
Formal systems and analysis of context sensitive
languages*

Z. J. Ghandour
Philadelphia Scientific Centre, IBM, 3401 Market Street, Philadelphia, Pennsylvania 19104, USA

Canonic systems, which are applied variants of Post's canonical systems have been used to define sets
of strings of symbols recursively. A hierarchy of classes of canonic systems is obtained by introducing
restrictions on the general form of canonic systems. One of the classes contains canonic systems
which generate only recursive sets including all context sensitive languages. An algorithm has been
programmed in APL to parse strings over the alphabet of languages specified by canonic systems
of the class mentioned above. A general approach has been taken such that the canonic systems
and the parsing algorithm cover a wide variety of applications, as e.g., in constructing syntax
directed translators, proof checking systems and linguistical analysis. Some mathematical properties
of the classes of canonic systems are also presented.

(Received July 1971)

1. Introduction
This paper describes a process that I have constructed to test
whether or not a string of characters belongs to a set of strings
that has been defined recursively. If the string belongs to the
set, the process gives the structure of the string based on the
rules used to generate it. Canonic systems, which are applied
variants of Post's canonical systems and Smullyan's elementary
formal systems, are used to define sets recursively. Logicians
have used canonical systems to give self-contained definitions
of mathematical systems in the sense of Smullyan (1961).
Similarly, a programming language can be treated as a logistic
system, i.e., a set of axioms and a set of rules to generate
theorems from the axioms. By Church's thesis, any effective
process can be denned recursively.

In their general form, canonic systems are capable of des-
cribing any recursively enumerable set. I have obtained a
hierarchy of classes of canonic systems by introducing restric-
tions on the canonic systems. The hierarchy on canonic
systems provides an alternative to Chomsky's hierarchy on
grammars and to the hierarchy on sequential devices. Theorems
about the hierarchy of canonic systems and some of its nodes
are presented in this paper.

General parsing algorithms (Feldman and Gries, 1968) used
in actual translators are characterised by the use of classes of
grammars which are subsets of the class of context free gram-
mars, e.g:, simple phrase structure grammars, predictive
grammars, dependency grammars, precedence grammars,
operator grammars and LR(K) grammars.

However, most computer languages are context sensitive and
cannot be generated by context free grammars. For example,
the statement GOTO 3 in a FORTRAN program is not
syntactically correct unless there exists a statement with a
statement label 3 in the same program. A similar problem
arises with declarative statements. Any rule requiring that
two or more constituent phrases of a construction be identical
is beyond the expressive capability of context free grammars.

The restricted canonic systems described in this paper, for
which a corresponding parsing algorithm has been constructed,
can generate any context sensitive language. Canonic systems
specifying context sensitive languages remain as clear and con-
cise as canonic systems specifying context free languages.

Syntax directed translators involve parsing and evaluating
strings in source languages. The evaluation algorithm is based
on the structure analysis of the string. Syntax directed trans-
lators need the grammars of languages in recogniser-oriented
form, while the users of the languages need the grammars in

generator-oriented form. The canonic systems, which are
generator-oriented, and the corresponding parsing algorithms
satisfy both needs.

One can construct canonic systems to define proofs in a variety
of mathematical systems. E.g., one can define the set of all
strings which are proofs in implicational calculus. The parsing
algorithm parses strings over the symbols of the canonic
system. If the string is a valid proof, the algorithm generates a
tree structure representing the derivation of the proof; other-
wise, it indicates that the string is not a proof.

Section 2 defines canonic systems and the restrictions intro-
duced on their form. Section 3 gives results of some mathe-
matical properties of various classes of canonic systems.
Section 4 describes the parsing algorithm, which maps any
string in the language into the structure of the string. Any string
not in the language is mapped into a special symbol 0. Appen-
dix 1 presents a canonic system which describes a context
sensitive subset of a computer language. An example of a parse
of a string in that language is given. Appendix 2 presents a
canonic system which describes proofs in a modified implic-
ational calculus. An example of a parse of a string which is a
proof in that calculus is given.

2. Canonic systems

This section talks about canonic systems: The definition of
canonic systems given here is similar to Smullyan's definition of
elementary formal systems (Smullyan, 1961).

Some terminology is introduced before defining canonic
systems. A string is a succession of one or more signs. The
empty string consists of no signs. An alphabet is a set of signs.
A string over an alphabet A is a string that contains only the
signs of A. A language is a set of strings over an alphabet.
A Canonic System C over an alphabet V (terminal characters)

is the collection of the following:

1. The alphabet V. The elements of V are the symbols of the
system.

2. An alphabet of characters called variables.
3. An alphabet of characters called predicates.
4. An alphabet of characters called grouping signs.
5. A finite number of strings which are canons according to

the definition given below.

The alphabets 1, 2, 3, and 4 are mutually disjoint. Their
elements are the signs of the system C.

Canons are strings over the alphabet of signs which specify the
rules for the recursive generation of strings over V. Before

*This paper is based on part of a dissertation presented to the Faculty of the Graduate School of Yale University in candidacy for the degree
of Doctor of Philosophy.

Volume 15 Number 3 229

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/15/3/229/480603 by guest on 19 April 2024

defining what a canon is, some terminology must be introduced.
A word is a string of symbols. A compound word is either a

word or a compound word followed by '&' followed by a word.
'&' is a grouping sign that is interpreted as conjunction.
A term is a string over the alphabet of symbols and variables.

A compound term is either a term or a compound term followed
by '&' followed by a term.
A remark is a term followed by a predicate sign. A compound

remark is a compound term followed by a predicate sign.
A premiss is a string consisting of a single compound remark

or several compound remarks separated by the grouping sign
'&'. Each such remark is called a premiss remark. The empty
string is a premiss. A conclusion is a non-empty compound
remark. A canon is a string of finite length consisting of a
premiss followed by the grouping sign '->' followed by a
conclusion followed by the grouping sign '••'. An instance of a
canon X in canonic system C is any string obtained from X by
substituting strings over V for all variables in X. A canonic
system can be viewed as having a possibly infinite number of
canon instances represented by a finite number of canons.

Unlike Smullyan's (1961) elementary formal systems and
Post's (1943) canonical systems, a canon, as defined above,
consists of a conjunction of premiss remarks and a conjunction
of conclusion remarks. For a conclusion remark to hold, only
those premiss remarks which are relevant to the conclusion
remark must be satisfied. A premiss remark, P, is relevant to
a conclusion remark, R, if there exists a variable that occurs
both in P and R, or occurs both in P and another premiss
remark relevant to R. Consider, e.g., the canon

where a, p, and a> are variables. coP3 is the only premiss remark
relevant to the conclusion remark u>P5. The premiss remarks
which are relevant to the conclusion remark aP5 are

aP1&pP2&apP4 .

At this point, the variations on Smullyan's and Post's systems
can be considered simply as a means for abbreviating several
canons into one. Consider a canon TV with n remarks in its
conclusion. It is an abbreviation for n canons. The corre-
spondence between N and the n canons is as follows: Each
remark R in the conclusion of TV is a conclusion of a canon
whose premiss consists of the remarks in the premiss of TV
which are relevant to R.
An axiom of a canonic system C is a remark R which occurs

in the conclusion of a canon TV of C such that TV has no remarks
in its premiss relevant to R. I.e., an axiom is a remark which
occurs in the conclusion of an unabbreviated canon that has
an empty premiss. A provable string of C is any string which is
an axiom of C or is derivable from the unabbreviated canons of
C by a finite number of applications of a rule of substitution
and a modified rule of modus ponens. I.e., an instance of a
canon is obtained by substituting words for variables in the
canon using the rule of substitution. If all the remarks in the
premiss of the instance of the canon are provable, the conclu-
sion in the instance of the canon is also provable by applying
the modified rule of modus ponens.

Let P be a predicate in a canonic system C over V. Let S be a
set of strings over V. P is said to represent S in C iff for every
string x over V, the following condition holds:

xe S <—> xP is provable in C .
Let P be a designated predicate in a canonic system C. A

language L defined by the canonic system C is the set of strings
represented by P in C.
An example of a canonic system that defines the context

sensitive language L = {d"bndnbn\m, n > 1} is the following:

aPi -> a&aaPi" (1)
xP2 - b&abPi- (2)

aP1&pP2 -* apapP3- (3)
where a and b are symbols; Pu P2, and P3 are predicate signs;
&~>"are grouping signs; and a and p are variables.
The set L is represented by the predicate P. E.g., consider the

set A represented by predicate P. Canon (1) is an abbreviation
for the two canons:

-» oJY- (4)
otPl -> aa/y- (5)

aPi is provable because it is an axiom. It follows from no
premiss in canon (4). Hence, the string a is in the set A.
Using the substitution rule, one obtains as an instance of

canon (5) the following:
aP1 -* aaPt"

where the string a is substituted for the variable a at each
occurrence of a. Applying the rule of modus ponens on the
above instance and the fact that aPv is provable, it follows that
aaP1 is provable.
One can interpret canonic systems as generator systems. A

canonic system generates strings. There are different levels of
generation of strings. At level 0, no strings are generated and
the sets of strings represented by the predicates of the canonic
system are empty.
At level 1, the strings generated are the axioms of the system.

I.e., a string xP, where x is a word and P is a predicate, is
generated at level 1 iff xP is an axiom. The string x is added to
the set represented by the predicate P which was obtained at
level 0. So, the sets of strings at level 1 are the sets obtained at
level 0 updated by the addition of the words of remarks
generated at level 1.
At level n, the strings generated are the remarks in the con-

clusions of instances of canons whose premiss remarks have
already been generated at levels 0 through n — 1. Again, the
sets of strings at level n are the sets of strings obtained at level
n — 1 updated by the addition of the words of remarks
generated at level n.
A canon is said to have cross reference if there exists a variable

having a multiple occurrence in a conclusion remark of the
canon. Canon (3), in the above example, has cross reference
because the variables a and p have multiple occurrences in the
conclusion remark of the canon. The first occurrence of the
variable is said to be involved with forward reference; the
latter occurrences are said to be involved with back reference.
For any one instance of canon (3), the same words must be

substituted for each occurrence of a. Similarly for each occur-
rence of p. According to canon (3), any string of a's followed
by any string of b's followed by the same string of a's followed
by the same string of b's is a string in the set represented by the
predicate P.
Consider a canon Cl. Let Tbe a term in the conclusion remark

of Cx. Let the first sign in Tbe a variable a. If a is the term of a
premiss remark which has a predicate the same as the predicate
being defined by Cu Tis said to be left recursive. Ct is a canon
with left recursion. E.g., the canon aP -» abP is left recursive.
Canonic systems, in general, are capable of defining any

recursively enumerable set. The general problem of deciding
whether or not a string belongs to such sets is recursively
unsolvable. Restrictions have been introduced on the form of
the canons of canonic systems and a hierarchy of classes of
canonic systems has been obtained.

Class 1 Canonic Systems are obtained by introducing the
following restrictions on the general canonic systems:
Let 7\ be a premiss remark and T2 a conclusion remark in the

same canon such that 7\ and T2 are relevant. The restrictions
(necessary for relevant remarks only) are:

1. The length of 7\ must not exceed the length of T2.
2. Each variable in Tl must occur in T2.
3. The number of occurrences of a variable in 7\ must not

230 The Computer Journal

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/15/3/229/480603 by guest on 19 April 2024

exceed the number of occurrences of the same variable in
T2.

Canonic systems of this class are permitted to have cross
reference and premiss terms of length greater than one.

Class 2 Canonic Systems are obtained by introducing the
following restrictions on Class 1 canonic systems: The term
of each premiss remark must consist of just one variable. The
class of languages generated by such canonic systems remains
closed under intersection.

Class 3 Canonic Systems are obtained by introducing the
following restriction on Class 2 canonic systems:
No two premiss remarks in the same canon have identical

terms. In this class we allow cross reference in the conclusion
only.

Class 4 Canonic Systems are obtained by introducing the
following restriction on Class 3 canonic systems:
No variable can have a multiple occurrence in any one term

of the conclusion of any canon. The class of languages generated
by such canonic systems is equivalent to the class of context free
languages.

3. Some mathematical properties of classes of canonic systems
Some theorems about the mathematical properties of the
various classes of canonic systems will be stated. The proofs
of the theorems will be sketched sufficiently to allow the interes-
ted reader to complete the proofs on his own.

Theorem 1
Class 1 > Class 2 > Class 3 > Class 4.

Proof
By construction Class 1 > Class 2 > Class 3 > Class 4.
The containments must be shown to be proper among

Classes 2, 3 and 4.
The language L = {am6W|m, n > 1} cannot be generated

by any canonic system of Class 4. However, L can be generated
by the canonic system on page 230 which is of class 3.
Later on, the emptiness problem is proved to be decidable for

Class 3 and undecidable for Class 2, the latter proved by
showing that the problem of whether or not the intersection
of two Class 2 languages is empty is recursively unsolvable.
Class 2 languages are closed under intersection. If Class 3
languages are not closed under intersection, then clearly there
are Class 2 languages which are not in Class 3. If Class 3
languages are closed under intersection, then there exist two
Class 2 languages whose intersection is not decidable whether
empty or not and hence at least one of such two languages is
not in Class 3. Therefore, Class 2 properly contains Class 3.
The problem of whether or not Class 1 properly contains

Class 2 is an open question.

Theorem 2
The class of languages generated by canonic systems of Class 4
is equivalent to the class of context free (CF) languages
(Chomsky's type 2).

Lemma 1
Any language L generated by a canonic system of Class 4 is a
context free language. I.e., there exists a context free grammar
G that can generate L.

Proof of Lemma 1
Interpret the predicate signs as non-terminal characters VN,
and the symbol signs as terminal symbols V?. The designated
predicate corresponds to the designated non-terminal character
S of the CF grammar. A canon of the form -+aA- is interpreted
as a rule of G of the form A -» a. A canon of the form aB&pC

-> aapA'is interpreted as a rule of the form A -* BaC. The
left-hand side of the rule consists of a single element of VN.
The element is the predicate defined by the canon. The right-
hand side of the rule consists of the term of the conclusion
remark with each variable replaced by the predicate it is associ-
ated with in the premiss of the canon. The above interpretation
can be extended to any canon in any canonic system of Class 4.
Hence, the set of strings of symbols represented by the desig-
nated predicate of the canonic system consists of elements that
are S-derived in some CF grammar. Therefore, any language
defined by a canonic system of Class 4 is context free.

Lemma 2
Any CF language can be generated by a canonic system of Class
4.
Proof of Lemma 2
The proof is similar to that of Lemma 1.

Theorem 3
Any context sensitive language (Chomsky's type 1) can be
generated by a canonic system of Class 1.

Proof
A phrase structure grammar can be viewed as a semi-Thue
system with restrictions on the pairs of strings

(Au BJ, (A2, B2),. . ., (An, Bn)

used in the production rules
PA&-+PB& i=\,...,n

of the system where P and Q are arbitrary strings. The restric-
tions are: (1) The A, must have at least one non-terminal
symbol in them. (2) One of the At must be the designated
symbol S of the phrase structure grammar. The language
generated by a phrase structure grammar of this sort is the set
of all terminal strings that are equivalent to S.
A phrase structure grammar is context sensitive if for all

/ = 1,. .., n \At\ < \Bt\. Any such restricted semi-Thue
system can be interpreted as a canonic system of Class 1 in
the following way:
The alphabet of symbols of the canonic system contain the

terminal and non-terminal symbols of the context sensitive
grammars. Let V be a predicate representing the set of all
possible strings over the symbols of the canonic system. Let
S be the designated non-terminal symbol of the context sen-
sitive grammar or equivalently S be the starting symbol of the
semi-Thue system to which the strings in the generated language
are equivalent. Let L be the corresponding designated predicate
in the canonic system. A rule PAtQ -+ PB(Q of the semi-Thue
system is interpreted as a canon:

O.V&. pV& <xA pL - • aBpL-
The canon

-• SL"
is also included in the canonic system. The language generated
by such a canonic system is the set of all theorems which are
strings over the terminal symbols. The above canons satisfy the
restrictions of Class 1. Any context sensitive grammar can be
interpreted as a canonic system as described above. Therefore,
any context sensitive language can be generated by a canonic
system of Class 1.
Since Class 4 canonic systems and context free grammars are

equivalent, the decidability and closure properties of context
free grammars are also the properties of Class 4 canonic
systems. We mention below some other properties. E.g., Class
3 is closed under the following operations: Union, catenation,
Kleene closure, string reversal, intersection with regular sets,
and homomorphism. Class 3 is not closed under intersection
and complementation. The proofs of the above assertions are
simpler and more straightforward than the proofs of compar-

Volume 15 Number 3 231

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/15/3/229/480603 by guest on 19 April 2024

able assertions about Chomsky's grammars and hence will be
left to the reader. Among the reasons for this simplicity is that
canonic systems define relations among terminal strings directly
while in Chomsky's grammars there are non-terminal symbols
appearing in the intermediary strings.
A derivation is repetitious if in the subtree representing the

derivation there is a subtree whose root and some node in it
represent the same predicate. If SP is provable in C, then SP
is a theorem that can be derived. The length of the derivation
is equal to the length of the longest path from the root represent-
ing P to the leaves representing S. It can be easily shown that if
a derivation in a canonical system of Class 3 is non-repetitious
and if C has n predicates, then the length of the derivation is not
greater than n. Further, it can be shown that if C is a canonic
system in Class 3 and Lc (the language generated by C) is
non-empty, then there exists an S in Lc and a non-repetitious
derivation of SP. Therefore, in a finite number of steps one can
decide whether or not the language generated by a canonic
system of Class 3 is empty. Also, in a striaghtforward manner
one can show that a language L generated by a canonic system
of Class 3 is infinite iff there exists a string in L whose length of
derivation /, is n < I < 2n where n is the number of predicates
in the canonic system.
One can show that the problem of deciding whether or not

the intersection of two languages generated by canonic systems
of Class 2 is empty is recursively unsolvable by reducing the
Post correspondence problem to it. Also, one can easily show
that the class of languages generated by canonic systems of Class
2 is closed under intersection. Therefore, the emptiness problem
for Class 2 canonic systems is undecidable.

4. The parsing algorithm
Some terminology is introduced before describing the parsing
algorithm. A string B is a substring of a string A if B occurs in
A. Let .Band Cbe substrings of A. B precedes Cm A if B and C
are disjoint and B occurs before Cin A, or if B and C are not
disjoint and B is a substring of C.
A structure of a string A is an ordered n-tuple T. Each co-

ordinate of T specifies a set to which a substring of A belongs.
There is always one coordinate in T that specifies the set to
which A belongs. The ordering on T is obtained as follows:
Assume the substrings B and C of A belong to the set St and
S2, respectively. If B precedes C, 5X corresponds to a coordinate
lower than the one corresponding to S2.
A parsing algorithm computes a function that maps any string

in a language into the structure of the string. Any string not in
the language is mapped into 0.
Languages, as defined in Section 2, can be generated by

canonic systems. Consider a canonic system which generates a
language L. A parsing algorithm is an algorithm that can
process a string over the alphabet of L and decide based on the
canonic system whether or not the string is in L. If the string is
in L, the algorithm generates an array which specifies the tree
representation of the structure of the string. A parsing algorithm
that can handle canonic systems of Class 1 has been pro-
grammed in APL.
A context sensitive language is specified by the canonic

system CROSSFEF in Appendix 1. A string
'SV:A = 1 + R; D = A; GOTO SV;.'

in the language is parsed by the algorithm. The generated array
which specifies the tree representation of the structure of the
string is presented in Appendix 1. A pictorial representation
of the structure of the string is depicted in Fig. 5.

Strategy of the parsing algorithm
Let P be a predicate in a canonic system C over V, S be a set of
strings over V, and P be the predicate representing S in C.
From the condition that a string X over V is in the set S iff XP

Fig. 1

1 -a

3-/>

Fig. 2

2 ARTHEX

is provable in C, it follows that, checking whether or not a
string X belongs to a set S, is equivalent to checking whether
or not XP is provable in C.
Consider, for example, the canonic system that defines another

context sensitive language L = {anbna"\n > 1}:
aP1 -> a&aaPt (1)
aP2 -> b&abP2 (2)

aPi &pP2 &apaP3 -> aba&aapbccaP3 (3)
where a and b are symbols; a, co, and p are variables; -> & are
grouping signs; and Pu P2, and P3 are predicates.
The set L is represented by P3. aPY is provable because it is an

axiom. It follows from no relevant premiss in canon (1).
Similarly,

bP2 is provable (from canon (2))
abaP3 is provable (from canon (3))

A substitution rule generates canon instances from canons.
Using the substitution rule, one obtains as an instance of
canon (3) the following:

aPx & bP2 & abaP3 -> aabbaaP3 .
All the relevant premiss remarks are satisfied. Therefore, by
modus ponens, aabbaaP3 is provable. Canons of the form of
canon (3), which has a term in a premiss remark consisting of
more than one sign, are said to have a multi sign premiss term.
The parsing algorithm presented in this paper reflects the

process of proof checking described above. Let P be the pre-
dicate that represents, in a canonic system C, the set of all
well-formed programs in some programming language. A
string S is a well-formed program iff SP is provable in C.
Suppose the algorithm has to check whether or not a string

S is a well-formed program. The algorithm sets a pointer to
point to the left-most symbol in S. It also sets P as a goal, i.e.,
it sets checking whether or not SP is provable as a goal. This is
represented by node 1 of Fig. 1. Each of the nodes 2, 3 , . . .
represents a conclusion remark in the canon defining P.
The algorithm proceeds according to the remark represented

by node 2. The first sign in that remark is set as a 'subgoal'. If
the sign is a symbol and that symbol is the same as the symbol
pointed to in S, we say that the subgoal is recognised. Then,
the next sign in the remark is set as a subgoal. If the sign is a
syntactical variable, the predicate of the premiss remark
which has that variable as its term is set as a subgoal. The
predicate represented by the subgoal is defined by a canon and

232 The Computer Journal

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/15/3/229/480603 by guest on 19 April 2024

Initialize: PS empty;
TREE to have just one root
which corresponds to the
designated predicate

Push down PS with a pointer
to the first sign in the con-
clusion of the canon defining
the designated predicatefgoal

Set the sign, to which TPS
points, as a goal to be
recogni zed1

(
TPS points to the end of
the conclusion remark

Pop up PS; Change TPS
to point to the next
sign in the conclusion
remark

No

The super goal is the root of the\Y.es
tree

TPS points to a symbol

No

(TPS points to a syntartirnl
variable with back reteron

/TPS points to a svntiu-tlonl
taarlnhle with forwnnl

Save the value of TPS and the
syntactical variable; Set up a
FLAG to save the substring
of S which will be recognized
for the variable

The symbol and the character to the>
ight of the input string marker are » ' e s «

identical

A node representing the symbol
is attached to the tree at the node
corresponding to the most recent
subgoat

Form the substring S1 which
was recognized at the first
occurrence of the variable
using the saved value of TPS

is a substring of S. It starts\
at the right of the input string •
marker and has the same length

s S*. Are S* and S" identical?

A node representing the syntactical
variable is attached to the tree at the
node corresponding to the most re-
cent subgoal; Find the premiss Wemark
that consist of the syntactical variable
followed by the predicate; Push down
PS with a pointer to the first sign in
the conclusion of the canon defining
the predicate

Move the
input string
marker to
the end of
S" in S;
Change TPS
to point to
the next sign

Some of the recognized
goals are defined
by canons with MSPT

(
S' belongs to

the set represented^ No
by the predicate
win MSPT

Move the input string marker one step to the right; If any of the
covering nodes involves forward reference, the symbol is saved in
a location whose address can be determined knowing the covering node

Change TPS to point to the next sign

Abbreviations: PS for Push Down Stack
TPS for Top of PS
MSPT for Multi Sign*Premiss Term

Fig. 3

the procedure to recognise it is the same as for recognising P.
Therefore, the algorithm may set up subgoals of subgoals
If a subgoal is successfully recognised, the algorithm steps to
the next sign in the conclusion remark. Successful recognition
of a subgoal is achieved if all signs in the conclusion remark of
the canon defining the subgoal are recognised. In this scheme,
left recursion poses a special problem which is treated in detail
later on in the paper.

If a subgoal, representing the first sign of a conclusion remark,
is not recognised, the algorithm tries an alternate remark in the
conclusion of the same canon. If all such remarks have been
tried without success, the algorithm backs up to the last sign
successfully recognised and tries an alternative. Accompanying
this back-up is a corresponding back-up of the pointer associ-
ated with the string S. If no alternatives exist and backing-up is
not possible, then the string S is not a well-formed program.

Volume 15 Number 3 233

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/15/3/229/480603 by guest on 19 April 2024

If a variable, a, occurs more than once in a term of a con-
clusion remark, a is involved with cross reference. In the
process of recognising the term, it is not sufficient to recognise
a substring of the input string as of the predicate type repre-
sented by a. In the tree structure of string S, the leaves of the
vertex representing a at one occurrence must be the same as
those of the vertex representing a at any other occurrence in
the term. Therefore, when a variable is involved with forward
reference, the leaves of the vertex representing the variable are
saved in a location whose address can be determined at the
later occurrences of the variable.
If the recognised predicate is denned by a canon that has

multi-sign premiss term, the algorithm has to perform one
further check before reporting successful recognition of the
predicate. The algorithm constructs the string represented by
the multi-sign premiss term. E.g., suppose the canon has a
premiss remark

axayazPn

and Sx, Sy, and Sz are the substrings of the input string S that
correspond to ax, ay, and az, respectively. The algorithm sets
as a goal the checking of whether or not SxSySzPn is provable.
The algorithm calls itself recursively. When operating at inner
levels, the algorithm returns only a value of 0 or 1; i.e., it acts
only as a recogniser.

Major features of the parsing program
So far the strategy of the algorithm has been described. The
flowcharts shown in Fig. 3 and Fig. 4 depict, in general, the
sequence of events in the program. The canonic systems are
mapped into a matrix before being used by the program.
Left recursion poses a problem for top-to-bottom parsing

algorithms. E.g., consider the canon
<xP -> a&abP .

Suppose it is required to check whether or not the string ab
belongs to the set represented by the predicate P. A top-to-
bottom parsing algorithm sets P as a goal to recognise. Accord-
ing to the second term in the conclusion, the algorithm sets P
as a subgoal. Again, according to the same term, the algorithm
sets P as a subgoal of the subgoal. This process is repeated
indefinitely.

P .

To handle left recursion the terms in the conclusion are
arranged to have the term with the left recursion at the end of
the canon. The algorithm does not try to parse the input string
according to the left recursive terms unless a previous term has
been successfully recognised. If a previous term has been suc-
cessfully recognised, the algorithm tries to recognise a longer
substring of the input according to the term with left recursion.
The first sign in the left recursive term is already recognised.
The second sign in the left recursive term is set as a goal to be
recognised. The algorithm keeps repeating this process as
long as the algorithm is recognising successfully the predicate
defined by the left recursive canon. A modified version of the
'Harvard Shaper' mechanism (Kuno, 1965) may be used as an
alternative method for handling left recursion.
Consider a compound remark which has more than one term.

Suppose some of the terms have similar substrings. The
compound remark can be abbreviated to eliminate repetition
of identical substrings. This kind of abbreviation is called
factoring. The grouping signs ' \ / ' are used like parenthesis to
specify factoring. E.g., the compound remark

ala2b2a3 & b1a2b2a3 & ala2a3 & bla2a3P

JTPS points to a sign immediately
to the right of a junction and
an alternative path exists

c

If TPS points to a

sign involved with
forward reference,
reset the F U G
associated with
forward reference

Change 1 Hb to point
to the first sign
In the alternative
branch

The covering node has
other sons already recognized

c
The covering node ts t h e \
root of the whole tree J

TPS points to a symbol

Move the input string
marker one step to the left

Input string ii
not a
program

Change TPS to point to the sign which I
corresponds to the covering node I

Delete from TREE the node
which represents the sign
pointed toby TPS

Change TPS to point to the sign
which corresponds to the
last son recognized

Qhe sign i velved with forward refei

The sign is involved with back reference

Set up a FLAG to save the
new alternative substring
of S which will be
recognized for the variable

Yes

the input string marker
to the left up to the first
character of the substring
recognized for the sign

Change TPS to point to the
sign corresponding to the
last leaf in the tree
which has been recognized

Delete from TREE the nodes
I which represent the symbols
[of the substring recognized
| for the sign

Fig. 4

can be abbreviated to
\a1&.bilaz\b1&.la3P.

Factoring makes canonic specifications more concise. It
speeds up the parsing process considerably. It permits a canon
to have more than one left recursive term in its conclusion.
To further facilitate the parsing, each variable must be defined

in such a way as to permit the determination of the substring it
represents. Therefore, we add the following requirement to
Class 1 canonic systems: Any variable that appears in the
conclusion of a canon must be defined explicitly in the premiss
of the canon. I.e., the variable must be the term of some
premiss remark in the canon. This requirement does not, in
any way, restrict Class 1 canonic systems since it can be met
always by having the predicate in the premiss remark represent
the set of all strings over the alphabet of the canonic system.
A canon may have a compound remark as a conclusion. The

sequence of steps taken by the parsing algorithm through the
conclusion is not necessarily linear from left to right. Consider,
e.g., the canon

aterm&parthex -> a&p\ + & — /aarthex .

The conclusion has the following remarks:
a arthex, p + a arthex, and p — a. arthex .

The algorithm follows the sequence depicted in the special
directed graph shown in Fig. 2.
A directed graph is special if there is an order on some of its

edges. A vertex which is an initial point of two or more edges is
called a junction. E.g., in Fig. 2, vertex 3 is a junction. The edges
coming out of a junction are ordered according to the occur-
rence, from left to right, of their terminal vertices in the con-
clusion of the canon. E.g., the order on the edges coming outof
junction 3 in Fig. 2 is 34 then 36. There is always a virtual
vertex to the left of the graph.

234 The Computer Journal

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/15/3/229/480603 by guest on 19 April 2024

PROGRAM'MP-SV:A=UR;O=A.-GOTOSV;.

Fig. 5

P is a vector for stepping through special directed graphs.
Each element of P corresponds to a canon defining a predicate
which is set as a goal to be recognised. The value of an element
of P is the positional number of the vertex to which P points in
the corresponding graph.
A tree is a directed graph which contains no cyclic paths and

which has at most one branch entering each vertex. A vertex i
which branches to a vertex j is called the father (or the covering
vertex) of vertex/ Vertex_/ is called the son of vertex i. The son
vector of a vertex j is an ordered set of all sons to j . A well
ordered tree T is a tree such that the set of all sons of any
vertex of T is ordered.
The trees generated by the parsing algorithm are well ordered.

A well-ordered tree will simply be referred to as a tree.
A tree T is completely defined by specifying, for each vertex

a of T, the son vector of a. The above specification is given in

the form of a two-dimensional array. The vertices of a tree are
labelled. The zth row of the two-dimensional array specifies the
son vector of vertex i. The order on the sons of vertex / is
the same as the order on the elements of the rth row of the
array.
However, to make the array specification of the tree more

legible, additional information is provided. The array is
augmented by three columns at the left.
The first column is an index column for the array. The entry

in the first column at the rth row is /, the label of the vertex
whose son vector is specified in the zth row. Each vertex in the
tree represents a predicate or a symbol. If the vertex is a leaf,
it represents a symbol. Otherwise, it represents a predicate.
The second column consists of strings of literals. The entry in
the second column at the rth row is the predicate or symbol
represented by the ith vertex. The third column provides

CROSSREF*

aUPROGU+u.UPROGRAMU"

alpUPROGluUSTATEMENTUtlUlDENTIFIERUtTUSTAU+T\±:GOTOx;a
LGOTOx;ax:u;pix:u;aGOTOx;pi/ UPROGU"

aUSTATEMENTUtpUSTAD+a;\pL/DSTAU"

aUTERMQtpUARTHEXQ+a\\+L-/P L/DARHTEXD"

aDFACTORU\ POTERMQ+a \\ x |_ * / P L /UTERMU"

aUlDENTIFIERDfpOlNTEGERQ[uUARTHEXU+alpL Cw)UFACTORU"

aULETTERUt POIDENTIFIERU+ a\pL/UIDENTIFIERU"

aUDIGITU[pUlNTEGERQ+a\pL/niNTEGERQ"

AlBlClDlElFlGlHllUlKlLlMlNlOlPlQlRlSlTlUlVlWlXlYlZDLETTERn"

1L2L3UUL617L8L9L OUDIGITQ"

See Appendix 1 on next page.

Volume 15 Number 3 235

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/15/3/229/480603 by guest on 19 April 2024

information about the fathers of vertices. The entry in the
third column at the /th row is the vertex label of the father of
the /th vertex.
If the recognised variable is involved with back reference, its

son vector will not be specified explicitly in the array. The row
in the array corresponding to such variables consists of four
elements. The first element is the column index of the row. The
second element is the label of the vertex representing the first
occurrence of the variable. The third element is the variable
itself. The fourth element is the vertex label of the covering
node.
Again, consider the example in Appendix 1. The parsing

algorithm set PROGRAM as a goal to be recognised. This in
turn, according to the first canon of the canonic system, set
PROG as a subgoal. PROG is recognised according to the
remark T±:co;aGOTO±;pDPROGn in the conclusion of
the second canon. At the first occurrence of the variable J.,
SV is recognised as the identifier represented by -L. Since ±
occurs later in the same remark, SV is saved. At the second
occurrence of ±, the algorithm does not only recognise an
identifier but also checks that it is the same identifier recognised
at the earlier occurrence of ±.

Appendix 1
A context sensitive language, CROSSREF, is defined as a
canonic system. The language cannot be denned by a context
free grammar. To any GOTO statement in the program there
must exist a corresponding statement having a label the same as
the transfer label in the GOTO statement. Otherwise, the
GOTO statement is not legal (see page 235).
where
A . . .Z 0 . . .9 . : ; = + — x -r () are symbols.
a -L j w P a re variables.
T L \ / -* " are grouping signs*. The sign- indicates the end of

a canon. The • sign is used to indicate the predicate signs.
In this system any string over the alphabet delimited by two •
signs is a predicate. Because the sign & is not available on the
APL terminal, we used the sign [to represent conjunction
between terms and the sign f to represent conjunction between
remarks.
As an example, a string in the language is parsed. MP is a

dyadic function which is executed by the parsing algorithm.
The first argument of the function is the name of the set which
we want to check whether or not it contains the string. The
second argument is the string.

1 PROGRAM1 MP '

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

PROGRAM
PROG
STA
IDENTIFI
LETTER
S
IDENTIFI
LETTER
V

STATEMEN
IDENTIFI
LETTER
A

ARTHEX
TERM
FACTOR
INTEGER
DIGIT
1

TERM
FACTOR
IDENTIFI
LETTER
R

PROG
STA

0
1
2
2
4
5
4
7
8
2
2

11
12
13
11
11
16
17
18
19
20
17
17
23
24
25
26
2
2

29

12
13
14

17
18
19
20
2.1

24
25
26
27

30
31

5.1
4 10

'=4 \GOTOSV;

11 28 29 43 44 45 46 47 48 49

15 16

22 23

31
32
33
34
35
36
37
38
39
40
41
42
43
41
45
46
47
48
49
50
51

STATEMEN
IDENTIFI
LETTER
D
=
ARTHEX
•TERM
FACTOR
IDENTIFI
LETTER
A
9

G
0
T
0
4X2
9

PROG
STA

30
31
32
33
31
31
36
37

38
39
40
30
2
2
2
2

2
2

49
1

32
33
34

37
38
39

40
41

50

35 36

42

The above a r r a y r e p r e s e n t s , t he s t r u c t u r e o f t he s t r i n g
'SV:A = l*RiD=AiGOTOSVi. '

236 The Computer Journal

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/15/3/229/480603 by guest on 19 April 2024

Appendix 2
Proof in a modified implicational calculus is defined as a
canonic system. The definition is a restricted version of More's

Proof

(1965) canonic system defining implicational calculus.
*See page 234 for explanation of the \ / notation.

aQTERMUt p L aiUFORMULAQ+ip =>w)laOFORMULAU"
aOVAN[}{pDFORMULAQ+p ,aLDVANU"
aL p L A L VQVANQ[i L TOFORMULAUf hrQBASICLA J/DT aAp - V . l . QPROOFQ+a Ap - Vl
a L P L A L VQVANU f J. L JDFORMULA D f P TDBXSrCLi* /̂DT a - A p V . l . []Pi?0OFQ+a - A p V X
aLpLw[]7A/i/DriD^Oi?A;i/L/4DralDS^5rCL/lJ;/n^paaj- . l ..QPi?00F3D"
a L.P L tDVANQ[± L TUFORMULA Df p l , T Q B A S T C Z ^ P/Df a - A p , l . DPROOFQ-^a - A p l , . T . QPi?<90F4Q

T.UPROOF1Q:

T.DPR00F2D'

,a , p L (a= (p
aUPROOFlQ[p0PR00F2Q[unPROOF3U7

})" J=> Ca = w)) L p , Ca^p)UBASICLA WQ
r VDVANU+V - . .. La La L p L

where
* > ~ •
a p co

l
2
3
4
5
6
7

8
9
1 0
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
2 0
2 1
2 2
2 3
2 4

() Z3 are symbols.
V A J_ y are
•• are grouping

PROOF
PROOFS
VAN
FORMULA

cFORMULA
TERM
*
TERM
*

FORMULA
TERM
*
)
9

VAN
FORMULA
TERM
*
TERM
*

9

VAN

variables.
signs.

0
1
2
3
4
4
6
7
7
9
4
4

1 2
1 3

4
3
3

2
3 25 26
4 16 17
5 6 11 1

7
8 9

1 0

1 3
1 4

18 23 24
17 19

1 8
1 9
1 9
2 1
1 7
1 7

20 21

2 2

Predicate signs are delimited by • •
As an example, a string which is a proof in the modified

implicational calculus is parsed.

PROOF MP '(„=,,), „ , *_, • (.„=>.).'

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

VAN
VAN
FORMULA
TERM

FORMULA
(
FORMULA
TERM
*
TERM
*
TERM
*
FORMULA
TERM
*

2
2
2
2

28
29
2
2
2

33
33
35
36
36
38
38
40
33
33
43
44
33
.2

29
30

34 35 42 43 46

36

37 38

39 40

41

44
45

The above array represents the structure of the proof of Acknowledgement
'(**=>*)> **> -*>• (*** = *)•' The author wishes to thank T. More, Jr. for his many valu-

able suggestions and contributions.

References
CHEATHAM, T. E., Jr., and SATTLEY, K. (1964). Syntax-Directed Compiling, AFIPSProc. Spring Joint Computer Conference, Spartan Books,

Baltimore, Maryland, Vol. 25, pp. 31-57.
CHOMSKY, N. (1959). On Certain Formal Properties of Grammars, Information and Control, Vol. 2, pp. 137-167.
DONOVAN, J. J. (1967). Investigations in Simulation and Simulation Languages, Ph.D. Dissertation, Yale University, New Haven, Connecti-

cut.
FELDMAN, J., and GRJES, D. (1968). Translator Writing Systems, Comm. ACM, Vol. 11, No. 2, pp. 77-113.
GHANDOUR, Z. J. (1968). Formal Systems and Syntactical Analysis, Ph.D. Dissertation, Yale University, New Haven, Connecticut.
KUNO, S. (1965). The Predictive Analyzer and a Path Elimination Technique, Comm. ACM, Vol. 8, No. 7, pp. 453-462.
LANDWEBER, P. S. (1964). Decision Problems of Phrase-Structure Grammars, IEEE Trans, on Electronic Computers, Vol. EC-13, No. 4,

pp. 354-362.
MORE, T., Jr. (1965). Yale Class Notes on Applied Discrete Mathematics, Spring and Fall, 1965.
POST, E. L. (1943). Formal Reductions of the General Combinatorial Decision Problem, American Journal of Mathematics, Vol. 65, pp.

197-215.
SMULLYAN, R. M. (1961). Theory of Formal Systems, Princeton University Press, Princeton.

Volume 15 Number 3 237

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/15/3/229/480603 by guest on 19 April 2024

