Table 6 Shortened fault matrix

	X1	X2	X3	$X 11$		X12		$X 13$		$X 21$		X22		X3	
				s0	$s 1$	$s 0$	$s l$	$s 0$	$s 1$						
t_{0}	0	0	0												
t_{1}	0	0	1				$\sqrt{ }$						$\sqrt{ }$		
t_{2}	0	1	0						$\sqrt{ }$						$\sqrt{ }$
t_{3}	0	1	1		\checkmark							$\sqrt{ }$		$\sqrt{ }$	
t_{4}	1	0	0			$\sqrt{ }$		$\sqrt{ }$			$\sqrt{ }$				
t_{5}	1	0	1			$\sqrt{ }$					$\sqrt{ }$				
t_{6}	1.	1	0	$\sqrt{ }$						$\sqrt{ }$					
t_{7}	1	1	1	\checkmark						$\sqrt{ }$					

$s 0=\mathrm{s}-\mathrm{a}-0, \mathrm{~s} 1=\mathrm{s}-\mathrm{a}-1$
path.* Strictly speaking therefore, the shortened fault matrix should also include the s-a-0, s-a-1 columns for $X 1$ and $X 2$ respectively, in which the tests have been derived from
$D Z 1(X 1)$ and $D Z 1(X 2)$. In this case, the tests specified in equation (22) will also cover the $X 1$ and $X 2$ faults.
*This is not true for its inverse level. Despite the fact that it cannot be set-up, all other lines presumably can and this may be used to test the inverse fault. In a sense, if it is shown that it is not stuck-at its inverse level, then it has been tested for its stuck-at-clamp level.

References
BaKER, J. D. (1971). The fault-cover problem in combinational logic circuits, M.Sc. Thesis, Dept. of Electronics, University of Southampton
Bennetts, R. G. (1971). The diagnosis of logical faults, Wireless World, Part 1, July 1971, pp. 325-328, Part II, August 1971, pp. 383-385 letter to Editor Sept. 1971, pp. 428-429.
Bennetts, R. G., and Lewin, D. W. (1971). Fault diagnosis of digital systems-a review, The Computer Journal, Vol. 14, No. 2, pp. 199-206. Also IEEE Computer, July/Aug. 1971, pp. 12-20.
Lewin, D. W., Purslow, E., and Bennetts, R. G. (1972). Computer assisted logic design-the CALD system, IEE Conference Publication No. 86, CAD conference, University of Southampton, pp. 343-351.
Roth, J. P. (1966). Diagnosis of automata failure: a calculus and a method, IBM Journal R \& D, Vol. 10, pp. 278-291.
Sellers, F. F., Hsiao, M. Y., and Bearnson, L. W. (1968a). Analysing errors with the Boolean difference, IEEE Trans. on Computers, Vol. C-17, pp. 676-683.
Sellers, F. F., Hsiao, M. Y., and Bearnson, L. W. (1968b). Error detecting logic for digital computers, p. 25. McGraw-Hill.
Waters, M. C. (1970). A list-processing language for use in FORTRAN and ALGOL, Internal report, Dept. of Electronics, University of Southampton.

Correspondence

To the Editor
The Computer Journal
Sir,
Permit me to draw your attention to some errors in the article 'A quasi-intrinsic scheme for passing a smooth curve through a discrete set of points' in your issue of November 1970.

The equations (1) should give $\frac{d y}{d t}$ as
$\frac{d y}{d t}=\sin \theta_{K}+\left(\sin \theta_{K+1}-\sin \theta_{K}\right) \frac{t}{T}+C_{K} t(T-t)$
The equation as given is therefore wrong by reason of symmetry and the fact that both $\frac{d x}{d t}$ and $\frac{d y}{d t}$ are stated to be quadratics in t (this is
only true of $\frac{d x}{d t}$ as given in the article).
Upon integration of the corrected equations (1) to give equations (2), the equation for y should be
$y=y_{K}+\sin \theta_{K} t+\left(\sin \theta_{K+1}-\sin \theta_{K} \dot{\frac{t^{2}}{2}}+C_{K}\left(\frac{T t^{2}}{2}-\frac{t^{3}}{3}\right)\right.$
I have programmed both the printed version and my corrected version and have found that only the corrected version gives P_{K} for $t=0$ and P_{K+1} for $t=T>0$ (where T has the value T_{K} as given elsewhere in the article).

Yours faithfully,
W. Cooper (student)
Glasgow University Computing Dept.
Glasgow W. 1
23 February 1972

