
The structure of the MU5 operating system

D. Morris, G. D. Detlefsen*, G. R. Frank, and T. J. Sweeney
Department of Computer Science, University of Manchester, Manchester M13 9PL

This paper describes the structure of the Operating System for a multicomputer complex which is
being constructed at the University of Manchester. At present the complex consists of a modified
ICL 1905E and the MU5 machine. The Operating System has a highly modular structure con-
sisting of a small kernel coded for the real machine and a number of separate programs each of
which has its own virtual machine.

(Received October 1971)

The MU5 system currently being constructed at the University
of Manchester enables a number of different computers to
communicate via a common interface unit. At present the
complex consists of a new machine, MU5, designed within the
University (Kilburn, Morris, Rohl, and Sumner, 1968) and a
modified ICL 1905E. This paper describes the structure of the
Operating System for the complex. An earlier description
(Morris and Detlefsen, 1969) related to the prototype system
developed on the 1900 machine.

Any operating system which protects itself and other user
programs from the currently executing program does so by
restricting each program's access to the actual hardware. In this
sense such systems might be said to provide a virtual machine
for each user progtam. In many systems (e.g. the ICL 1900
George Operating System) this virtual machine is only trivially
different from the real machine. Other systems aim to piovide a
virtual machine which offers significant software advantages
over the real machine.

In early systems like Atlas (Kilburn, Howarth, Payne, and
Sumner, 1961) each virtual machine was independent and
unaware of the existence of others. That is, all programs
running in user mode were independent. The entire operating
system was a privileged program coded for the real machine. If
any part of this system contained an error it could cause the
whole system to 'crash'.

On MU5, and other systems which have similar properties
(Kerr, Bernstein, Detlefsen, and Johnston, 1969, and Vyssotsky,
Corbato, and Graham, 1965), only a small kernel of the oper-
ating system, which creates the virtual machine feature, is
coded for the real machine. The rest of the system, in the MU5
case, is made up of separate programs (called supervisors) each
of which has its own virtual machine. In general there is a super-
visor controlling each autonomous system activity and a super-
visor to assist each class of user activity. Fig. 1 illustrates a
possible configuration. The design is open ended and new super-
visors can be added at any time. Since they are subject to the
protection system applied to user jobs they cannot interfere
with the rest of the system. Each activity running in its own
virtual machine is termed a process.

Unlike user jobs in an Atlas type of system the supervisors of
MU5 are not. independent. They require facilities to com-
municate with each other. Also they require to create and
control other virtual machines containing user jobs. Thus the
system kernel (the Supervisor Supervisor) must create virtual
machines which comprise:

1. A virtual store.
2. A virtual input/output system.
3. An instruction set which satisfies the requirements of super-

visors as well as user jobs.

The virtual store
This section is restricted to a factual summary of the MU5
segmented storage organisation. It is not feasible to relate it to
the many other descriptions of storage organisations which
have appeared in the literature. The system derives mainly
from the informal conventions for exploiting a large virtual
memory which evolved with the Atlas system. We believe that
the notion (described below) of common segments and the
mechanism for passing segments from one process to another
are novel.
The size of an address in MU5 depends on the size of the

object it addresses. An 8-bit byte address contains 32 bits. This
address is regarded by the store management part of the Super-
visor Supervisor as the concatenation of a segment number and
a position within a segment as follows

SEGMENT NUMBER I POSITION IN SEGMENT

14- 18
Thus the virtual store of each process is segmented and contains
16K segments each of 256K bytes. A similar virtual store is
provided in the 1900 machine in the complex except it has only
64 segments of 64K 24-bit words.
In general, segments will be assigned to the logically distinct

parts of a program as, for example in Fig. 2. If a logical area is
bigger than a segment it may occupy several consecutive
segments. Address modification across segment boundaries is
permitted.

The main features of this segmented store are the following:
1. Associated with each segment are some access control bits

which determine the sort of access that can be made. The
possible access states are: obey only, obey and read, read

FILE
MANAGER

Fig. 1

*Now at the General Electric Research and Development Center, Schenectady, New York, USA.

Volume 15 Number 2 113

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/15/2/113/350010 by guest on 19 April 2024

VIRTUAL ADDRESS

GIVES I6K SEGMENTS OF 256K BYTES

14 18

E.G.

READ/WRITE WORK SPACE Y///////

OBEY ONLY

READ ONLY

READ/WRITE

Fig. 2

PROGRAM \///////////A

INPUT X/////////A

OUTPUT Y/////////A

only and read and write. There is a further bit which deter-
mines whether the user may alter the access state.

2. Segments can be shared. That is, the same segment can exist
in several virtual stores. For example, it may be a compiled
program which is being used simultaneously by several
users. Alternatively, it could be a piece of data in the case
where several programs are collaborating on the same task.
This sharing may arise either as a result of several processes
opening the same file, or as a result of a process's sending
one of its segments as a message to another process (see
next Section). The originator of the file or segment will
control the access state allotted to the others.

3. The segments forming the upper half of each virtual store
are common to all virtual machines. They are write pro-
tected from the user and contain the Supervisor Supervisor,
its working space, compilers and library procedures.

4. Bulk I/O is achieved by transferring segments in and out of
the virtual stores concerned.

5. Segments of code, I/O or data can be filed. The action of the
corresponding open file command links a file segment into
a virtual store. Very large files have to be subdivided into
several segments.

The segmented store is implemented by paging. Each segment
may have its own page size. A fuller description of the store
management scheme will be given elsewhere.

Input/Output
Input output propagates through the machine complex via a
message switching system. This allows any process to send a
message to any other process. A message consists of a short
header (about 100 characters) and optionally a segment of
virtual store. There are some terminal processes in the system,
called device controllers, which have the privilege of com-
municating with the real input/output devices. A user can send
input to any process in the system via the device controller
attached to his input station. These device controllers recognise
a common command language which enables a user to name
the process to which the input is to be sent, and state whether it
is to be buffered into a segment or sent line by line, and so on.
Similarly, output is achieved by the processes sending messages
to the output device controllers. The controllers attached to
interactive terminals deal with both input and output and also
provide interlocks.
Fig. 3 illustrates the message switching system. Each process

(or virtual machine) has a unique name and messages can be
sent to it by any other process which knows this name. Into
each virtual machine are 16 channels which can be addressed
by the transmitting process. The process running in each virtual
machine can exert some control over the 16 input channels.
There are three principal states for each channel. First it can

be closed which means all messages directed to it will be returned
to the sender. Second it can be open, which means that messages
from any source are permitted. The third state is dedicated in
which case it is open to one specified process and closed to the
rest.
Associated with the message channels is a software interrupt

system. The arrival of a message on any channel for which the
interrupt inhibit has not been set will cause an interrupt. This
means a procedure call is forced to an address preset by the
user. The contents of all registers will be preserved so that the
program can be resumed when the interrupt has been processed.
Alternatively, interrupts can be inhibited and the process can
poll its input channels at will. In both cases the messages are
queued outside the virtual machine and a specific command
must be issued to read each one into the virtual store. A process
which is unable to continue until its input arrives may suspend
itself awaiting the arrival of a message. To each message the
system appends the name of the sender; therefore anonymous
messages cannot be sent.
A normal user does not need to use the message system

directly. There is a library of input/output and other house-
keeping routines available in the common part of the virtual
store.
As well as forming the basis of the input/output system the

message system satisfies two other needs. It allows programs to
communicate in order to synchronise or to assist each other.
Also it is a general mechanism by means of which a segment
may be transferred fiom one virtual store to another. This
transfer does not involve copying the contents of the segment;
only a pointer to the page table for the segment is actually
transferred.
The message systems of all the computers in theMU5 complex

will be linked. Thus the virtual machine network depicted by
Fig. 3 is distributed across these machines. The device con-
trollers will run in the machine to which the devices are con-
nected. An optimum distribution of the remaining modules will
be determined empirically.

The instruction set of the virtual machine
Each compiler makes available to the user its own instruction
set. The basic instruction set of the virtual machine consists of
the instructions which compilers may generate. In MU5 this
Compiler Target Language (CTL) (Capon, Morris, Rohl, and
Wilson, 1971) has been defined at as high a level as possible.
It contains a formal procedure calling mechanism; thus the
effective instruction set can be arbitrarily extended by adding
CTL library procedures. This CTL library includes the organi-
sational commands implemented by the Supervisor Supervisor
for the following tasks:

Q-ING
SYSTEM

Fig. 3

114 The Computer Journal

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/15/2/113/350010 by guest on 19 April 2024

1. Creating and controlling processes.
2. Creating and deleting segments.
3. Opening and closing files.
4. Sending and receiving messages.

Entry to these procedures sets a digit in the hardware which
gives them special privilege. There is an extra system protection
bit included with the access control bits described earlier.
Access to segments which have this bit set is only possible from
privileged procedures. This means that system information
such as file directory can be held in the user's virtual store. Also
system information relevant to more than one process such as
the message queues can be held in the common virtual store.
To a large extent, therefore, the 'supervisor calls' can run inside
a user's virtual machine in order to perform tasks on his behalf.
The commands associated with the more involved operations
such as file management use the message system to call upon
the services of slave processes whose responsibility it is to co-
ordinate these tasks.

Some implementation points
1. The locked-in part of the Supervisor Supervisor
Only a small part of the Supervisor Supervisor is forced to run
in locked down store in the real machine. This is concerned
mainly with store control and CPU scheduling. A provisional
description of the former has been given in Morris and
Detlefsen (1969).
The CPU scheduling algorithm cannot have a knowledge of

the relative priorities of the supervisors built into it because
new supervisors can be added dynamically. Similarly, although
a supervisor may know the relative priorities of jobs under its
control it will not know the priorities of those under the control
of other supervisors. This problem is resolved by relating
priority to cost.
There are 16 priorities from which a supervisor may choose

when it requests that a user virtual machine be activated. At the
bottom level the rate of charge for CPU time is almost neg-
ligible. In the present system the charge thereafter increases
linearly with priority. This means that long compute jobs are
prohibitively expensive to run except at the bottom few priority
levels so that they usually wait until the system is otherwise idle.
Short development jobs are usually assigned the higher
priorities.
The scheduling algorithm selects processes for running pri-

marily according to priority. It perturbates this order for two
reasons only. First, in order to maintain good system efficiency
jobs are classified (e.g. long and short) and a suitable mix of
jobs is multiprogrammed. Thus a low priority job of one type
may be run together with a higher priority job of a different
type. Second, some restriction is applied to the amount of
CPU time which can be utilised in one continuous burst at the
higher priorities. When a job reaches this limit it is halted and
moved to the end of the queue of waiting jobs at its priority
level. This time limit is included as a guard against the pos-
sibility of an interactive process's monopolising the CPU
during a long operation. It is expected that interactive jobs will
normally become halted awaiting I/O (i.e. messages) before the
time limit is reached. When they are freed, as a result of receiv-
ing a message, they are placed at the end of the list of processes
waiting for CPU time at the relevant priority level.

2. Levels of protection
Intentionally the system provides only one protected level
inside each virtual machine. This is always occupied by the
Supervisor Supervisor. Subsystems which require protection

are intended to be run in separate virtual machines and be
activated by use of the message system. In contrast a number of
other systems provide multiple levels of protection in which
subsystems may occupy intermediate levels (Graham, 1968).

3. System deadlocks
A system of this kind deadlocks when every process is awaiting
either the action of some other process or a resource currently
in use by some other process. In a virtual machine system, if an
infinity of virtual resources can be created the problem does not
arise. We are concerned only with total system deadlocks and
exclude partial deadlocks due to logical errors in collaborating
groups of processes. Unfortunately the Supervisor Supervisor
has to map the virtual resources into the real hardware, and this
is where deadlocks can arise. Foi example, any list maintained
in locked down store will be limited in size.
The theoretical solutions to this problem have been found too

restrictive. A common restriction is that the processes are
independent (see for example Haberman, 1969). In any case a
near-deadlock situation may be almost as undesirable as
deadlock because of the degeneration of system performance
which develops. The system under discussion relies on empirical
tuning, i.e. adjustment of parameters, in order to avoid dead-
lock situations. For example, if the amount of unused real store
falls below a certain level the device controllers will refuse to
accept further input.

The user's interface with the system
Supervisors provide the means whereby users of the system
initiate and control jobs. The main task of such a supervisor is
to create and activate a new virtual machine for each user job.
Once started, the facilities which are provided by the library
of housekeeping procedures, within the virtual machine, usually
enable the job to run to completion without further assistance
from its supervisor. However, some supervisors provide special
facilities which a process may access by sending its supervisor
a message.
There are several different types of supervisor in the system

corresponding to different types of jobs. The simplest handles
jobs with a single input stream and no requirements for special
facilities. Another deals with the larger batch-processing type
of job, providing facilities for multiple input documents, special
scheduling requirements and jobs which depend on the prior
execution of other jobs. A third supervisor handles the inter-
active type of job; in this case the user is given a greater degree
of control over the execution of the job. In addition there are
more specialised supervisors including an information retrieval
system, an online desk calculator system and a prototype of an
airline reservation system.

Conclusions
A prototype version of the Supervisor Supervisor has been
implemented for the 1905E and has now been in use for about
18 months. The implementation of this system took approxi-
mately 6 months (and three people). In the time since its intro-
duction the number of supervisors and other facilities has
increased steadily and it has been used to develop much of the
software for MU5. It is too early at this stage to draw con-
clusions about the performance of a system structured in this
way, but experience with the prototype system indicates that
there is no serious loss of efficiency.
During the next 12 months a new edition of the 1905 system,

which will interface with MU5, is being developed. The Super-
visor Supervisor for MU5 itself is also being developed in this
period.

References
CAPON, P. C, MORRIS, D., ROHL, J. S., and WILSON, I. R. (1971).

Journal, Vol. 15, No. 2, pp. 109-112.
The MU5 Compiler Target Language and Autocode, The Computer

Volume 15 Number 2 IIS

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/15/2/113/350010 by guest on 19 April 2024

GRAHAM, R: M. (1968). Protection in an Information Processing Utility, Communications of the ACM, Vol. 11, pp. 365-369.
HABERMAN, A. N. (1969). Prevention of System Deadlocks, Communications of the ACM, Vol. 12, pp. 373-385.
KERR, R. H., BERNSTEIN, A. J., DETLEFSEN, G. D., and JOHNSTON, J. B. (1969). Overview of the R & DC Operating System, Report No.

69-C-355, General Electric Research and Development Center, Schenectady, New York.
KILBURN, T., HOWARTH, D. J., PAYNE, R. B., and SUMNER, F. H. (1961). The Atlas Supervisor, Proceedings of the Eastern Joint Computer

Conference, Washington, D.C, pp. 279-294.
KILBURN, T., MORRIS, D., ROHL, J. S., and SUMNER, F. H. (1968). A System Design Proposal, Proceedings of the IFIP Congress, 1968,

North-Holland Publishing Company.
MORRIS, D., and DETLEFSEN, G. D. (1969). An Implementation of a Segmented Virtual Store, IEE Conference on Computer Science and

Technology, Manchester.
MORRIS, D., and DETLEFSEN, G. D. (1970). A Virtual Processor for Real Time Operation, Software Engineering, Vol. 1, pp. 17-28, Academic

Press.
VYSSOTSKY, V. A., CORBATO, F. J., and GRAHAM, R. M. (1965). Structure of the MULTICS Supervisor, Proceedings of the AFIPS Fall

Joint Computer Conference, pp. 203-212, Spartan Books.

Continued from page 112
x i + \ = £ (* < + -

** i

Y = 1 6 - X
which can be rewritten as

61 DISTINCT, STABLE, LOCALLY
MAXIMUM 65-GONS EXIST, WITH FROM
5 TO 65 VERTICES ON Y= 16-X.
Fig. 3

y* = 1 6 - x , the larger the area of the 65-gon. Each of the 61
locally maximum 65-gons are stable, in the sense that if small enough
perturbations are made of each of their points (even simultaneously),
then the iterative process of adjusting the middle points of various
triplets of vertices must converge back to the initial configuration.
The sharp angles at the intersections (0, ± 4) prove to be impassable
barriers to the migrations of vertices of /V-gons for TV ^ 65 (see
Fig. 3).
Any point of a circle may be the vertex of a regular inscribed

polygon. The circle may be projected onto any ellipse, so that the
regular inscribed polygon is projected onto a locally maximum
polygon of the ellipse (note that the projection preserves tangency
and parallelism). It is probably characteristic of the ellipse (and
circle) that any of its points may be used as a vertex of a locally
maximum polygon of any order.

Yours faithfully,
K. A. BRONS

1928 Cardinal Lake Drive
Cherry Hill
New Jersey 08034
USA
6 December 1971

To the Editor
The Computer Journal
Sir

Calculation of a double-length square root from double-length
number using single precision techniques

I write to comment on the letter by D. W. Honey (this Journal,
Vol. 14, Nov. 1971, p. 443) where he describes a method which he
attributes to his colleague, Mr. J. Grabau. The method given is,
however, quite well known, being Newton's method with rearrange-
ment of terms to exhibit the correction to be made at any stage. The
usual form of Newton's method for finding sja is

a - xr

to show the correction. Mr. Honey's (or Mr. Grabau's) technique is
therefore seen to be equivalent to one more step of the Newton
process after the single-length result has been obtained.
However, it is necessary to take care when this method is being used

in fixed-point arithmetic, as overflow could result if the 'wrong'
single-length square root is taken. It is not enough to take the un-
rounded (rounded down) value, because this leads to a value x
satisfying

0 < a - x* =s 2x ,

and this can obviously give overflow. No such difficulty can arise
if we take the rounded value, because this satisfies

— x ^ a — x ' ^ x ,

with a correction of at most £ unit, although it may be of either sign.
In Mr. Honey's example, therefore, he should have used 14 as his
initial guess at V192, which would have led to 13-86 as the better
approximation, instead of 13-88. Since (13-86)2 = 1920996 this
gives an error which is about \ of that quoted. Indeed, it is not
difficult to show that the maximum relative error using the rounded
single-length approximation will be about \ of the error that could
arise from using the unrounded version. Choosing the rounded
approximation is thus noticeably more accurate for the same amount
of work.

Yours faithfully,
P. A. SAMET

Computer Centre
University College London
19 Gordon Street
London WC1
14 December 1971

Mr. Honey replies:
I am obliged to Professor P. A. Samet for his letter commenting on
'Grabau's Method' for obtaining a double precision result using
single precision techniques.
I think that I may have misled the readers by the lack of emphasis

on the single precision. Professor Samet is quite correct in his
observation that Newton's method is involved, although I had not
appreciated this fact at the time. My main concern was that single
precision techniques are used throughout the process and is some-
thing often overlooked by software designers with non-mathematical
background.
I am also obliged for Professor Samet's further comment re

'overflow' (again sometimes overlooked), and his development of
my worked example in decimal in which a rounded value is taken in
preference to an unrounded value—a technique I shall remember in
future.
I am sure that several readers will have gained benefit from our

minor correspondence—which is its basic purpose. Thank you,
Professor Samet, once again.

116 The Computer Journal

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/15/2/113/350010 by guest on 19 April 2024

