Operation of a disc data base

C. O. M. Stross

Hawker Siddeley Aviation Ltd., Hatfield, Hertfordshire

A large disc data base has been in use for several years. The paper describes some of the
experience gained both of day to day operation and of the support required to maintain
integrity and efficiency. Details are given of the file sizes and of some typical run times.

(Received July 1972)

Engineering information files set up on disc by Hawker
Siddeley Aviation Ltd. at Hatfield form the data base for a
fully integrated production control system. This had its
inception 9 years ago in a tape system based on the traditional
breakdown file approach. When the new generation of equip-
ment became available 5 years ago it was decided to take
advantage of the large exchangeable disc to create an engin-
eering data base. A pilot scheme was operated for a year in
parallel with the tape system; this was succeeded by the full
scale data base which has been in operation for 3% years. The
new facilities have shown a considerable saving in computer
time and improved customer service. For instance the gross
parts explosion of a Trident 2E into 40,000 components and
assemblies takes just under 2 hours compared with 104 hours.
A retrieval of method information for 200 parts to be loaded
on the shop floor took 20 minutes compared with 110 minutes.
An enquiry into the work load content of five work centres was
reduced to 5% minutes compared with 125 minutes. The fore-
going examples are all for the same machine configuration.

The operation of a data base of this size which is necessarily
complex in structure, can afford some problems. The experience
gained in meeting and resolving some of these may be of
interest.

Hardware and software

The hardware presently in use consists of an IBM System/360
Model 40 computer equipped with 128K bytes of core storage,
a nine drive 2319 disc unit, six 60K byte tape drives, two card
readers, two line printers, a card punch, a paper tape reader,
and a console typewriter. Two Visual Display Units are
situated remotely from the computer. Fig. 1 provides a dia-
grammatic illustration. The system operates under DOS III
in the multi-programming mode. Two batch partitions are
used, and a third partition is occupied by a spooling program,
GRASP, which performs the function of an output writer.
The programming languages in principal use are IBM Basic
Assembler, and COBOL.

The data base

The data base consists of a number of discrete but interrelated
files, this is illustrated diagrammatically in Fig. 2. The number
of files in the data base is not fixed and varies with the require-
ments of the systems. There are more files in the data base than
there are disc drives. This is one of the major operational
constraints, and has been a major factor in shaping the design
of the files and in the selection of the file organisation
techniques.

The data base is centred around the Bill Of Materials Processor
(BOMP), an implementation package to create and maintain
a central information system. Recently the BOMP package
has been replaced by the Program Product DBOMP (Data
Base Organisation and Maintenance Program), which while
accessing the same files as BOMP features a number of

290

improvements. Two techniques of file organisation are used by
the package, Control Sequential, and Direct Access, together
with a system of interfile links between records using disc
address chaining. The Control Sequential access method is -
similar in most respects to Index Sequential. The major
difference lies in the fact that extant records are not moved,
during file maintenance. Logical sequence in the file is manﬁ
tained by address pointers (Ref. 1).

The package consists of modular programs to perform thc.,
load and maintenance function together with macros and subl
routines to facilitate access to the files by the user programs
The four files so linked in the HSA data base are the Product
Structure and (Manufacturing) Routing files to the Patsg
Number Master file, and the (Manufacturing) Routing file tg
the Work Centre Master File. A feature of the BOMP systelﬁ
is that each part is uniquely described by a single record within
the Part Number Master File, the part number or key does not’
appear on the Product Structure File, or the Routing Flle:
These latter files only describe the relationship between ong
part and another, or between a part and the work centres.
involved in its manufacture. The reason for this is to save spa
BOMP is a file organisation system designed to hold data thg
is organised in a tree-like structure. Such files can be used t&
hold the engineering structure of a product starting with thg_'
finished part, down through major assemblies, sub-assemblies,:
detail parts, raw materials, and tools. The Product Structures
file describes the level by level breakdown and breaku
relationship between parts. The (Manufacturing) Routing ﬁles
describes the operations required to make or assemble thg
parts.

Additional files in the data base are either Indexed SequentlaE
or Extension File System (EFS). EFS is a package develope&
in house, that enables the calling record in a file to be extended®
logically, to any size required. The package was developed botk
to cater for volatile files, and by taking advantage of the
exchangeable disc unit to keep the size of Part Numbe®
Master file records down to reasonable proportions. Unlik¢:
the BOMP files, records in an EFS file do not carry addresﬁ;
pointers that link back into the calling file. This fact eases somé
of the problems encountered when the BOMP files have to be
reorganised. For example, if one file of a set is re-sequenced
then any other file that contains address pointers referring to
the re-sequenced file must be amended so that the address
pointers remain correct. In most installations, as in HSA’s the
number of disc drives is a limiting factor. Any file that is
linked to a file to be re-sequenced, must.be on line during the

- re-sequencing process. It is advantageous therefore to have

files which while they are directly addressable from one file
(the calling file) does not contain pointers that link back into the
calling file. These files do not require to be on line during any
manipulation of the calling file. An additional advantage lies
in the time saved through not having to adjust the address
pointers in the called file. A full description of EFS is given in
Appendix 1.

The Computer Journal

2 x 2260
visual display units

|—E—| 1403
23(}4 i S printer
9 disc drives _
1403
printer
— ——
Selector channel 2 3162%/‘2 0
Multiplexor ggfg
Selector channel 1 channel (reader/punch
(2501 g
card reader =
]
2671 &
paper tape 5
| | 1 I 1) reader 8
6x 2420 =
tape drives [1052 g
: console 5
2
Deficiency Raw matl. 5
note file conversion S
1/S file §
E. F S. =
Product Part No. > Standard Work centre| z
structure € master ' routing - > master =
file » file file file N
B.OMP B.O.M.P B.0O.M.P. B.O.MP.

Work in Stock
progress file
file :
E.F.S. . E.E.S.
— —
Fig. 2.
Volume 15 Number 4 291

Cylinder

[~] Track index H

| Master

index .

Cylinder
index

/—4

G

[~

2
22

Fig. 3.

For retrieval and maintenance there are two points of entry
to the data base, first via the Part Number Master file, and
secondly via the Work Centre Master file. Both these files are
Control Sequential in organisation and have a multi-level
indexing structure. (Fig. 3). The data content of each of the
records may be thought of in two parts; the first is descriptive
of the item or work centre, i.e. price, manufacturer, or machine
type; the second part consists of direct disc addresses of records
either in the same file as the calling record, or in other files.
These two files can therefore be thought of as acting as indexes
to records in other files. None of the other files in this data base
(with one exception) carry the part number, or work centre
number; it follows that these files have no use or meaning in
isolation. An example of this is that the information relating
to stock holdings, and consumption which is held on the Stock
file, is only accessible via the Part Number Master file, as the
part number is not repeated on the Stock file record. While the

- Table 1 Table of file data

FILE RECORD NUMBER DISC
DESCRIPTION LENGTH OF PACKS
BYTES RECORDS REQUIRED
Part Number Master file 204 239,651 3
Product Structure file 69 384,739 13
Standard Routing file 66 780,863 23
Work Centre Master file 3,452 950 30 cyls.
Work in Progress file 300 50,867 1
Stock file 158 127,000 170 cyls.
Raw Material Conversion file 84 10,000 15 cyls.
Deficiency Note file 130 15,000 41 cyls.

NortE: A disc pack contains 200 cylinders.

292

Data block

of six records
) Embedded Y i
W or\?erilovs 707 §

~ are as follows:

disadvantages of this idea are obvious, there is a considerablé
saving when the part number is 28 bytes in length. A furthe§
advantage is that there can never be a record on the Stock fil&
that is not also described on the Part Number Master file, s
none of the linked files in the data base can be logically out o%
step with one another. Us1ng the figures given in the Tab16§
of File Data (Table 1) the savings realised by omitting the keﬁ

O
28 &
1. For the Structure file g i 299%, 245 cyls. §
2. For the Standard Routing file 28 = 309%, 194 c lsg
' £ 66 + 28 o R YE-g
28 S
3. For the Work in Progress file 300 338 = 8:5%, 19 cyls E
4. For the Stock file 28 = 15Y%, 30 cyls. N
‘ 158 + 28 i~
5. For the Raw Material 28 o
Conversion file 84 + 28 25%, 3 cyls.
Total = 493 cyls.
(or 24 drives)
_ 493
"~ 1665 + 493
= 23%.

There are other fields it might be thought necessary to
propagate through the files such as the descriptive keyword, of
eight bytes. As a further example, if the Work Centre descrip-
tion had to be included for every shop in the route, the in-
creased file size at 100 bytes per record would be six packs.

Within the Part Number Master file there is a considerable

The Computer Journal

number of ‘handed’ parts. This description encompasses parts
with a high degree of similarity as well as left and right hand
parts. There may be more than two parts in a set. The sets of
handed parts are linked into a ring (Fig. 4) within the Part
Number Master File by disc addresses. Only one of these parts
is linked to a full list of manufacturing operations on the
Routing file. The remaining records in the set are linked to an
abbreviated list of Routing file records that represent the
differences between themselves and the original record. A
similar ring of disc addresses links records that are alternative
parts; there is no priority sequence within the ring. This
technique has reduced the amount of space required for the
Routing file by 25%.

Maintaining the integrity of the data base

The status of each BOMP and EFS file is defined by a file
control record. The file control record is read into core during
the file opening sequence, and is written back to disc only when
the files are closed. The file control record in core is amended
whenever a record is added to or deleted from the file. It
follows therefore, that whenever a maintenance program suffers
an uncontrolled termination the file control record on disc will
not agree with the file control record in core. In this case, while
the data on the file remains accessible to retrieval programs,
further maintenance is not possible.

The problem of providing adequate security for a data base of
this size is highlighted by the fact that there are 10 million disc
addresses linking these files. Furthermore it can be seen that a
single failure is likely to be catastrophic in nature, rather than
the slow deterioration that would be expected with a tape
based system. '

A file security technique has been developed to deal economic-
ally and safely with these problems. The first of the two major
areas covered is that of overt program errors, operating errors,
and hardware failures. What is required in this case is the
ability to return rapidly to the position as it was before the
failure occurred. This is achieved by high speed snapshot
dumping of all the linked files, and the provision of an equally
fast restore capability; this is referred to as physical dumping
and is carried out by volume, rather than by file. The only
programs initially available from IBM either required a
dedicated machine, or special tailoring for each disc pack, in
which case the program was only optimised for one file layout.
A program was developed by the software section which copies
an entire disc pack regardless of content, either to another
disc or to tape; other than assignment of input and output
devices, no control parameters are required. The program
incorporates extensive functional checks and is specifically

designed to operate in a multi-programming environment.
Typically it takes 12 minutes to copy one disc pack to 1} reels
of tape. A data base of 10 volumes requires just over two
elapsed hours of dumping time. There are four sets of dump
tapes. Although a physical dump is taken every week, a com-
plex cycling system ensures that 6 to 8 weeks of security is
available. It is necessary to keep sufficient input data to ensure
that recovery is possible from the oldest dump held. In over 3
years of operation it has not been found necessary to fall back
on the other forms of security that will be described. A failure
between weekly dumps necessitates returning to the most
recent weekly dump. It also requires the execution of all the
ensuing file maintenance runs, to bring the files up to date. It
takes as long to restore the physical dumps as it does to take.
them, i.e. just over two elapsed hours. Depending on what time
in the update cycle the failure occurred, it takes up to 10
elapsed hours to bring the files up to date.

Covert program failures could produce latent defects in the
file that do not come to light until all the physical dump cycle
tapes contain the defective information. Since the essence of
physical dumping is speed, no checking is performed. To give
security against this form of failure the files are periodically
unloaded onto tape. This is a more lengthy process but has twp
major advantages. First, most errors in the file are revealed
Secondly, the program attempts to recover the maximum
information, in splte of any file corruption that may exist. This
unloading process is known as logical dumping. A logical du
is taken every month to 6 weeks. Recovery from this dumping
technique requires that the files are reloaded. About 12 housrs
are required to carry out a logical dump, and about 200 hou&
would be required to reload the files.

The production control for the factory is entlrely dependen;t
on the functioning of the data base. There is no form
manual backup in the shape of written records, the data is he@
entirely in magnetic form. The above mentioned drawback in
the physical dumping technique makes it vital that an alte&
native and absolutely reliable method of restoring is avallablé’:
While reloadmg the files at other than specially selected tlmés
would cause serious disruption of normal work, total loss @f
the data would be catastrophic in a way that need not he
detailed. Against the loss of all production control data accunis
ulated over 6 years, 200 hours computer time is a small pruﬁ
to pay. &

There is a special investigative program which is used to checg
the integrity of the address chains in the whole or a part of the
file. Rarely if is used to prove the integrity of the whole of one
or more of the files. More generally the program is used t§
explore limited areas of the file where a problem is suspected.

Olws

>
Part A < Part C - =
(referant) S

Entire route Route differences

Part B from part A
Route differences
from part A
Fig. 4.

Volume 15 Number 4 293

This program together with the facility to display and enter
data into areas of disc directly are the principal tools used to
recover from a fault situation by patching the files, rather than
" going back to a dump, and doing the updates again. Each file
failure is individually documented. The documentation con-
sists of a description of the fault symptoms; this is followed
by an analysis of the nature of the fault and the possible causes.
Finally the action taken to clear the fault is detailed. Included
with the documentation is a set of before and after disc prints.
It goes without saying that this sort of patching can only be
done if there exists a very clear knowledge of the inter-actions
of the files involved; it is a very skilled procedure. The indi-
cations of a failure vary from one problem to another and can
come from operators, programmers, or users. Each incident
must be separately considered. The approach to a problem is
rigorous, it cannot possibly be otherwise in view of the sheer
complexity of the files. In every case this type of fault recti-
fication is carried out by two authorised people acting as a
check on each other. There exists within the Company a soft-
ware section, and the investigating team draws at least one of
its members from this section. It appears that there is develop-
ing, in installations with large data bases, a role for a specialist
‘software engineer’, in maintaining the serviceability of the
files.

The data base in daily operation

Production work (as against testing and development) on the
computer occupies an average of 115 hours per week. Of this
time 639 is taken up with Production Control applications
most of which require some part of the data base to be on-line.
The remaining time is devoted to Financial applications (32 %),
and Product Support (5%). The day-to-day operations
involving the data base can conveniently be divided into three
categories. Before doing this it is worth noting that the
computer department acts as a bureau to the Production
Control department which has its own data preparation service.
The Production Control Department is entirely responsible for
the data provided for maintenance, enquiries, etc. The first of
the three categories of operation is maintenance. It is necessary
to define maintenance, as a program which is capable of adding
records to or deleting records from the file. This is potentially
the most hazardous operation since updating of the file control
record is involved. For the four BOMP files all maintenance is
carried out by IBM supplied programs. These are tailored to the
needs of the individual user and can contain large segments of
user supplied coding. As the EFS files were developed in
house, they are maintained by user written programs. Their
maintenance involves the update of the file countaining the
calling record. Update may be defined as changing the inform-
ation content of records, without the addition or deletion of
records, and forms the second category of operations. Updat-
ing can take two forms. If the data written to the file is indepen-
dant of that already on the file (non-cumulative), the process is
less hazardous than the case where cumulative records are being
written. The hazard, with cumulative records, is this—if the
update is performed twice over (accidentally or deliberately)
the wrong accumulative total will result. On the other hand on
a non-accumulative file, all fields will still be correct. It follows
therefore that an abandoned update run on a non-accumulative
- file may be restarted from any point before the failure. The
third category of operations only requires the retrieval of
information from the data base. This operation poses no
hazard to the file, other than that which might arise from hard-
ware failure leading to physical damage to the disc.

An interesting situation is possible if two programs involving
the data base are being run concurrently, and one of these
programs is performing maintenance on the data base. If the
maintenance program terminates normally before the other

294

program terminates, and if this other program closes the file, it
will follow that the file control record written back to disc will
be the one obtaining at the time maintenance was started,
rather than the updated one. There will be no indication of a
problem until the next maintenance of the file is attempted.
Problems of this sort are easily avoided, as soon as they are
recognised. The problems are recognised by program failure, or
from diagnostic messages from the various maintenance pro-
grams. In each case the problem must be assessed on its merits
and a suitable solution devised. The solution can involve
instructions to operators, amendments to programming
standards, or modifications to software. It may involve a
combination of these. It is the function of the software section
to analyse the problems and devise the solutions.

Visual Display Units (IBM 2260) have been in use for over
a year now on a trial and development basis. During this period
they have been made available for two half to 1 hour slots
twice a day. With the addition to the hardware complement of
another three disc drives, and another four Visual Display
Units the system will be made available for 8 hours a day,
at the end of April. The Visual Dlsplay Units are situated i mo
the Production Control offices to give independant enquiryS
facilities on the data base. They are operated in the local mode,m
supported by a locally developed terminal operating system. Asm
yet there are no update facilities available to data base users='
(though other applications have been developed allowingB
update of other files). A major part of the effort in providingg
update facilities to data base users will go towards ensurlng\
adequate security for the files.

At the time that the files were loaded, it was decided torl
allocate 209; of the prime data area on the Part NumberB
Master file to overflow records. All additions are placed in theo
overflow area. When the overflow area associated with a par-U
ticular seek area is filled, further additions are made starting at%
the end of the file, and working forwards. Unfortunately wheng
this happens to any great extent the working efficiency of the=
file is impaired, and the time required for retrieval and main- =
tenance increases. When first loaded, the records in a Control 2
Sequential File are in logical sequence. When additions are @
made the logical sequence within the file is preserved by address o 9
links, but logically contiguous records do not remain phys1cally N
contlguous The records are arranged in blocks of six, each S S
block is accessed from an entry in the lowest level index. It is &
possible, when additions have been made, for one of these 5
blocks to encompass a hundred or more records after a year g
or so of operation The records within one of these logical 5
blocks are both in the embedded (same seek area) overflow and 5
the external overflow, and are scattered amongst many physrcal
blocks. In the worst case, i.e. a region that has received a large
number of contiguous additions, it is possible for access times
to increase by a factor of 50. After the first 18 months of oper-
ation it became clear that the addition of a new mark of air-
craft had noticeably slowed those operations involving the
retrieval by key of a record from the Part Number Master File
from areas where numerous additions had been made. Simil-
arly affected were additions, deletions and updates in these
areas. Accordingly it was decided that the files should be
reorganised to restore operating efficiency. The overall effect of
this was to reduce maintenance times to half the pre-reorganis-
ation figure. The same symptoms were recognised after a
further 18 months of operation, and the same benefits derived
from reorganisation.

20z ludy 61 uo

Reorganising the data base

Since the data base was created, it has been reorganised twice.
The method employed the second time was quite different from
that first employed, and can be said to reflect the march of
progress.

The Computer Journal

A standard reorganisation package for use with BOMP is
supplied by IBM. Because the BOMP files occupy seven
drives, and because all the files must be on line when this form
of reorganisation is used, it would have involved gradually
over-writing the old Part Number Master file with the new one
during the course of the operation. The reorganisation prog-
ram it was estimated, would run for about 90 hours. It is not
possible to check-point programs that update disc files in place,
in the normal manner. It must be done by interrupting the
update periodically, and then dumping the files. It was not
found practicable to do this with the reorganisation program
supplied.

An easy alternative to this method was found. The logical
dumping programs provide the file data in a form suitable for
immediate re-loading. Before the final logical dumps were
taken, the files were purged of all ‘dead wood’. In this way some
209 of the records on the Part Number Master file were
removed. A record was classified as ‘dead’ if there were no
linkages in existence to any of the other files. This implied that
the part was not in stock, on shop, or used by any assembly.
The re-loading was commenced with the Part Number Master
file, this took 34 hours. The disc area required for the Product
Structure file and the Standard Routing file was pre-formatted,
and the Work Centre Master file re-loaded. The Product
Structure file was re-created in 45 hours, the Standard Routing
file in 90 hours. Both of these files were re-created using the
normal maintenance programs, which are easily interrupted.
The times given include the time spent taking intermediate
file security dumps. The time interval between dumps was
calculated using the rule of thumb that the time spent on

security dumps should not exceed 209 of the running time

spent in re-creation. The time required for this project was
considerable, and so it was carried out when the factory was
closed for the annual works holiday. The whole operation was
carefully planned. A 24-hour rota covering the entire fortnight
was prepared. This ensured that a Systems Analyst, Program-
mer and Software specialist were available at the other end of a
telephone. In the event there were no failures of any sort,
neither hardware, nor software, despite the heavy demands
made on the reliability of both. It was at one time thought that
the difficulties inherent in a project such as this would not
render the attempt worthwhile. Our experience has shown the
contrary to be the case. Comparison of run times before and
after the re-load have shown some run times to be cut to a third
of their former length. It will be noted that this exercise took
approximately 60 hours less than the 200 quoted previously.
The difference is in part due to the fact that none of the EFS
files required re-loading because they hold no point back
addresses. This eliminated the Stock, Work in Progress, and
Raw Material Conversion files from the exercise. By far the
larger part of the difference is due to the fact that a logical
dump will be anything up to 6 weeks old and would normally
need a great deal of maintenance to bring it up to date.

It may seem that the 90 hours quoted earlier as the time
required to reorganise the files using the IBM package is
excessive. Hawker Siddeley were amongst the largest users of
BOMP; for users with substantially smaller files, the run times
were acceptable. However, subsequent to this first reorganis-
ation IBM introduced the Program Product DBOMP (Data
Base Organisation and Maintenance Program). This includes
a new method for the reorganisation of files, which in addition
to cutting the time required to 40 hours also splits the process
up into some six separate runs, thus posing no file security
problems. The reorganisation of the Part Number Master File
itself took 1034 hours. The subsequent runs were occupied in
constructing, sorting, and using files of old and new disc
addresses to update the Product Structure and Standard
Routing Files. This dramatic reduction in run times, not only
enabled us to reorganise the files over one week-end, but will in

Volume 15 Number 4

the future permit us to reorganise the files as often as required,
instead of being confined to the annual works closed period.

IBM Manual References

E20-0114 Bill of Material Processor—A Maintenance and
Retrieval System

This manual describes, conceptually, the organisation and use
of a central product structure information system, giving
examples of the variety of data to be maintained and reports to
be extracted from this data.

H20-0197 IBM System[360 Bill of Material Processor—
Application Description

This manual explains the actual file organisation techniques
employed in the S/360 Bill of Material Processor Package. The
user should have a thorough understanding of these techniques
befo.re beginning to define a system tailored to his specific
requirements.

H20-0246 System/360 Bill of Material Processor VersionS?2,
Programmer’s Manual 5

This manual includes (1) a brief discussion of system definitién,
(2) a checklist of things to be done before modifying the gle
organisation and maintenance programs, (3) descriptions ofzll
I/O files, (4) explanation and operating instructions for the
sample problem, (5) descriptions of all the file organisation agjad
maintenance programs and instructions for their modification
and (6) descriptions and logic diagrams for selected user Fe-
trieval programs. 8

wap

SH20-0829 S/360 Data Base Organisation and Maintena@ce
Processor Program Description Manual ©

This manual provides an overview of the system, specifies éle
functions, options, and features included in the system, and
provides information necessary for implementation. The
manual is data processing oriented with a variety of applic-
ation examples. The primary audience includes systems analysts
and programmers. e

Appendix 1: Extension file system

Application description

IBM System 360 DOS does not support non-sequential vari-
able length blocked records on disk, neither does it support
variation in record length without reloading of the file under
any system of file organisation. The Extension File Systén
fulfils these requirements by enabling the user to extend any
record indefinitely at any time. The user has to provide four
bytes in the record to be extended, and an area on disk to h&dd
the extension records. N

Applications that have benefitted from this technique incldfie
an advanced Production Information and Control System using
the IBM Bill of Materials Processor package, and a Spare
Parts catalogue. In the former the extension records provide
information on Stock, Work in Process, Modification States,
Customer Applicability, i.e. the information required in an
engineering data base. The descriptive information in the
Spare Parts catalogue is variable in length and this is carried on
extension records.

Deleted records are made immediately available for additions.
This is useful for files with a transient information content, e.g.
Work in Process. Extension file areas that prove too small may
be simply increased; no re-load of existing information being
required. BOMP master or chain files, or Indexed Sequential
files that call extension records do not need access to them
during the course of reorganisation, an advantage when the

€1 GE/062/V/SLIP

" number of disk drives available is a limiting factor. Extension

295

files are not affected by the restriction to four of the number of
associated BOMP files.

Package contents

The package as supplied requires no tailoring by the user, will
support both 2311 and 2314 units either separately or simul-
taneously and is complete in itself. It contains a formatting
program, and I/O module, and a set of macros. If the I/O
module is to support more than eight extension files on line at
once, a statement in it must be amended.

The formatting program is used to set up the area allocated
to an extension file initially or to extend it subsequently. The
I/0 module is self-adaptive, self-relocating, and handles all the
user’s I/O requests on the extension. file. The macros are sup-
plied to facilitate the user’s programming and provide linkage
to and from programs written in Basic Assembler and COBOL.

Systems and configuration

The package is written in IBM Basic Assembler language to
run under DOS. The I/O module occupies about 3,000 bytes of
core; separate I/O areas must be provided by the user in his
program and will be additional to this.

The formatting program uses Direct Access Method. The I/O
module uses Physical Input Output Control System.

File description

An extension file consists of a number of blocks occupying one
or more extents. These extents need not be contiguous, or on
the same volume. The first 36 bytes of the first block in the file
are occupied by the File Control Record (FCR). The FCR
contains a number of parameters which describe the file and
condition the I/O module at execution time; it is created by the
file formatting program. The first four bytes of the FCR con-
tain the address of the first record in the availability chain; they
are known as the availability chain anchor. The first four bytes
of each record are reserved for the chain link address. When the
file is formatted each chain link address points to the next
record in the availability chain of unoccupied records. The
chain link address of the last record in the file contains the
characters ‘END’. In the file that is in use the availability chain
contains all those records that are unused and thus available for
additions.

When an addition is made to the file the record to be added is
written onto the first record in the availability chain, i.e. the
record pointed to by the address in the availability chain anchor.
The availability chain anchor is then updated to contain what
was the second record in the availability chain and has become
the first.

When a deletion is made, the record to be deleted is set to
binary zeros. The address of the next record in the availability
chain is moved from the availability chain anchor in the FCR
in core to the chain link address field of the deleted record.

The deleted record is written back to the file and the address
of this record is placed in the availability chain anchor field.
The deleted record will have been pointed to by an address in
another record and could itself have carried the address of
another extension record in the chain link address field. These
pointers will be automatically reconciled by the I/O module.
Fig. 1 and Fig. 2 show a chain of extension records before and
after a deletion has been carried out, on the second extension
record.

Retrieval and maintenance concepts

The I/O module supplied with the package is catalogued into
the relocatable library after assembly and then included with
the user’s program at link edit time. The module handles all
the user’s I/O requests on the extension file, and maintains the

2%6

CALLING FILE

[Calling record | Address |

EXTENSION FILE

lAddress I 3rd recordl l Anchor l FCR j

yrd
&ddress I 2nd recoﬂ h\ddress , Availabli]
yd ys

IEND. | Ist record] LAddress I Availablﬂ
g

etc.

Fig. 1. File before deletion is made

CALLING FILE

[Calling record I Addressw

EXTENSION FILE

IAddress |3rd record] |Anchor l FCR 1

1 — 1 U
[Address | Available [sfAddress | Available]

LEND. . I Ist record] IAddress l Available—l

etc.

Fig. 2. File after deletion is made

ulwoo/woo dno-olwepeose//:sdpy wWouy peapeojumoq

necessary chains and anchors on addition and deletion. Up toS
eight files can be accommodated by the unmodified module atm
any one moment,

The interface between the user and the I/O module is provxded
by the standard work area prefix. The user communicates his =
1/0 requests by placing a mnemonic code (the Process Indic-33
ator) in the standard work area prefix and then passes controlw
to the I/O module by using one of the special macros provxded—\
with the package. (CA£LL or EFCALL). ®

The user can opt to have the module return control when theZ
I/O has been completed, or alternatively when the request has@
been queued but not completed. This will allow processing to%
continue, overlapped with one or more I/O operations. If theS
request cannot be completed, the I/O module accesses twog
bytes in the work area prefix and sets the bits of these to indic-Z
ate the reason for the failure. The user’s program should test=
the error bytes after every I/O request to make sure that it wasO
successful.

9 L/o0m

Disk addresses

For conservation of disk file space all disk file addresses which
are to be stored in disk file records are first compressed from 9
bytes to 4 bytes as shown in Fig. 3. For subsequent use these
compressed addresses are first expanded back to the 9 byte
format. Routines to perform both expansion and compression
are included in the I/O module.

Disk labels

The extension file system requires the use of IBM standard disk
labels both for the formatting run(s), and for any file processing.
The use of these labels will safeguard the files against accidental
destruction and save unnecessary reconstruction efforts. It is
necessary to supply the sequence number in all extent cards.

The Computer Journal

Expanded Disk Address

Record
Module Cell Cylinder Head Record within
block
M B B C C H H R R’
Byte 0 1 2 3 4 5 6 7 8
Range 0-15 0 0 0 0-202 0 0-19 0-62 0-127
Bit configuration 00001111 | 00000000 | 00000000 | 00000000 | 11111111 | 00000000 | 00011111 | 00111111 | 01111111
R x BF + R’ = 255 max.
M C H
0 1 2
00001111 | 11111111] 00011111 | 11111111

Compressed Disk Address

Fig. 3. Disk addresses

slpeoe//:sd)y woi) papeojuMo(]

Programming considerations

The user is required to supply one work area per file, and at
least one I/O area, when accessing extension files. The address
of the I/O area is passed to the I/O module at file open time, and
thus a particular file or files will be associated with an I/O area.
It is possible to overlap the retrieval of records from files that
are served by different I/O areas. It is not permissible to over-
lap the retrievals from files sharing a common I/O area. The
I/O module checks to see if the required block is already in core,

and higher operating speeds can be achieved by supplymg%{
separate I/O area for each file. If core space is the ruling factoz,
all the files being accessed may have the same I/O area. The
retrieval of an extension file record may then be overlapp@l
with any I/O operation not involving the extension file. g

The extension file system is characterised by great flexibility ﬂl
operation. A balance can therefore be struck between thﬁ
requirements of core space and speed of execution, without any
modification to the software supplied.

IFIP WG 2.1

IFIP WG 2.1 (the ALGOL committee) has set up a small sub-committee to consider methods by which its responsibilities towar:
ALGOL 60 may be discharged. The convener of the sub-committee is Tony Hoare, and his address is:

Department of Computer Science,
Queen’s University,

Belfast BT7 1NN,

Northern Ireland

20z Indy 61 uddsenb Aq veiLSE/062/7/GL /8l

As a preliminary to the work of the sub-committee, we hereby request submissions from users and lovers of ALGOL 60, stating
views on how their interests may best be served by continued activity on the part of the committee. All suggestions and contri-
butions on any topic (from burial to resurrection) will be welcome, and should be sent to the above address before May 31 1973.

If sufficient interest is evoked, contributors may be invited to a meeting for further discussion.

Volume 15 Number 4

297

