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In this paper it is proved that the Jacobi method for normal matrices, due to Goldstine and Horwitz,
after a certain stage in the process, is quadratically convergent. The pivot pair (p, q) is chosen so
that the sum of the absolute squares of the elements in positions (p, q) and (q, p) is greatest. In this
respect, the results obtained here supplement those of Ruhe who considered only the special row
cyclic method of enumerating pivot elements.
(Received April 1970)

Recently, many papers have been written to show that the
Jacobi and Jacobi-like methods (Eberlein, 1962; Seaton, 1969)
converge, after a certain stage in the process, quadratically.
Here the rate of convergence of the Jacobi method applied to
general normal matrices is studied. Goldstine and Horwitz
(1959) proved the global convergence of an optimal procedure
in the sense that the pairs (p, q) are chosen so that the sum of the
squares of the absolute values of the off-diagonal elements is
minimised at each stage of the process. Here it is assumed that
the pivot pair (p, q) is chosen so that the sum of the squares of
the absolute values of the elements in positions (p, q) and (q, p)
is largest, and no attempt is made to prove that the process then
converges. The aim is to show that if convergence has taken
place to a certain extent, thereafter its speed is quadratic. It is
noted that normal matrices have practical applications in
quantum mechanics.

Description of the method
The method produces a sequence of transformations of the
form

Ak+l = VkAkU» (1)

starting with the normal n x n matrix A = Ao. Ak approaches
a diagonal matrix as k -* oo. Uk is unitary and UJ? is its trans-
posed conjugate. The elements of Uk are chosen in the following
manner:

pk = tan 9k

= 8U (i,j # pk, qk;pk < qk)

= uitL = cos 9k

UPL = e"k S ' n 6k (2)

"qkPk e M n "k •

From (1) and (2) the elements of Ak+l are found:

k sin 9kaq
k
k).

'""• sin 9k a^l

)• + cos 9k a

+ cos

apkk+jl) = cos0 k f lW.

= cos 9k a$k

— eiak sin

aPkPk ' **

a(.k) _ L

n(k+l) _ [V*> i (-
Pfc«k L"Pk4fc ^^ V

qkPk L qkPk "* V . . . . . .

with 0t chosen in [—TT/4, 7r/4] and

•qk

"Pltpfc

>
(fc) _ - , ( * ) \ O n(k) O2-1 2 a

aqkqk °PkPk> Pk ~ OqkPk P ki COS tik,

k) Pk ~ <*pkqk Pk J COS 9k,

(3)

Let Sk be denned by

s\ =

Then it can be found that

(4)

where Mk = max

Kl^2 +
a^l2 + la^l2}

= mkMl> ° <

, and it is assumed that

mk < 1 for each k.

Quadratic convergence

The following preliminary result is now established.

Theorem 1:
If B and C are n x n normal matrices with eigenvalues /?1;

fS2, • • •, Pn
 a n d Vi, li, • • -,yn respectively, then there exists a

suitable numbering of the eigenvalues such that

\Pi ~ 7t\ < \\B - C\\
where || • || denotes the Euclidean matrix norm.

Proof:
Consider the matrix B = C + (B - C). Then by the Wielandt-
Hoffman theorem (1953) there exists an appropriate numbering
of the eigenvalues such that

| | | | |

from which the result follows immediately.
Now, if B = Ak and C = diag [ f l ^ . a ^ , . . ., <#>], it follows

from Theorem 1, for an appropriate numbering of the eigen-
values, that

K- - affl < Sk (5)
where A, are the eigenvalues of Ak and therefore of Ao as well.

Let the normal matrix Ao have distinct eigenvalues and put
25 = min \At — X | .

Now if
2Sk < 8/JN ^ 8, where N = n(n - l)/2 , (6)

then from (5) and (6)

\a\f) ~ af)\ > 5 > 0 . (7)
Also, since Sk decreases, (6) and (7) hold true for the rest of the
process.
Since A is normal the matrix C = AAH - AHA is null.

Consequently

sin 29k,
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\ajp\ \aJ (8)

and

\(app - aqq)aqp - (app - aqq)apq\

< z (K\ K
i*p,i

<i z (KI2 + |aJ2 + KI2 + KI2)-
j*p.q

If at the (A: + l)th iteration fik is chosen as one of the solutions
to the equation

r);|2 r)'|2
|J |

0'
there are at most n - 1 possible cases which are of interest as
far as the latter sum of the right-hand side of (13) is concerned.
Such elements as may be involved are denoted by " and for
i = Pk + rJ ^ Pk + nik + r

\\<::r"\2 + \^ r

then = 0 and from (8), (3) and (7) the inequality

is obtained. However, the optimal choice of parameters yields
the minimal value of

I (
\UPPkdk I T \U1kPk

which implies

In the case considered here 0fc is determined by (see, for
example, Eberlein, 1962)

- \a
r)r,\2

j I
)

Pk + rj - aV

I -L \n(k + r'>\ I « in f) \\2

Hr)//|2|

ek+r

on using (10) and the formula ac + bd ^ {a1 + b2)*
(c2 + d2)i, a, b, c and d assumed non-negative. Also from (9)
and the hypothesis

where Hence

so
|sin

Theorem 2:
If (6) holds then

J2(n - 1) Si
1 - m d

(10)

(11)

where m = max mk+p, p = 0, I, 2,. . ., N — 1.

Proof:
It is first shown inductively that for certain r pairs of off-
diagonal elements a | ) + r > ' \a^ r Y {r s? iV)

Now from the Cauchy-Schwarz inequality

Therefore, from (13) and (14), and since (n - I)2 + 2(n - 2)
< 2(n - I)2

+ 2
V 2 M 2

+ r ( n -

• (12)

For r = 1 and / = /7k,y = qk (12) is obviously true, because of
(9).
It is now assumed that (12) is valid for r < N and that the r

pairs of off-diagonal elements are chosen so that fl^^k+r>
atkVrPk+r d° n o t o c c u r among them. When r is replaced by
r +rl"tne left-hand side of (12) yields

l
(13)

Because of
r+l)- _

and the fact that
I (fc+r+l)|2 , I (*
|"i | ^ l"i
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|fl5t + r ) ' |2))*)2

namely (12) holds for r + 1. In order to prove the theorem, r
in (12) is replaced by N, so that

Also from (4)
N - l

S2
+JV = (1 -

or
w-i

S
p = 0

Ml+P ^ - ^ _ S2
t .

1 — m (15)
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Now, from (12) and (15), (11) follows immediately.
Since S2

k ^ NM\, it follows from (6) and the fact that

Sl"~ ' 1967), that

1

I - m 15

Thus Theorem 2 proves that convergence is ultimately
quadratic.
In practice, choosing the pivot pairs maximally requires a lot

of computing time, due to the scanning. This can be cut down
considerably by choosing the pivot pairs maximally not over
the whole matrix (at each stage of the process), but over a row
and the corresponding column. Similarly, the row cyclic
enumeration of pivots is, in practical applications, carried out
by a threshold strategy.

Multiple eigenvalues
It is assumed that diagonal elements which converge to the
same eigenvalue occupy successive positions on the diagonal
(see, for example, Kempen, 1966a). For convenience of
notation it is also assumed, without loss of generality, that
only the eigenvalue Xl is not simple, its multiplicity being
/ ^ 2, and that af\, a(%\, . . ., a\^ converge to Xt. Because of
(6) no aW can change its affiliation thereafter in the process
(Forsythe and Henrici, 1960). Let

^k + r — L. \aij | •
i,j = 1

i*j

To obtain an estimate of this quantity Ak+r is partitioned in the
form

[^(1) A(2)

A(3) AW
Sik + r -^k + r

"I

such that only the diagonal elements of A\$r converge to Xt.
Hence (see, for example, Wilkinson, 1968)

25 M,-—„ • ..---T1rl2) = > ^ - / « 2 , say. (16)

Assume now that Mk
2

+r is in A$r. From (16) it follows that

M 2
+ r < (n - Z)(E2/2^)2 .

, then

i=l+ l(l)«,y = 1(1)/, then L2
+r ^ £

2/(/(« - /)).

Now, if Sk+r << <5, in particular, 25f t + r < -—

no Mk+r can lie in A[^r, for in such a case

e4 e2

M t + r ^ (" ~ •>4S*< l{n - 1) ^ Lk+r '

Therefore, for each vth transformation (v > k) the affected
diagonal elements have distance larger than 5, which quantity
is positive, and so the proof of quadratic convergence in the
absence of multiple eigenvalues given above remains valid
when such are present.
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Correspondence
To the Editor
The Computer Journal
Sir,
In the paper 'The formal definition of the BASIC language' by
J. A. N. Lee (this Journal, Vol. 15, No. 1), the structure denned
by the meta symbol ^expression) allows any number of prefix
operators and thus, for instance, the expression H—3.

This deficiency can be remedied by defining expression as

< expression > : : = { < prefix op > }J< multiply factor > |
< expression > { + | - }] < multiply factor >

Yours faithfully,
P. BARES

70 Truro Road
Wood Green
London, N22 4DN
10 May 1972
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