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An elementary but useful result is presented which allows the optimal batch size to be found for real
time message processing system in which messages are processed in batches of fixed size.
(Received March 1971)

1. Introduction
A standard technique in the design of real-time inquiry systems
of many types, is the processing of messages in batches of fixed
size. The purpose of this is normally to share out among all the
messages in the batch any fixed 'housekeeping' time needed.
This sharing then increases the efficiency of utilisation of the
machine or device doing the processing. The batching of
messages has also the effect, initially, of reducing the mean total
processing time of the individual messages. As the batch size
increases, however, the mean queueing (or total processing)
time of the individual messages eventually also increases.

It is the purpose of this note to show that a batch size can be
selected which minimises the mean queueing time of individual
messages for a reasonably useful model of such systems. The
model assumed is that of a single server queue, with a Poisson
arrival stream of mean rate X messages/unit time. The holding
time of the server consists of two parts. One part varies from
message to message and is described by a general holding time
probability distribution. The other part is a constant 'house-
keeping' or 'job set up' time.

2. The effect of housekeeping
It is first necessary to specify the effect, on the moments of a
holding time distribution, of a constant housekeeping time. If
the variable component of the holding time distribution is such
that the processing of a given message requires a time in
{t, t + dt) with probability Q(t) dt, the moments of this dis-
tribution are given by

mn = f
Jo

Q(t) dt (1)

If a constant component x is added to the holding time, so that
the final probability distribution function P(t) of the total
holding time has the form of Fig. 1 then the moments of the
new holding time probability distribution are

K = f " t"
Jo

P(t) dt (2)

By changing the integration variable to t' = t — x, and
making use of the binominal theorem and equation (1), one
obtains the relation

K = nCrx
n-mr (3)

between the two sets of moments. In particular, the first three
moments are

b0 = Wo (= 1 normally)
by = xm0 + mi
b2 = x2m0 + 2x7??! + m2 (4)

These expressions will be required below, in the form

TS = x + r;
and since a1 = b2 — b\ by definition

(5)

^ = *'2 (6)

where it has been assumed that m0 = 1. Here T's and Ts are the
mean holding times for the holding time distribution with and
without the constant housekeeping time, r, respectively.
Similarly o'£ and a2 are the variances of the two distributions.

3. The effect of batching
Let the arrival rate of individual messages have a mean of X
messages/unit time. Let the variable portion of the holding
time for a single message have a distribution function with a
mean of Ts and a variance of a2. If the messages are processed
in batches of fixed size m then (IBM—undated) the mean of the
variable portion of the batch waiting time is mTs and its
variance is ma2. The batch mean arrival rate is, of course X/m.
The addition of a constant housekeeping time x to the batch

holding time does not affect its variance (6), but does change
the mean holding time to mTs + x (5).
The utilisation rate p which equals XTS for single messages,

thus becomes

m
(7)

for the batches.
The mean waiting time, Tw which for individual messages

(without housekeeping) is given by (Takacs, 1962).
2 - T2)

Tw ' 2(1 - p)
becomes, for the batches treated as oversize messages

T =
T ) 2 ]

2 [1 - - K + T)]

(8)

(9)

An individual message, however, may be in any one of the m
positions in the batch. Assuming a straightforward 'first in,
first out' queue discipline, and that the housekeeping is done
when the batch begins service (although this does not effect
the results we seek), individual messages will also have to wait
a mean time of

i~ i\

; + T (io)

once a batch begins service. Finally, to obtain the queueing
time (or total processing time) of the message, the mean holding
time Ts for that message must be included.
Thus, the mean queueing time for individual messages, when

processed as a batch requiring an additional constant house-
keeping time T per batch, is given by

Tq =
2[\-[-){mTs

(11)
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Fig. 1. Total holding time distribution

4. The optimal batch size

If machine efficiency is the overriding consideration, the opti-
mal batch size is simply the largest possible. If, however,
system response is crucial the optimal batch size can be taken
to be that value of m which minimises the time taken to process
individual messages. The measure of this response which is
employed here is the mean queueing time, of (11). m is a
discrete variable. It is however sufficient for our purpose here to
find that value of m, treated as a continuous variable, which
makes

?
dm

(12)

where Tq is specified by (11). The differentiation of (11) is
'straightforward but tedious' and leads 'after some manipu-
lation' to the requirement that

TJLl - ITS) m2 - ikzT/n - Xz{Xa] + T) = 0 (13)

If the quantities

P = XT,

and

15

m
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Fig. 2. Variation of optimum with utilisation

are introduced, the required solution (only one root is positive)
is given by

m = 1 +
+ yp(l - p)

(14)
- PI I ' V P

The actual batch size which can reasonably be chosen, will be
the integer nearest the value required by (14). Large batch
sizes are thus required if

1. The housekeeping time is large relative to the mean holding
time of individual messages.

2. The holding time distribution is very spread.
3. The system, with housekeeping time neglected, is near

saturation (i.e. p is nearly 1).
As a simple example, consider the case where X = 2 messages/

sec. Ts = 0-25 sec, T = 0-25 sec, and a2 = 0-25 sec2. In this
case p = 0-5, \i = 1 and y = 4, so that substitution in (14)
leads to m = 3. Thus, processing the messages in batches of
three would lead to the best response time. In practice, of
course, the value calculated for m would not be found integral,
and the actual batch size would be taken to be the nearest
integer.
A graph of m\\x against p is given in Fig. 2 for two values of

v(0 and 10). It should be noted that the effect of changes in y
is relatively small.
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