Compile-time error diagnostics in syntax-directed

compilers
C. J. Burgess

Computer Science Department, School of Mathematics, University of Bristol, University Walk

Bristol

This paper shows that it is possible to formally specify the compile-time error diagnostics provided
by a syntax-directed compiler and investigates the extent to which these diagnostics can be auto-

matically inserted into a given grammar.
(Received March 1972)

1. Introduction

One of the major tasks in computing is the production of a
correctly working program. The total amount of programming
time required for any particular program will be very dependent
upon the quality of the diagnostics provided by the computer
system. The poor quality provided by some systems has already
been well illustrated, e.g. Barron (1971). It would appear that
very little effort is devoted, when designing and implementing
systems, to helping the user who has an incorrect program,
although there are exceptions, e.g. using LISP (Teitelman,
Bobrow, Hartley, and Murphy, 1971).

It would also be advantageous if the diagnostics provided
could be standardised for any particular programming
language. This paper concentrates on the problem of providing
good diagnostics during the syntax-analysis phase of compil-
ation. It shows how the diagnostics provided can be formally
specified when defining the grammar of the language and the
combined definition used directly to drive the syntax-analysis
stage of the compiler. This means that for a particular set of
grammars, determined only by the analysis algorithm, the
error diagnostics can be regarded as part of the definition of the
language.

The experiments and results referred to in the paper were
obtained using a simple top-down, left to right scan analysis
algorithm which allowed back-tracking. This method only
imposes a few constraints upon the grammar, the major one
being no left recursive definitions of syntactic categories, but
for most practical programming languages these restrictions
<an be overcome by simple transformations of the grammar.

Finally the paper shows that for a more restricted set of
grammars, viz. left-factored (LF), the process of inserting
diagnostics into the given grammar can be partially automated.

2. Treatment of compile-time errors

It is convenient to divide the errors that can be detected in a
program at compile-time into two main groups which will be
termed syntax and semantic errors respectively. It is difficult
to define precisely the boundary between these two groups to
satisfy everyone. This paper will use the term syntax error to
refer to a failure to match the program against the syntax-
specification as expressed using BNF, and semantic error to
refer to all other compile-time errors, of which the majority
will be errors due to the interpretation or meaning attached to
the symbols. :

Examples (using ALGOL 60)
1. Syntax errors
J = *3;

Incorrect arithmetic expression
I'=(I+J)(K+ L)
T

Missing operator

2. Semantic errors
begin
integer 7, J;
real A4;
procedure P (A4, B);
real 4, B;
B := SQRT (LOG (A));

goto /;
Incorrect label

B:=P(4,1);
1

Parameter of impermissible type

end; p

02°dno-olwepese//:sdpy Woly peapeojumoq

This paper will concentrate on syntax error messages although=.

semantic errors can be treated in a similar way.

2.1. Error message specification

Since syntax errors are directly related to the form of the2

ajo1e/|ulwog

syntactic constructions, the most suitable place to formally—=
specify the messages is in the constructions themselves. The=
syntax specification is expressed using BNF and the error§
messages are introduced by defining a new component whiches
will be termed an error category. Two new metalinguistic sym-=

bols are also introduced, viz. opening and closing string

(o]
(=)

quote represented by ““ and > respectively, and an error2

category is then written as an error message enclosed inc

string quotes, e.g.
{digit) ::= 0]1]2]3... |7|8]9]“Missing digit”
These error categories can occur anywhere on the right-hand

c

61 UO1s8

2>

side of syntactic constructions and when the analyser reaches=.

that component the error message will be printed out. Con-
sidering the above example, if an error has definitely occurred
when the syntactic category {(digit) cannot be successfully
matched against the input string, then an appropriate error
message, in this case “Missing digit” is required every time
{digit) is unsuccessfully matched.

A more complicated example is one possible construction for
the syntax of a for statement in ALGOL 60, where {forlist)
represents the list of all possible elements in the control section
of the for statement.

{for statement) ::= for {identifier) := {forlist) do
| for (identifier) := (forlist) “Missing do”
| for (identifier) := ‘“Incorrect list of elements in a for
statement”

It

| for (identifier) ‘“Missing assignment sign”
| for “Invalid control identifier”

It is obvious from the layout of the constructions precisely

The Computer Journal

N
o
N
=

at which point in the syntax the analysis failed for any given
error message enabling an accurate detailed error message to
be given to the user. Also, since the syntactic constructions are
scanned one at a time from left to right, no time is spent using
constructions containing error messages in the above syntax
unless the correct syntax has failed, i.e. there is definitely an
error present. Therefore an increased number of error messages
providing better diagnostics will not alter the speed of compil-
ation of correct programs. Also the extra requirement in store
size is very little more than the extra space required for the
storage of the actual error messages.

2.2. Error detection
The majority of syntax-directed compilers will detect syntax
errors within one line of their actual occurrence but frequently
the point reached in the scanning of the input string when the
error is detected is at least several characters past the actual
error. Using the method of error specification just outlined it is
possible to locate the error exactly for the majority of errors.

For example, use the same construction for the for statement
in ALGOL 60 as in the previous example, to analyse the input
string

for A + B, C do

The analysis algorithm will match the for and (identifier) of
the input string against the first alternative definition of {for
statement) but will fail to match the assignment sign, viz. : =,
against the +. It will therefore go on to the fourth alternative
definition and reach an error category with the input string
pointer pointing to the + sign. Thus the following output
would be produced for the user:

for A + B, Cdo

T
Missing assignment sign
Similarly:
for 4 := Bstep Cuntil Dif A = E then. ...
T
Missing do
for := C, D do

Missing control identifier
for 4 := @, Cdo

Incorrect list of elements in a for statement

Occasionally it is necessary for the compiler writer to have
even finer control over the exact position of the pointer. This is
done by including after the error message in the syntax speci-
fication, a number preceded by an asterisk which indicates the
number of basic symbols the pointer should be moved back
before being output.

For example, part of a possible syntax for an arithmetic
expression:

{arithmetic expression) ::= (term){operator){arithmetic
expression)
| term) (“Missing operator*1”
| (term)
would produce diagnostics of the form:
I'=I+J)(K+ L)
T

Missing operator
whereas without the *1 the pointer would have been under the
K.

This facility increases the detail that can be provided by error
messages as it allows symbols to be matched just prior to an
error category which are not part of a correct program, e.g.
the (just after (term) in the above example.

The same facility can also be used to reduce the number of
syntactic categories required in the syntax specification, for

Volume 15 Number 4

example, the need in ALGOL 60 to have separate cate-
gories for conditional and unconditional source statements

{source statement) ::= (if clause) if ““if not allowed
immediately after a then *1”
[<if clause) (source statement)
Cif clause) ::= if {boolean expression) then

2.3. Error recovery
The ability to check the rest of a program once an error has
been detected is a difficult problem for the majority of com-
pilers. Nearly every practical compiler employs some form of
ad hoc error recovery technique which is extremely language
dependent and sometimes also based on experience gained
from users of the most frequently occurring errors. The major
difficulty is trying to strike the right balance between detecting
all subsequent errors after the first, and not producing any
spurious error messages, i.e. error messages that do not corres-
pond to actual errors but are produced purely as a result of
previous errors. It is not always clear what should be treated
as a separate error and what should be ignored as purely &
result of a previous error, e.g. a single error in the block strucs
ture of an ALGOL 60 program often causes a large number of
errors associated with scopes of identifiers. Should all thes@
errors have explicit error messages ? >
In an attempt to develop a fairly language independent method
of error recovery the following techniques were used with thg
top-down analysis algorithm. 2
1. If the language has a natural statement terminator or set o§
terminators, e.g. in ALGOL 60, ; and end , ignoring elsg
as this may be part of a conditional expression and not &
conditional statement, then the input string pointer was
wound on to the next statement terminator and the analysi§
algorithm continued from that partially matched syntactig
construction which expected that statement terminator a§
its next character, e.g. suppose the following constructioé.
was part of the syntax of a language which used a semicolofr
as a statement terminator

(list of statements) ::= (statement);{list of statements)
|{statement) ’

and the analysis algorithm found the following error whe

analysing

BE/v/ISL/eP

A:=B* - C;B:= D;

b Aq 09v15€/2

Incorrect operand.

the input pointer is then wound on to point to the semi
colon and the analysis proceeds by unwinding the stack of
partially matched syntactic constructions until it finds the
most recent use of (list of statements), and then proceedg-
to match the semicolon followed by B := D; against &
further call of (list of statements). N

o
2. If the language has no natural statement terminator or th&
stack of partially matched syntactic constructions does not
include any expecting a statement terminator as the next
character, then a more general and slower recovery algor-
ithm is used. This involves constructing a list of those
characters which are expected as the next character in
partially matched syntactic constructions and then search-
ing the input string for any one of these and continuing
from the appropriate syntactic construction.

Method (2) is highly dependent upon the particular analysis
algorithm used and relies upon using individual characters to
uniquely identify the context, and thus guide the analysis
algorithm on to the right path. Since in most languages, both
the digits and letters are used in a number of different contexts,

¢l

“these characters are omitted when constructing the list of pos-

sible characters unless they constitute part of a basic word. In
practice this method, when used alone, gave very poor results

303

since individual characters often occur in several different
contexts, but it did provide a useful addition to method)
when analysing ALGOL 60 programs for those few cases
where the current line did not contain a statement terminator.
An example of this method can be found in Burgess (1971).

If satisfactory error recovery is to be achieved for a language
with no natural statement terminator, then a far better and
probably more time and space consuming method would be
required, which would most likely also be very language
dependent.

3. Construction of the syntax specification

The main problem which remains to be solved is, given the
syntax specification of syntactically correct programs, where
should the additional alternative definitions involving error
categories be inserted. The major difficulty is associated with
the insertion of error categories so as to avoid the rejection of
syntactically correct programs due to the premature matching
of a program against a construction containing an error
category.

For example, consider the syntactic constructions

(XD 1= <4) | (B)
{4) ::=ab|a“ERROR”
(B) ::=ac

Every time this syntax is used to match the syntactic category
{X) against the input string ac an error message will be pro-
duced due to the second alternative definition of {4). This
cannot be deduced by examining just the definition of (A4) but
only becomes clear' when considering possible alternatives to
the match of (4) as a component within the definition of
other categories.

This example could easily be rewritten to avoid the problem
but in general this is not possible.

Definition

The insertion of an error category will be said to be permitted
if it does not cause the premature match of any syntactically
correct program.

Conversely, the insertion of an error category will be said to be
prohibited if it does cause the premature match of any syntacti-
cally correct programs.

It is difficult, or impossible, to devise a method for a general
syntax of determining all the permitted insertions of error
categories. The remainder of this paper will be devoted to two
particular approaches to the problem and the results achieved,
viz.:

1. Error message insertion into a general syntax using

experimental testing to eliminate prohibited insertions.

2. Automatic error message insertion into a particular class of

grammars with a guarantee that all insertions are permitted.

3.1. Error message insertion into a general syntax

The general approach adopted was to insert error messages
into all the appropriate places in the syntax (defined later) and
then using a few simple guidelines and subsequently test
programs, remove those insertions which are prohibited.

The syntactic constructions are stored so that the time re-
quired by the analysis algorithm is minimised. In particular, if
two alternative definitions of the same syntactic category start
with one or more identical components, then no back-tracking
occurs involving these components unless both the alternative
definitions fail, e.g.

KX) 1= (4> (B>
IK4><C>
will not involve any back-tracking associated with the match

of {4 unless both the definitions fail to match. In this example
then, {C) can be considered to be an alternative component to

304

{B), i.e. if {B) fails to match then an attempt will be made to
match (C).

There are then two types of position in a syntax which are
possible places for permitted error message insertion which
will not slow down the analysis of syntactically correct pro-
grams, viz. (i) As an alternative component to any other
component that has not a direct alternative already specified,
including the null string, e.g. in the syntax

X) 1= <4> (B> <C)
[<4> <D
I<4>

{C) has no direct alternative component, but {(B) has (D)
and <{D) has the null string. Thus only one error message can

be inserted, viz.:
(XD 1= <{4><(B)C>
[<4)> (B> “ERROR”
[<4> <D}
[<4>

(i) As an extension of (i), an error message could be inserted asg

the only component in the last alternative definition of
syntactic category, e.g.
YD 1= <4)
|
|““ERROR”

However, this has the same effect as an insertion of type (i

Ty wouy pepeojufo

after every occurrence of { Y') as a component in the definitions®
of other syntactic categories, except for the largest category,§
viz. {program}. Thus, with the exception of (program) this%
type of insertion is covered by type (i) and will therefore beZ

ignored until the final stages of the insertion process.

o

C

The major problem then reduces to deciding which of the typeS
(i) insertions are permitted. If the syntax never involves back-S
tracking then the problem is solved since it can be shown that allS
type (i) insertions are permitted. This is the basis of the auto-3.

matic error message insertion described in the next section.

=]
=
QO

For a general syntax there is no easy way of determining allg
those constructions which are involved in back-tracking during®
the analysis of syntactically correct programs. One possible
approach is to eliminate all error categories associated with the s

definition of syntactic categories which have direct alternative™

components, e.g. considering the syntactic construction
(X) 1= <{4)<{B)
<4 <C>

this means not only removing any error categories used in the

definition of {(B) but also any used in the definition of othergo

components used in the definition of (B). Applying this criter-
ion to the whole syntax of a practical programming language
eliminates nearly all the error categories, particularly where
recursive or mutually recursive definitions are used.

A less severe criterion, but one which requires more compu-
tation involves constructing a matrix (one row for every syn-
tactic category), of all the possible characters which can start a
string which will match that syntactic category. This is effect-
ively a one character look-ahead matrix which may anyway be
incorporated as part of the analysis algorithm. Then wherever
direct alternative components exist, this matrix is used to
determine whether the strings which could match the com-
ponents have any starting characters in common. If no such
characters exist, then no premature matching by error cate-
gories used in the definition of the first component can occur.
If there are common characters then back-tracking can defin-
itely occur involving the first component, and the error cate-
gories used in its definition must be removed.

One other criterion which can be used is based on a familiarity
with the programming language concerned. If it is known that
a given symbol is only used in one particular context, or

The Computer Journal

€

nb Aq 091G

[0}

1s

=]

N
©
>

©
=,

¥20c

alternatively after a group of symbols or some semantic check
that the context is unique, then error insertions subsequent to
that point in the syntactic constructions can remain.

For example, suppose after matching a (term) and either a
plus or a minus sign, then the context must be an arithmetic
expression, then a construction of the following type could be
used without fear of premature matching.

{arithmetic expression) ::= {term) + (arithmetic expression)
[{term) + “Incorrect operand”
[{term) — {arithmetic expression)
[Cterm) — “Incorrect operand”

Any other error categories which may be prohibited have to be
found by running test programs but this is the price of allowing
a completely general syntax and still providing reasonable
error diagnostics.

These methods were used in the implementation of a syntax
checker for ALGOL 60 which also incorporated semantic
checking, and a working syntax was produced with an adequate
number of error categories left in the syntax. The method was
also applied to a BNF definition of SNOBOL 4, but although
this worked, proportionately fewer error categories were left
in the syntax as several characters in the language are used in a
large number of different contexts, in particular the space
character (Burgess, 1971).

3.2. Automatic insertion of error messages _

The major characteristic of a grammar which makes the inser-
tion of error messages difficult is the need for back-tracking
during parsing. Some work has already been done on grammars
which do not require back-tracking during parsing. In par-
ticular, Foster describes an algorithm called SID which attempts
to transform any given grammar into the required form (Foster,
1968). A detailed theory of this type of grammar, termed a
left-factored or LF grammar, has been given by Wood (Wood,
1969). The terminology used in this section is based on that
used by Wood, but the relevant sections are repeated here for
completeness together with some extensions. The notation
uses productions rather than BNF for syntactic constructions
as these are easier to manipulate but any grammar including
error categories can easily be written in either form.

Terminology \
A normal context-free grammar G can be defined as a 4-tuple

G=UTS,P),

where 7 is a finite set of intermediate symbols which appear on
the left of productions in P, T is a finite set of terminal symbols
which appear only in the right of productions in P (excluding
the null string €), S is the sentence symbol (same role as
{program}) where S € I, P is a finite set of productions of the
form X - g, X eI, g e (I U T)* where A* represents the set of
all strings over the alphabet 4 including the null string.

In future IT, T' and IT’ will represent I U T, T U {e}, and
I'uTu {e} respectively, and G will imply the 4-tuple
(I, T, S, P) unless explicitly stated otherwise.

A sentence of a grammar G is now defined as any string s,
s € A*, for which a left-sentential derivation exists.

A correct sentence in a grammar G is a sentence for which a
unique left-sentential derivation exists that does not use any
productions which contain error categories, i.e. the sentence
has a unique parse and no error messages will be produced.

Conversely an incorrect sentence in a grammar G may have
more than one left-sentential derivation but each derivation
will involve using a production which contains an error cate-
gory, i.e. during a parse an error message will always be
produced.

An error category is a special terminal symbol which will
match any string of symbols in the alphabet 4. When matched
during the parsing of a sentence it will result in an error message

Volume 15 Number 4

being produced with a pointer to the first character of the string
it matched (unless modified using the *n facility described in
Section 2.2).

These definitions allow only the first error in an incorrect
sentence to be found, the error category matching the remainder
‘of the sentence. This is sufficient for most of the theory which
ignores the practical problems of error recovery and the detec-
tion of subsequent errors.

Formal definition of the problem
Given a grammar G = (I, T, S, P), we need to define a corres-
ponding grammar G’ which will have the following properties:

Property 1
All correct sentences in grammar G must also be correct
sentences in grammar G'.

Property 2
Any string s, s € A*, must be a sentence in grammar G’, but is
only a correct sentence in G’ if it is also a correct sentence mg
grammar G, i.e. any string has at least one parse using grammar
G’, but only those strings which are incorrect sentences in G
will involve productions using error categories when parseg
using G'. ’ o

wouy

The process of correcting the syntax of a program theé
becomes the editing of a sentence in G’ so that it becomes &

correct sentence. g’
Q.

Solutions to the problem for left-factored grammars %
A trivial solution . B
The easiest way to construct G’ given G, is to add one producs
tion of the form: %
S — “Invalid sentence” S

i.e. one more production added to the definition of the sentencg.
symbol S. Thus if a sentence cannot be parsed using
eventually when parsing using G’, this final production for s
will be used and the error message produced. e
This solution provides little or no information as to how th
sentence differs from a correct sentence, i.e. information t®

g
(S
=X
[¢]
)
S
Q
s
o
=
P~
o
[
]
=
-
[«
Q
3
(=%
E)
=2
(=%
L
»
=3
[¢]
o
S
=
a
o
=n
=
2
1

£

practical value.

Main solution
This is an attempt at a solution which will provide detaileé
information to enable incorrect sentences to be changed intg
correct sentences. o

Define G’ to be a 6-tuple

G, = (19 T, S’ 'P, Q’ E) b
where G = (I, T, S, P) is the left-factored grammar specified;,

E is a finite set of error categories, and Q is a finite set o§
productions of the form

X > uk where ueIT'* and ke E.

The problem then reduces to the precise definition of Q, such
that G’ has the required properties.

g 09771 GEE0O/ P

1dy 61 Uo

Definition of Q
There are two main subsets in Q

1. Q includes a production of the form S — k, where k ¢ E

and S is the sentence symbol.

This production has the effect that for all sentences which
cannot be matched using any other parse, the error message k
is produced. If this was the only member of Q, then this
solution corresponds to the trivial solution.

2. For all productions in P of the form:

X—-aYo,Xel,aelIT*, YelIT and w € IT'*,
include a production in Q of the form

X — ak where k e E,

provided that if Y e I there exists no derivation of the nuIl
string from Y, i.e. YA€ This last criterion is necessary to
avoid premature matching occurring if correct sentences
Iexisted whose parse matched Y against the null string. -

Theorem

The grammar G’ defined with this set of productions Q has
both properties 1 and 2 provided that before any production
in Q is used the corresponding production in P has been re-
jected. The later clause is required since the grammar G’ is
ambiguous.

Proof
There are two parts to the proof

1. Grammar G’ has property 1, viz. that all correct sentences

in grammar G will also be correct sentences in grammar G’.

All correct sentences in G will have at least one parse in G',
since the productions in G’ include all the productions P in G.
There will :be one and only one parse which uses only the
productions P, since G is left-factored and therefore unambigu-
ous. It is therefore only necessary to show that the parse using
only productions from P is the first parse.

Consider any production X - aYw in P, for which there
exists a rule X — ak in Q.

(@) Since G is left-factored there cannot exist any rules of the

form:
X > aor X > aZ where Z € IT*

in P since they have common left terminal sets to the
production X — aYw.

(b) Since G is left-factored, no back-tracking is required during

parsing.

Thus the production X — ak will only be used during the
parsing if, and only if, the production X — aYw has been
rejected. But since no back-tracking is required for the parsing
of correct sentences this production will only be rejected when
parsing incorrect sentences.

*. grammar G’ has property l

2. Grammar G’ has property 2, viz. that any string s, s € A*,
must be a sentence in grammar G’, but is only a correct
sentence in G’, if it is also a correct sentence in G.

(a) If a sentence is an incorrect sentence in G, then by defin-

ition it cannot be parsed vsing only the productions P.

(b) All possible sentences have at least one parse in G since

Q includes a production of the form
S>>k, keE
*. grammar G’ has property 2.

The difference between this solution and the trivial solution is
that for any production that is used, the next symbol in the
input string must be a member of the left terminal set for that
production. If then subsequently, the production fails to match
completely, there exists a production in Q with an appropriate
error category. Thus the diagnostics provided are far more
detailed than those produced by the trivial solution.

Thus grammar G’ has both the required properties.

Error detection using G’
Using the above definition of G, it can be shown that the error
pointer will always point to the ﬁrst inadmissible symbol.

Proof
1. Consider the production

Xoak,Xel,aelT*, ke E
whose error category k has resulted in an error message
being given. Then by definition a production
X->aYow, YelIT, we IT'*

has been tried and rejected.

This production is part of the left-factored grammar G,
therefore @ must have matched a valid string and the next
symbol cannot be either Y if Y e 7, or a member of any of
the left terminal sets of productions of the form Y — v,
ve IT*,if Y € I, since otherwise this production would have
been tried, and back-tracking is not required for left-factored
grammars, in particular G. Therefore the next symbol after
the string matching a cannot possibly constitute part of a
valid sentence, but will be the symbol above the error pointer
since it will be the first symbol of the string that matches k.

2. If, and only if| the very first symbol of a program is wrong

will the production S — k, k € E be used. Thus the theorem
is true for the first and any subsequent symbols of a sentence.

3.3. Results for a simple grammar

It is rather inconvenient to write the whole syntax of a pro-
gramming language as a left-factored grammar, but a very
similar grammar, which will be termed LF* enables the syntax
to be written more compactly and is easily transformed into a
LF grammar.

Consider any two productions of the form:
X—-aYw, X - aZv
where
Xel, Y, ZelIT, w,velT'*, aelT*.
These can be transformed into

X—-alL, L- Yo, L - Zv
where

L eI (L is a new intermediate symbol).

This transformation is applled to the complete grammar and

o

"olWapeoe./:sdny WoJj papeojumo

O

if the resulting grammar is LF, then the original grammar 1sU

termed LF*.

The automatic error insertion algorithm can be applied tog
either the LF grammar and then if required, the grammar.2
transformed back, or applied directly to the LF* form with=
slight modifications to allow for the transformation.

The following syntax which is an LF* grammar will provide an 2
actual example It represents a very simple language consnstmg
of a series of arithmetic ass1gnment statements us1ng variables &
A to D, and terminated by a $. It is specified using BNF.

{program) := (listofstatements) $

<listofstatements) := (statement) ; (listofstatements)
|{statement)

{statement) ::= (variable) = {expression)

{expression) ;1= (term) + {expression)
[{term) — {expression)
|{term}

{term) = (factor) * {term)
|{factor) / {term)
|[{factor)

{factor) ::= (variable)
|({expression))
|{number)

{number) ::= (digit) {number)

[{digit)
{digit) ::= 0]1]2]3]4|5]6]7|8|9
{variable) ::= A|B|C|D

The insertion algorithm produces the following grammar:

{program) = (listofstatements) §
|[{listofstatements) “Error number 2"
|*“Error number 17

:= (statement); (listofstatements)
|{statement) “Error number 3”
|{statement)

::= (variable) = {expression)

|{variable) = “Error number 5"

(listofstatements) :

{statement)

The Computer Journal

/WO

O

3

&

JEIRITE)

U‘I

w

o€/

¥20Z Iudy 61 U0 3sanB Aq 09v15E/Z

|{variable) “Error number 4

::= {term) + {expression)
|[{term) + “Error number 6”
[{term) — {expression)
|{term) — “Error number 7’
|{term)

::= (factor) * (term)
|{factor) * “Error number 8
|[{factor) / (term)
|[{factor) / “Error number 9”
|[{factor)

::= (variable)
|({expression))
|(expression) ‘“Error number 11
|(“Error number 10”
|{number)

::= {digit) {number)
[<digit)

{expression)
(term)
{factor)

{number)

(digit) 1:= 0[1]2]3]4|56|7|8]|9
{variable) ::= A|B|C|D

This grammar was then used to analyse test programs. The
error categories matched all the characters up to and including
a semicolon and the analysis algorithm then started matching
{program) again, i.e. a very simple error recovery.

Example of results produced:

1 TEST PROGRAM;

2 A=3;B=A4A+7;

3 C=(A4+B)*(4- B);
T

References

BARRON, D. W. (1971). Programming in Wonderland, The Computer Bulletin, Vol. 15, p. 153.

BurGEss, C. J. (1971). Error diagnostics in syntax-directed compilers, Ph.D. Thesis, University of Bristol.

FosTER, J. M. (1968). - A syntax improving program, The Computer Journal, Vol. 11, p. 31.

TEITELMAN, W., BoBROW, B. G., HARTLEY, A. K., and MURrPHY, D. L. (1971). BBN-LISP, Tenex Reference Manual, July 1971.
Woop, D. (1969). The theory of left factored languages, The Computer Journal, Vol. 12, pp. 349-356; Vol. 13, pp. 55-62.

ERROR NUMBER 11
4 D=A+ B;
5 A= A*B* — C;

T
ERROR NUMBER 8
6 D=4;J=3;

1
ERROR NUMBER 3

7 A@) =6;
1

ERROR NUMBER 4
8 4=3
9 B=C;

T
ERROR NUMBER 2
10 D=4
11 §

4. Conclusions

This paper has shown the feasibility of formally specifying
compile-time error diagnostics in the grammar of a progrant
ming language, and the extent to which the positioning of thesg
messages can be done automatically. This process is easy for%
particular class of grammars (LF), but although this class of
grammars is large, it appears to be impossible to write some

the more common programming languages into this form
directly, although it can be done by relegating some syntactig
distinctions to the semantic analysis (Appendix 1, Wood, 1969};
However, the general principles outlined can probably be
extended to other classes of grammars with suitable criter@
chosen for the error message insertion algorithm. &

Correspondence

To the Editor
The Computer Journal

Sir

Whilst I would not support Mr. Moon’s contention (this Journal,
Vol. 15, No. 2) that Mr. Walwyn’s letter (this Journal, Vol. 14, No. 4)
should not have been published. I would support him in suggesting
that Mr. Walwan’s general criticisms were ill-founded.

May I suggest, sir, that you too have fallen into the trap which was
so elegantly set by Professor Barron. I know a George 3/1905F
installation where an ALGOL programmer can submit a program
with no job control cards and no terminators. Perhaps there are
installations where a customer can get the right answers with a
program consisting of a single statement. What does that prove ?

Surely the objective is cost-effective computing, and in this equation
the cost of labour is no small proportion of the total. It is not efficient
to use disc space to hold compilation ‘macros’ which are rarely used,
or ‘macros’ which are so detailed that they save £1 worth of
programmer’s time to spend £2 extra on the machine. I have no
sympathy with the incessant demand for the over-simplification of an
already uncomplicated task with no regard to the cost benefit of such
a policy. Perhaps Mr. Walwyn did not expect the 1907 he wished to
use to be efficient.

Finally may I suggest that if a programmer appeared at my instal-

Volume 15 Number 4

. lation requiring the use of a compiler we did not have readily t&

A@9Y L GE/Z0E/¥/S L /o101HE/|UfWod/Wwod dno"d

language with which we have no experience we might very we‘g

wonder why he chose us. @
Yours faithfully, S

D. R. GAYLER

2 Lingfield Road >
Stevenage =
Hertfordshire N
10 July 1972 N

Editor’s comment :
I am intrigued to learn that I have fallen into a trap, I am even more
intrigued to know what that trap is.

I am also intrigued to find that to achieve the result I quoted it is
necessary to store compilation ‘macros’. Certainly the system of
which I am thinking doesn’t do that.

Even so, how are the figures of £1 per programmer and £2 per
macro derived. One track of an EDS60 costs approx. £1. Spread over
only 100 programmers this is 1p per programmer, which is 100
times more cost efficient than the programmer spending £1 worth
of his time. Or have I fallen into some trap here as well ?

Perhaps Professor Barron can himself throw some light on the
subject. I think we should all welcome such a comment.

