A comparison of some inverse Laplace transform
techniques for use in circuit design
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At the University of Cambridge Computer Laboratory experiments are proceeding in the design
of an integrated computer-aided circuit design system (Cheney e al., 1971). We discuss here the
search for a method of reliably obtaining the time response of a circuit when the frequency response

is available.
(Received November 1971)

The environment of the Rainbow circuit design system facili-
tates the graphic or textual input of a circuit to the database
and provides data manipulation programs which support a set
of application programs including a program to obtain the
frequency response F(s) for any complex frequencies (Cheney
et al., and Etherton, 1971). This response is obtained without
forming an analytic representation of the circuit’s frequency
response (or Laplace Transform) so we are precluded from using
methods for finding the time response f(¢) which involve this
analytic form. For any circuit which is of reasonable com-
plexity the process of determining F(s) for each s takes a time
which is larger than the other steps in determining f(¢); there-
fore, we are comparing methods of obtaining the inverse Laplace
transform of F(s) with respect to the number of points in s at
which F(s) must be evaluated. In this context it should be noted
that engineers usually require f(¢) for a sequence of points in .
We now report our findings for four methods considered, we
shall report on other methods in the near future.
Formalising the requirement

F(s) = Jw e™* f(1) dt (1a)
0
and .
1) = 2_;; L_/_’w ' F(s) ds (1b)

we require f(z) (Bellman er al., 1966).

The methods considered are various numerical approxi-
mations to the integration shown in equation (1b)

They are:

1. The method due to Dubner and Abate (1968) where the
approximation for f(r) is given by

Error + f(f) =

2;? [%Re{F (a)} + kg‘,l Re{F(a + k—;{)} cos <k—;,-t):| 2

In this method a, T and N are free variables which were
assigned values so that T > 2., where .., was the largest
value of ¢ at which f(¢) was required. N was chosen so that the
last term in the summation above was smaller than the re-
quired error, and a was chosen so that e T < error required.
(A discussion of the choice of a is given in Dubner and Abate
(1968), Silverburg (1970), and Herkowitz (1968).) The modi-
fications using FFT’S or setting T = 2¢ can be seen by inspec-
tion to be prohibitively expensive in the application considered.
Excluding these modifications we observe that only N evalu-
ations of F(s) are required for any number of points in ¢,
0 <t <ty

2. The method due to Zakian (1969, 1970a, and 1970b) where
the approximation for f(¢) is given by

138

1 X o
Error + f(t) = T > K; F(T) 3)
i=1
Zakian (1970b) suggests a good set of «;K; is given by the
solution of
~ ]
(—d%f%= k=01,2...2N-1 (4
i=1
We have therefore assumed only one variable of choice,
namely N. This we let have the value 10 since a set of values for
o;K; has been published for ¥ = 10 (Zakian, 1969), and since
this appears to be an optional choice.

Since «; and K; occur in conjugate pairs it was possible to
reduce the summation of equation (3) into one of five terms,
thus for each value of ¢, F(s) was evaluated five times (Zakian,
1970a).

3. The method due to Stehfest (1970a and 1970b) where the
approximation for f(¢) is given by

N l
Error + f(1) = 1"%" S Y F (’ ‘;g 2> (5)
i=1
where
V, = (— V2 +
min (i,N/2)
kN2 (2! ©
(N2 — T ki(k = DI = B! 2k = D!
k=(@+1)/2

Here also the choice available is only the choice of N, and the
values of s at which F(s) must be sampled are t-dependent so
that F(s) must be evaluated at Ng points if f(¢) is required at g
points. An optimum choice of N was found to be 14.

4. The method due to Piessens (1969) where the approxi-
mation for f(¢) is given by

1] X Uy Nt .
Error + f(t) = ? kgl B u, F —t- + kgl Ck v F 7)] (7)

where u,, v,, B, and C; are calculated by a new method of
Piessens based on the Gaussian quadrature formula.

Again the only variable of choice is N, and sets of corres-
ponding values of u,, v,, B, and C, are suggested by Piessens
(1969). The method requires 2N + 1 evaluations of F(s) for
each value of z. However, an increase in the order of N to
improve the accuracy so far achieved, requires only an extra
N + 1 evaluations as the u, v, C and B occur in complex
conjugate pairs. Satisfactory acesuracy was obtained with
N =35

To form a comparison we applied Zakian’s method to various
circuits (since only N = 5 was available for this method) and
found that it gave an accuracy of four significant figures. We
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Fig. 1. Variation in the number of samples needed of the Laplace

transform according to the number of time responses required
and according to the method of inversion used
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then ran the other three methods adjusting N in each case to
obtain the same accuracy. These results are summarised in
Fig. 1. where the number of evaluations of F(s) is plotted
against the number of values of 7 at which f(¢) is required
averaged over the circuits considered.

Fig. 1 shows that at no point is there an advantage in using
Stehfest’s or Piessens’s method, and that for many points in
time Dubner and Abate is significantly the most efficient
method. Further qualitative comments can be made.

Only the Dubner and Abate method is applicable to finding
f(t) at t = 0. Methods such as those of Zakian, Stehfest and
Piessens where only one variable (¥) is to be chosen have
distinct advantages for automatic systems where the analytic
form of the circuit is not known, since the choice of a in
equation (2) requires knowledge of the positions of the poles
(we may have these in the right half plane since active com-
ponents are processed using nullator-norator models). The
accuracy of the Dubner and Abate method can be increased by
increasing the number of terms N in the summation, this
requires only the evaluation of the extra terms and their
addition to the partial summation, whereas in the methods of
Zakian and Stehfest an increase in accuracy requires a fresh
start, and in the Piessens method half the summation must be
abandoned. It must be admitted though that the error for
Dubner and Abate increases as t — f,,,, which has led to some
difficulty in deciding whether to increase N or T in equation (2)
to improve the acecuracy. The error for Zakian increases as
t = Terit Where Terit is 2 property of the circuit.

In none of these methods is it possible to compute reasonable
and reliable estimates of the error not knowing the analytic
form of the circuit. So to implement a satisfactory automatic
system we have had to rely on comparisons between methods.
We shall report details of this implementation in due course.
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