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Besides many applications of the Chebyshev points xnv = cos (i>7r/n),v = 0(l)n, in approximation,
interpolation by Chebyshev series, numerical integration and numerical differentiation, there are
advantages in their use in the barycentric form of the Lagrange interpolation formula and in checking
by divided differences. When n = 2m, we obtain x2m^ with less than half the number of square roots
that are required to find the other Chebyshev points x\m,v = cos [(2v — 1) 77/2m+1], v = l(l)2m.
Also, the barycentric interpolation formula may be applied to the solution of a near-minimax
problem so as to avoid extensive calculation of auxiliary polynomials, and in a numerical differen-
tiation procedure that conveniently by-passes direct differentiation of the interpolation
polynomial.

(Received March 1971)

1. Previously noted properties and advantages
The Chebyshev points xnv = cos (vn/n), v = 0(l)«, are
remarkable for a wide variety of useful properties in interpol-
ation, near-minimax approximation, numerical integration and
numerical differentiation, appearing in a fairly large volume of
current literature in numerical analysis.
Early writers, then Lanczos (1956, pp. 229-239, 245-248) and

later Elliott (1965) discuss the use of xn v for trigonometric
interpolation and the closely related interpolation by series of
Chebyshev polynomials. Lanczos (1956, p. 477) also cites ;tnv,
as suitable in his r-method for the numerical solution of
differential equations. The Clenshaw-Curtis quadrature
method, including variations and applications, is discussed in
Clenshaw and Curtis (1960), Filippi (1964), Elliott (1965),
Fraser and Wilson (1966), Wright (1966), and O'Hara and
Smith (1968). The closed Chebyshev quadrature formula

I>-*2

)2n- '(2")!'
- 1 < (1)

where in X" the first and last terms are halved, is treated
extensively in Chawla (1968 and 1970). For the use of Chebyshev
series interpolation, based upon xn v for solving non-linear
differential equations, see Clenshaw and Norton (1963) and
Norton (1964), and for solving integral or integro-differential
equations, see Elliott (1963) and Wolfe (1969). For near-
minimax polynomial approximation, employing xnv, see
Fraser (1965, pp. 310-313), Gavrilyuk and Mazanovskaya
(1966) and Meinardus (1967, pp. 72-74). For numerical differ-
entiation the points xnv are optimal in the sense of comput-
ational stability, by virtue of the property that out of all the
sets of n + 1 fixed base points for Lagrangian interpolation,
they give the least upper bound for the sum of the absolute
values of the &th derivative, 1 < A: < n, of the Lagrange
coefficients, over the range — 1 < x ^ 1. A proof which relies
almost entirely upon an essential theorem of Duffin and
Schaeffer (1941), is given in Rivlin (1969, pp. 117-118); see also
Berman (1964).
For Lagrangian interpolation the following has been noted

in the literature:
The points xnv are the n + 1 zeros of (x2 - 1) Un_1(x),

where [/n_t(x) = sin n6/sin 9, x = cos8, is the Chebyshev
polynomial of the second kind, with leading coefficient 2"~1.
Also, we note here that
(x2 - 1) C/n_1(A:)/2"-1 = [cos (» + 1) 9 - cos (« - 1) 0]/2"

(2)
so that \(x2 - 1) U^iix)!!"-^ s£ 1/2""1, which is attained
only for odd n. As a consequence of (2), in the remainder term
of the (n + 1) point Lagrange interpolation formula for/(;c),
— 1 < x ^ 1, based upon xnv, namely

- 1 < c, < 1,

we have

n (x -
This is near minimal, being no more than twice the best upper
bound of 2"" when x'n+Uv = cos [(2v - 1) n/(2n + 2)],
v = 1(1) « + 1, is in place of xnv.
The computational stability of Lagrangian interpolation for

any fixed set of n + 1 base-points, as n increases, is measured
by an upper bound for the sum of the absolute values of the
Lagrange coefficients, for — 1 < JC < 1. For Jtnv, an upper
bound according to Berman (1963), is 8 + (2/n) In (n + 1),
which is comparable to that for x'n+l>v, namely 1.9 + (2/n) In
(n + 1), obtained by a slight refinement of the argument in
Rivlin (1969, pp. 93-96).
Berman's upper bound implies that when/(x) is continuous

in [—1,1] and its modulus of continuity co(8) satisfies the
Dini-Lipschitz condition lim co(3) In 5 = 0, the Lagrange inter-
polation polynomial, based upon xnv, converges uniformly to
f(x) as n -> oo. The proof is identical with that for the
Chebyshev points x'n+l >v given in Natanson (1955, pp. 389-392).
Also for convergence when/(x) is either absolutely continuous,
or has bounded variation, or has an absolutely convergent
Chebyshev expansion, but only for jc'n+lv, see Krylov (1956),
and Johnson and Riess (1970). However, the latter indicates
(p. 355) that their methods are also applicable to the problem
of convergence of the polynomials that interpolate at xn_v.

Thus it is apparent, from the existing literature, that the
Lagrange interpolation formulas based upon the Chebyshev
points xn>y and x'n+l v have practically the same advantages
of minimal remainder, computational stability and uniform
convergence.
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2. Additional advantages in Lagrangian interpolation
The purpose of this present note is to point out five additional
advantages in Lagrangian interpolation based upon xnv,
v = 0(1 )n, in particular, when the interpolating polynomial is
expressed in barycentric form.

The Lagrangian interpolation polynomial of the Mth degree
which equals /(xv) at any n + 1 points xv, v = 0(1 )n, say
Ln(x), is given by

where

= n (* -
v = 0

(3)

From the uniqueness of Ln(x) we obtain the barycentric form of
(3), which is

AJ(xv)
n

ux) = y
/ l x — Xvj / 2 X — Xv,
v = 0 v = 0

where Av are any n + 1 quantities that are proportional to the
divided difference coefficients

l/(j)'n+l(xv) (4)
A detailed discussion of the computational advantages in cal-
culating Ln(x) by (4), apart from the advantages in some
particular choice for xv, is given in Winrich (1969).
When in (4) the points xv are chosen to be xn v , in which case

<£n+i(*) is g»ven by the left member of (2), we obtain the
divided difference coefficients \/<f>'n+1(xn?v) by differentiating
the right member of (2) with respect to x = cos 6 and then
setting x — x n v or 9 = vn/n, v = 0(l)n. We find

(n + 1) sin (w + 1) 0/sin0 - (« - 1) sin (« - 1) 0/sin0 0 = V7Tln
 ( 5 )

from which, by direct substitution for v ^ 0, n, and by taking
limits for v = 0, n, we get

1
n

K+i{xn,v)
, v =

1
= (-!)"•

•yn-2

Therefore in (4) for xv = xn v, by choosing

4 — n

we obtain

Ao = 1; Av = ( - 1 ) \ v = 1(1) n - 1;
so that finally

X - X ~

(6)

(7)

H = H - 1)" (8)

(9)

The first advantage in Lagrangian interpolation at x n v is the
simplicity of (9). For, in addition to the advantages' in the
barycentric form per se, especially for larger values of n, that
have been already cited in Winrich (1969), comparison of (4)
with (9) shows for the latter no storage and retrieval of Av.
Furthermore, replacement of the n + 1 division operations for

AJ(x — xv) in (4) by n + 1 reciprocal operations for
l/(x - *„,,) in (9) might save time (the amount depending
upon the structure of the machine language and program
employed in division) when we avoid many-digit values of Av.
In this discussion we discount the factor ^ in £ " because of the
binary structure permeating most machine operations.
There is also an alternative method of computing the right

member of (9), which takes advantage of the absence of Ay, and
where we reduce further the number of operations at the
expense of more storage.

From 0,1+1(x) = (x2 - 1) C/n_1(A-)/2"-1 and (7), we have

1
x —

= ( x 2 - 1) [/„_,(*)/« (10)

Now if the program for Ln(x) might include the storage of a
table of (x2 - 1) CZ^^x)/?!, at a fine interval in x, obtaining
Ln(x) requires just n + 1 divisions and 1 multiplication,
instead of n + 1 reciprocals, n + 1 multiplications and 1
division. For (9) the user may decide whether or not it is better
to employ this alternative method. However, for (4) in general,
due to the presence of Av, there is no saving in the number of
operations by storing a table of

i / Z lA/(x-*v)] ,

because the numerator would still require n + 1 multiplications
and n + 1 divisions.
It is interesting to point out here that also in the case where

the xv are equal to the Chebyshev points

*;+1(V s cos [(2v - 1) 7t/(2n + 2)], v = 1(1) n + 1,

and whenever n is even, we do not have to store any Av after we
have stored the x'tt+lfV. The reason is that the Av are propor-
tional to the x'n+ 1>v, save for sign and a different ordering in the
v (for the special'case, when n + 1 = 2m, see Salzer (1969)).
But there we still have the extra work of performing divi-
sions instead of reciprocals, not counting the work in retrieving
the x ^ + l v , in the proper order, for the role of Av.
Applying (9) to the Chebyshev polynomial Tn(x) = cos

(« arc cos x), for which Tn(xnj = (— l)v, we obtain this pretty
identity which the writer has net encountered elsewhere:

(11)
x - xn

Meinardus (1967) comes close to formulating (9) in two places.
On p. 44 occurs just the bare statement, without proof, that

whenever H(x) = x"+ 1 + an_, x""1 + . . . + a0. This implies

where K # 0 since det \\xr
n J # 0. But since J

(knowledge of K unnecessary here) satisfies the preceding
system of equations whose solution is unique, %, . .., (— l)v,
. . ., -H- l ) n , are proportional to the divided difference co-
efficients. On pp. 74-76 this proportionality is established
explicitly, K determined to be n/2"~l, by employing a complex
variable argument. However, Meinardus does not indicate the
crucial final step to (9), in which is the practical application of
that proportionality.
A second advantage of interpolation at xn,. is the extreme

simplicity and stability of a checking formula for / ( x n v ) ,
v = 0(1)/?. Whenever / (x) is a polynomial of the (n — l)th
degree or less, or can be approximated to the desired accuracy
by some (w — l)th degree polynomial which we do not have to
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know, any quantity proportional to the nth divided difference
of /(•*„,v) vanishes, save for the cumulation of errors due to
roundoff. In particular, if we employ the barycentric coefficients
in the 'alternating trapezoidal sum' an overall check on the
correctness off(xn v) is furnished by

(12)
v = 0

Of course, when (12) does not hold we cannot localise any
error or combination of errors in /(xn v) . But very much in
favour of (12), is the fact that it involves merely a summation,
without a single multiplication, in contrast to difference or
divided difference checks based upon functional values at other
points. Thus to illustrate the convenience and stability of (12),
we compare it with ordinary differencing by supposing that for
n = 100, instead of/(x100v), we have 101 equally spaced values
of /(xv), v = 0(1)100, and wish to check them by taking the
100th difference. The multiplier of /(X50) alone would be
around 1029, whether in direct multiplication by 1OoC5O in the
formula for the 100th difference, or as a result of the 100 + 99
+ . . . + 1 = 5050 subtractions (instead of the 100 addition-
subtractions in using (12)) in finding successive differences up
to the 100th.

For the third advantage, suppose that we require very high
accuracy in the barycentric formula (9), and n is replaced by 2".
It is shown in Salzer (1969, p. 271) that, for the 2"-point bary-
centric formula based upon x'2nt, v = 1(1)2", the zeros of T2n(x),
we may calculate x'2n<v recursively by

*2-»,v = ±[(1 + xim-v.)/2]1 / 2 ,v = 1(1)2",
v' = 1(1)2"-', m - 2(l)n,

beginning with
*2V'= ±(1/2)*, v' = 1,2 (13)

On p. 385 it is pointed out that only 2" — 1 square roots are
needed for (2" — l)th degree accuracy. Now here for (9), to
calculate x2n,v, v = 0(1)2", begin with the middle and end points
1,0, - 1 , corresponding to v = 0, 2"~\ 2" resp., and then
apply (13) only as far as n — 1 instead of n, to fill in succes-
sively x2m<v, v = l(2)2m, m = l(l)n - 1, the zeros of T2(x),
T4(x),..., T2n-t(x). Then it is apparent that to obtain
x2n,v, v = 0(1)2", a total of only 2""1 — 1 square roots are
needed for 2"th degree accuracy in (9). (Of course all this dis-
cussion is apart from that concerning the operations needed
for getting/(x2njV).) To summarise, less than half the number
of square roots yields one degree higher accuracy when the
interpolation is at the Chebyshev points x2n>v, v = 0(1)2",
instead of x'2nv, v = 1(1)2".

The fourth advantage is in the solution of a near-minimax
problem which is really one of approximation, rather than one
of interpolation. But a convenient form of the solution is
expressible as the barycentric interpolation formula for a
suitably modified /(*„,„). The near-minimax problem, for the
n + 1 points xn v is to find the polynomial of (w - l)th degree,
say Pn^i(x), such that

/(*B.v) - Pn-i(*».v) = (~ 0v >>, v = 0(l)« (14)
In Meinardus (1967, pp. 72-74), there is a solution forPn_t(x)
which gives formulas for the polynomial coefficients of
/(*«v) +/(*nv+l) i n t e r m S ° f ^ . - l W a n d Tn(X)- I n h i s

rn-l\X) —
(* - Xn,v) ft+1 On.v)

where

and
v = 0

K = , v = 0(l)n

(15)

(16)

(17)

/ J

Since (6), (7) and (17) imply that Xv = Ajn, we have

(18)*
v = 0

Now P^^x), given by (15), is calculated much more easily by
(18) followed by the barycentric formula (9) in which f{xn ) is
replaced b y / ( x n > v ) - ( - i r A.
The fifth advantage is in the use of the barycentric formula to

facilitate numerical differentiation. The optimal character of
the points xn>v for numerical differentiation by taking the A:th
derivative of (3), is expressible by the result that

max Y \d%4>n+i(x)l{x - xv)4>'n+l(xvy]ldxk\ ,
v = 0

for — 1 ^ x J% 1, is minimal for xv = xn „, v = 0(l)«, when
it is equal to n\n2 - I2) . . . (n2 - {k - l')2)/l-3 • • • (2/t - 1)
(see Rivlin (1969, pp. 117-118)). The remarkable feature of this
result is that the same set of points xnv is optimal for every
k, 1 < k < n. The practical importance of this optimality is
apparent when we differentiate Ln{x) based upon xnv and
compare it with the result of differentiating an Ln(x) based upon
points xv that are equally spaced. In the latter case, especially
for very large n, we get impractical and unstable formulas due
to the enormous magnitude of the coefficients of f(xv).
To calculate the kth derivative of (3) when xv = xn v,

v = 0(l)«, for the right member in the form of that of (3) or
(9), for - 1 < x < 1, k ^ 1, by direct differentiation with
respect to x, might involve too much computation, which we
may be able to by-pass. Now dk Ln(x)/dxk, k > 1, is also
obtainable by (« — k)th degree Lagrangian interpolation from
its values at any n + 1 — k points. Thus we could combine the
above mentioned optimal feature of numerical differentiation
with the convenience of the barycentric form of the Lagrange
interpolation formula. For the important values of n, and
k = 1,2,..., we precompute from (3) or (4) for xv = jcnv,
v = 0(l)«, the derivatives dk Ln(x)/dxk for the n + 1 — k values
of x = xn_M. = cos [y'nlin - kj], v' = 0(1) n - k. Then
the barycentric formula (9), with n — km place of n, is applied
to find dkLn(x)/dxk from dkLn(xn_kv,)/dxk, v' = 0(l)« - k.
Thus we have

dkLn{x)
dxk

n-k
X i" < —z x — * „ _ .

(-J)1"

x ~ *„_
(19)

n— k,v'

notation, x,,v = — cos (yn/n). Furthermore, Gavrilyuk and
Mazanovskaya (1966), in a rather extensive tabulation, give
the coefficients of these polynomial multipliers of f(xnv) +
/(*„,„+,). But oddly enough, computing P,,-^*) by those
formulas involving £/„_ ,(x) and Tn(x) can be avoided complete-
ly by noting the general solution for any xv, v = 0(1)«, given
in Meinardus (1967, p. 73), which for xv = xn v (our notation
forxnv) reads

n

*The referee has pointed out that (18) follows also from (12) and (14), by operating with 2 " (~ 1 ) " . . . upon both members of (14).
v = 0

The quantities dk Ln(xn_k}V>)/dxk are found conveniently by
differentiating (3) for xv - xn>v, so that the coefficient of
/(*».») becomes dk[<t>n+i(x)/(x - xB>¥)ft+,(*„,„)], where
ft+,W = (x2 - 1) Un_l(x)IT-1 and l/ft+1(xn;V) is given by
(6). Then in each of the n + 1 coefficients we set x = xn_ky,
V = 0(l)n - k. Abbreviating Lnv(x) = ft+1(x)/(x - xnv)
ft+ ,(*„,,.) as L, d"Ln,Xx)/dxk, k = 'l, 2,. . . as L, V', . . ., and

n

E (x ~ -Yn,M)~r' r ^ 1, as Er, where in L, L', L", . . . and
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.r the n, v and x are understood, by repeated use of L' = L
1, we find for k = 1(1)4,.. . , and any n, v and x ^ xn_„,

(where <xr(x) is really <xn v M ,r(x)), must have ar(x) = 0, r > 1.
Since Lao(x) vanishes at *„.,,, we find

L' = f - E2), L" =
- 6 E S 2 + 8E1Z3 + 3EI - 6S4). • • • (20)

As long as xn_*jV< # xn>/1 (which is nearly always the case) we
substitute xn_fcv. directly into (20). Then after we find

X *n,M \X Xn,ii) X = Xn
• « 1 ,

where a t = a t(xn„) (22)

which is really a concise expression for

= Xn-n-k,v-

v' = 0(l)n - k, (21) (22')

we are ready for (19). However, for certain combinations of Following are the expressions for a t = al(xn_k v.) = aB(V>t>/1(1

n, k, v' and ^ ^ v we have xn_tiV- = xn>/1, e.g., any n, any fc, (*„_*„.) obtained from (20), for k = 1(1)4:
v' = « - k, n = n, or n = 8, A: = 4, v' = 3, /i = 6. Then in

/t _ _ _
ik= l, ax = l; fc = 2,

fc = 4, «x = 4 2J - 12 + 8 Z3 , where 2r = 2
<T = 0 , <X ^ V , f i

(23)

(20), since lim L"- • •' exists for every k, and L has a simple

zero at xn/ i, the (. . .) factor, when expanded as a finite series of
the form' ao(x) + ax(x)/(x - xnj + a2(x)/(x - xn_M)2 + . . .
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