M13 9PL

In this paper the design of the software implementation language for the MU5 machine is considered.
This has two representations, the written language, MU5 Autocode, and the parametric compiler
target language (CTL).
(Received October 1971)

At an early stage in the design of the MU5 software it was
decided to introduce a compiler target language (CTL) into
which the high level languages would be translated. For each
high level language a translator would be provided to convert
from the language to CTL while a single compiler converts
from CTL to machine code. The objective was to simplify
individual translators by forcing the CTL to as high a level as
possible. For example, the CTL contains declarations with the
characteristics of those found in high level languages so that
name and property list management problems are passed to
the CTL compiler. This scheme enables the mode of compil-
ation, for example output in semi-compiled form or loading
for immediate execution, to be determined within the CTL
rather than within each translator.
Subsequently, a further role for the CTL emerged. The MU5

translators could be used on a range of machines provided a
CTL compiler could be written for each machine. This machine
independence could extend over machines with significant
structural differences provided the data and address formats
were compatible. This idea is summarised in Fig. 1. It is
similar to the UNCOL (Strong, Wegstein, Tritter, Olsztyn,
Mock, and Steel, 1958) idea except that, whereas UNCOL
attempted to span the significant differences between existing
machines, the CTL has been designed to suit machines origin-
ating from MU5. There is, however, a more significant
difference: the communication between the translators and the
CTL compiler is two-way. Some of the CTL procedures return
information to the translators. For example there is a procedure
for interrogating property lists. It is this which allows the whole
property and name list organisation to be contained within
CTL. The CTL does not have to be encoded in character form
by the translators then decoded by the CTL compiler. Instead
there is a CTL procedure corresponding to each type of state-
ment, so that the CTL is a body of procedures rather than a
written language. The main input parameter of each pro-
cedure is a vector whose elements define the nature of the
statement. In the case of an arithmetic assignment these elements
comprise a sequence of operator operand pairs. Only a small
increase in compile time results from using the CTL proce-
dures to generate code, because they form part of a natural
progression from source to object code.

A loss of run time efficiency could arise from the translators
losing the ability to control completely the code which is
generated. This problem is largely irrelevant with MU5 because
of the high level nature of the order code. For example, the
addressable registers serve dedicated functions which corre-
spond to identifiable features of the high level languages. Also
the machine dynamically optimises the use of the fast operand
store (Ibbett, 1971). If CTL were to be implemented on mach-
ines considerably different from MU5 in these respects then
some theoretical inefficiency might result. In practice it is
difficult to obtain compilers which compile optimum code, so
that the inefficiency may be no worse than that already toler-
ated on many machines.

In the overall software structure the CTL is the instruction set
of the MU5 virtual machine (Morris, Detlefsen, Frank, and
Sweeney, 1971). Hence compatibility in the notional MU5
range of machines is at the CTL rather than the order code
level. There is an associated written form of CTL, MU5
Autocode, which is the lowest level of programming language
and which is used for system programs.

Design considerations
Two principal decisions have determined the overall character-
istics of the CTL and the Autocode. The first of these was that
the CTL and the Autocode should be structurally the same
language. It is thus possible for the CTL compiler to generate
the Autocode equivalent of a program in any source language.
A number of minor advantages stem from this ranging from
the debugging of compilers to the hand optimisation of import-
ant programs. In the light of past experience it was also con-
sidered advantageous for the compilers to be written in the
same language as they generate.
The second decision was that the CTL and the Autocode

should be a high level representation of the MU5 machine code.
For example, it will be seen that the declarations relate to
physical data items in the machine rather than logical data
types. Also the variables are typeless, as are operands in the
machine, permitting arbitrary manipulation using any kind of
arithmetic. Consequently, in MU5 Autocode information
about data structures is embedded in the code rather than just
in the declarations as in PL/1 or ALGOL 68. However, it is not
clear that, on balance, any significant loss of clarity results
from this, particularly since operand accessing in MU5 is very
flexible. Furthermore, efficiency considerations will often
dictate that such structures be carefully designed to fit the

PL/r

VIRTUAL M/C
ORDER CODE

REAL M/C
ORDER CODES

TRANSLATORS

Fig. 1. Compiler Target Language

Volume 15 Number 2 109

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/15/2/109/349996 by guest on 19 April 2024

PIUJC SOPvT(AfN>

PRCJC SPEC SUB.OF.MAX(P, 3?,> 132

PROC SUB .OF ,MAX(A,P ,N)

V32,SUB,I

132,P ~> SUB

CYCLE I = P+1,1,N

IFCR64 , AC 13>A[SUB]]TIU]N

132,1 > SUB

CONTINUE

REPEAT

RESULT =-- SUB

END

CYCLE P = 1,1,N~.1.

I32,SUB.OF.MAX(A,P,N) =-> SUB

R 6 4 , A C S U B] => DUMP

R64,A[P] => ACSUB;!

R64,DUMP => A[P]

REPP; AT

RETURN

END

Fig. 2. An example of an MU5 Autocode procedure

machine. Additional practical considerations reinforced this
decision. Firstly, because the hardware and software of MU5
will be commissioned together, it was considered preferable for
the language to reflect the hardware accurately. Secondly, the
dependence of the rest of the software on the CTL and the
Autocode necessitates a short time scale for their development.
The Autocode representation is the best way of describing the

structure of both this and the CTL. An example of a procedure
for sorting an array in descending order using linear selection
is given in Fig. 2. From this the basic language structure should
be apparent. In the following sections the form of data, the
operations available and the overall control structure are
described.

The Autocode computation statements
Each arithmetic computation to be performed requires an
implicit or explicit specification of the type and size of arith-
metic required. The Autocode provides many arithmetic modes
but no particular one is considered to be the fundamental mode.
It is assumed that only those modes justified by the primary use

of a machine are provided in hardware, the rest being pro-
vided by software. The arithmetic modes are signed and un-
signed integer, real and decimal of size 32, 64 or 128 bits and
a Boolean mode. In MU5 32-bit signed and unsigned integer,
32- and 64-bit real, and Boolean modes are provided in hard-
ware together with some special functions to aid the software
implementation of other modes. The mode is specified at the
start of each statement and is following mainly by operator
operand pairs. Each of these pairs generally corresponds to a
machine instruction; hence the code compiled is closely
controlled.
The operator precedence is strictly left to right, in contrast to

most high-level languages. There are several reasons for this.
Firstly, the calculations in systems programs are often of a
logical rather than a mathematical nature, and use operators
for which precedence rules are not well established. Secondly,
it is easier to see that efficient code is being compiled when
evaluation is left to right than when implicit stacking of partial
results is taking place. Thirdly, since different languages have
varying precedence rules an equal precedence convention is the
most convenient for use in the target language. Precedence can
be forced by the use of bracketed sub-expressions which
explicitly demand the stacking of a partial result on the opening
bracket, and the application of a reverse operation on the
closing bracket. This is shown in the following example of a
typical statement equivalent to the ALGOL

E :=(A + B)I(C + D)
R64, A + B/(C + D) => E

R64 is the 64-bit real mode of calculation; A, B, C, D and E
are operands, and / -I- and = > are the divide, add and store
operators respectively. In MU5 this statement would translate
to:

:set the floating-point accumulator to the
value of A

: add the value of B
:stack the partial result and load the value

ofC
:add the value of D
:reverse divide by the stacked partial result
:store the result in E

ACC = A

ACC + B
ACC*= C

ACC + D
ACC 0 STACK
ACC=> E

Operands and declaratives
The names which are used to represent operands must be
declared before use. Thus single pass compilation is possible.
The user has close control over the store layout and implicit
declarations are not permitted. The scope of the declaratives is
organised on a block structure basis. The basic items which
may be declared are scalars, vectors and strings. The declar-
atives specify the operand size which for vector elements, where
the widest variation is possible, may be 1, 4, 8, 16, 32, 64 or 128
bits. Scalars are recognised in the machine design and special
hardware is provided in MU5 to take advantage of their
existence (Ibbett, 1971). Vectors are accessed indirectly by
means of descriptors. The descriptor, a stored scalar quantity,
specifies the origin, bound and element size for a vector. Vector
operands consist of the vector name and a subscript expression
of arbitrary complexity. An example of the use of vectors is:

R64, XU x N] + YIJ - 2] = > Z
In MU5 a modifier register, B, is used to evaluate subscripts so
this statement translates to:
B = I : xompute first subscript in B register
B x N
ACC = X[B~] : :load required element of JSfinto accumulator
B = J : xompute second subscript
B -2
ACC + r[fi]
ACC=> Z

110 The Computer Journal

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/15/2/109/349996 by guest on 19 April 2024

The Autocode also provides for more complicated data struc-
tures such as operands accessed through several levels of des-
criptors and multidimensional arrays. These cases are always
explicitly described rather than following implicit rules. Hence,
for example, if A' is a vector of vector descriptors, A"1 [/][./]
causes element J of the /th vector to be accessed. Sometimes,
the address of a data item, rather than its value, is required.
In this case, the built-in function ' ADDR' is used. The use of a
simple operand, ADDR, or subscripting enables operands to
be manipulated in any way required. Also new operands may be
created by combining or partitioning existing data structures
using the facilities provided for manipulating descriptors.
The allocation of store for these data structures may be dy-

namic or static. In the latter case store allocation is controlled
by declared areas. An example of a static vector declaration is:

VEC/SAREA [64, 100] A

This declares a vector with 100 64-bit elements numbered 0-99
in the store area AREA. A descriptor of the vector is placed in
the local namespace of the current procedure and may be refer-
red to as A.

Autocode control statements
The order of execution of statements in a program is determined
by various control statements. These are intended to encompass
the corresponding features of standard high-level languages.
Apart from readability requirements, the possibility of a variety
of control hardware in different machines forced these state-
ments to a high level.
A Boolean facility similar to that of ALGOL 60 is provided.

This requirement is catered for at the hardware level in MU5
partly because the cost was small and partly because of local
interest in non-numeric programming. The general form of the
conditional statement, and the conditional expression, is also
similar to that of ALGOL 60.
A relatively restricted looping facility is provided. Because

there are significant structural differences in the various high-
level languages it is expected that compilers will usually gener-
ate the corresponding conditional statements. The simple
facility provided deals with the frequently occurring cases for
which special hardware, such as test and count instructions,
might exist.

Procedures
A principal design aim of MU5 has been to incorporate the
concept of recursive procedures at the hardware level (Kilburn,
Morris, Rohl, and Sumner, 1969). It therefore follows that the
Autocode includes this facility in a form which reflects those in
existing high-level languages.
Therefore procedures have static or dynamic namespaces and

parameters which are expressions, corresponding to ALGOL
call by value parameters, or descriptors. Descriptor para-
meters enable reference, substitution, procedure and label
parameters to be simply programmed. Procedures which are
used as functions yield a result handed back in the accumulator,
in which case they may be called in the course of evaluating an
expression.
In Fig. 2 it can be seen that a procedure is preceded by a

specification. This specification gives the mode of each para-
meter and of any result yielded by the procedure, while the
procedure heading gives only the formal parameter names.
Further, the specification must be given before the first call.
Thus, the compilation of procedure calls is simplified because
the parameters' modes are known.

An example of the parametric form of CTL
An example is now given of the way that this written language

is parameterised to form the CTL. Suppose that an ALGOL
translator wishes to translate:

x:= y + 10
where x and y are declared integer.
The corresponding Autocode statement is:

132, y + 10 = > x
The translator must do two things to process this statement:
1. Assemble a parametric form of the statement into a vector.
2. Call the CTL.COMPVTATION procedure with the vector

as parameter.
This procedure then generates the corresponding MU5 binary

instructions, semi-compiled or other forms.
Suppose that the translator is assembling the parametric form

into a vector CODE declared:
VEC [32, 21] CODE

then the elements of code are assigned as follows:
CODE [0] : Computation is in 132 mode and next operand

is a name
[1] : Namey
[2] : Operator +, next operand is a constant
[3] : Constant 10
[4] : Operator = >, next operand is a name
[5] : Name x
[6] : Terminating mark

The vector therefore contains an operator operand sequence.
Each word containing an operator also describes the type of the
operand following. The operator is held in the top 16 bits and
the operand type in the bottom 16. Considering, in the pre-
ceding example, one such element of CODE in more detail,
since = > is operator 9 and a name is an operand type 16,
C0DE[4] = %00090010 in hexadecimal.
A name is replaced at the lexical analysis stage by an internal

identifier, an integer, which is handed back to the translator by
the CTL.ADD.NAME procedure. Such integers are placed in
CODE [1] and CODE [5]. This form of operand assumes the
use of the standard form of name and property lists mentioned
previously.

CODE [0] which is specially coded to indicate the mode of the
sequence can be regarded as describing a load operation. The
complete hexadecimal representation of the previous example
is:

] : %8O15OO1O
[1] : Integer corresponding to y (internal identifier)
[2] : %00012001
[3] : %00O0000A
[4] : %00090010
[5] : Internal identifier corresponding to x
[6] : %OO32OOOO

When this information has been assembled a call:
CTL.COMPUTATION (CODE)

can be made, and the CTL procedure generates the code.

Conclusion
The Autocode and CTL have been implemented in a simulated
MU5 system on an ICL 1905E. One translator, for Atlas Auto-
code, is already running in this system. The development of
others for ALGOL, FORTRAN and PL/1 is well advanced.
The MU5 implementation awaits the commissioning of the
hardware after which the translators should be transferred
without modification.
A compiler for a subset of the Autocode which generates 1900

code is also available. This is being used to develop operating
system modules which will also be transferred to MU5. The
1900 code generated is sufficiently good for these modules to be
used as part of the 1905E operating system (Morris, Frank,
Robinson, and Wiles, 1971).

Volume 15 Number 2 111

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/15/2/109/349996 by guest on 19 April 2024

References
IBBETT, R. N. (1971). The MU5 Instruction Pipeline, The Computer Journal, Vol. 15, No. 1, pp. 43-51.
KILBURN, T., MORRIS, D., ROHL, J. S., and SUMNER, F. H. (1969). A system design proposal, Information Processing 68, North Holland

Publishing Co., Amsterdam, pp. 806-811.
MORRIS, D., DETLEFSEN, G. D., FRANK, G. R., and SWEENEY, T. J. (1971). The structure of the MU5 operating system, The Computer

Journal, Vol. 15, No. 2, pp. 113-115.
MORRIS, D., FRANK, G. R., ROBINSON, P. H., and WILES, P. R. (1972). The supervisors of the MU5 operating system (to be published).
STRONG, J., WEGSTEIN, J., TRITTER, A., OLSZTYN, J., MOCK, O., and STEEL, T. (1958). The problem of programming communication with

changing machines, CACM, Vol. 1, No. 8, pp. 12-18.

Correspondence
To the Editor
The Computer Journal
Sir
The recent paper by L. B. Smith ('Drawing Ellipses, . . .', Vol. 14,
No. 1) suggests that a good criterion for approximating a convex
curve by an inscribed polygon with a fixed number of vertices is that
the N-gon have maximal area. In the case of conic sections this
criterion leads to highly efficient algorithms, as Mr. Smith so clearly
illustrates.
The paper gives a Lemma which states that an 7V-gon inscribed into

a convex curve has maximal area if and only if the tangent to the
curve at each vertex of the iV-gon is parallel to the chord determined
by the two adjacent vertices. The justification of the Lemma con-
sidered only the possibility of moving just one vertex at a time, so it
is not surprising to find counter-examples which necessitate moving
two or more vertices of the polygon. The triangle joining the mid-
points of the sides of any given triangle satisfies the conditions of the
Lemma, yet it is not maximal. The area of the inscribed triangle
cannot be increased by altering any one of its vertices. In the follow-
ing discussion an inscribed polygon such that the slope at each of its
vertices is parallel to the chord of its two neighbouring vertices will be
called a locally maximum polygon.
A locally maximum JV-gon for a given arbitrary convex curve can

be determined iteratively starting from an initial set of N points on
the curve by moving one point after another to a point further away
(if possible) from the chord of its two neighbouring vertices. Con-
vergence is guaranteed and fairly rapid.

X = I+3 COS. 0
Y = 1+ SIN.

THIS CURVE HAS BUT ONE
LOCALLY MAXIMUM QUADRILATERAL.
DETERMINED BY Qzs64°7' IN THE
FIRST QUADRANT AND 3 ROTATIONS
OF IT.

Fig. 1

Some curves have but one locally maximum N-gon, in which case
the conditions of the Lemma prove sufficient. The curve defined by
x = - 1 + 3 cos 6, y = 1 + sin 6, for 0 < 6 =£ TT/2, and its
rotations about the origin into the other quadrants, is one such
example. It has but one locally maximum quadrilateral, with a
vertex in each quadrant corresponding to the value of 6 approxi-
mately 64°7', as shown in Fig. 1.
The curve x* + y* = 1 has just two locally maximum octagons.

One of them has vertices (± 1, 0), (0, ± 1), and the points (+ c, ±c),
where c4 = 1. This octagon, of area 4c, is 'unstable', in the sense that
if any one of its vertices is shifted slightly, then either one of its two
neighbours can be shifted slightly to increase the area to more than
4c. This means that if the vertices are shifted successively so as to
increase the area at each step, they must ultimately approach the
only other locally maximum octagon, namely the points (±x, ±y)
and (±y, ±x), where xl = (3 + V5)/6 and yi = (3 - V5)/6. This
octagon has area 2-\/3. Once again, the lack of sufficiency of the
conditions of the Lemma do not interfere with finding a maximal
quadrilateral. The curve is shown in Fig. 2.
It is possible for a convex curve to possess many distinct maximal

iV-gons, with none of them unstable. Consider the convex curve
determined by the two parabolas, y1 — 16 + 64* and y2 = 16 — x,
which intersect at (0, ±4). A locally maximum 65-gon may have
from 5 to 65 vertices on.v' = 16 — x, the remaining vertices lying
on y2 = 16 + 64x. The points on either parabola must have ordin-
ates distributed equally from —4 to +4. The more vertices on

Continued on page 116

THE 8 POINTS MARKED
A MAXIMAL OCTAGON.
THE 8 MARKED X FORM
UNSTABLE OCTAGON.

FORM

AN

Fig. 2

112 The Computer Journal

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/15/2/109/349996 by guest on 19 April 2024

