File compression using variable length encodings
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Within a digital system a symbol is represented as a grouping of digits. If the length of this group
is variable, rather than fixed, it is theoretically possible to achieve reductions in the total number
of digits required to represent a symbol string. This paper discusses some hardware and software
techniques for carrying out the encoding and decoding and gives some observations of the economies
that might be achieved by their use. The final conclusions are cautiously optimistic.
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Within a digital system information is represented as an en-
coding of symbols. This representation involves two quite
distinct steps, the choiceof a physical representation which has
a number of recognisable values, and the choice of a code which
maps the symbols on to a particular combination of these
values. We shall find it convenient to regard the different values
taken up by the physical representation as being referred to as
‘digits’ 0, 1, 2, ... etc; the decision as to which state of the
physical device represents which digit is totally arbitrary. In
any system the same digit will have many physical represen-
tations, for example:

(a) a hole in a punched card

(b) a voltage near to +4-5V

(c) a clockwise magnetisation of a ferrite core
(d) a flux reversal on a magnetic surface

may all be different representations of a digit ‘1. It is a function
of the engineering design of the system to ensure that a ‘1’ in
one representation transforms in to a ‘1’ in another represen-
tation when the program requires it.

The mapping from symbols to combinations of digits is
sometimes regarded as being outside the control of the
programmer. In some instances this is patently true; a line
printer performs the decoding from digit pattern to symbol
representation in a way which is fixed by the engineering design-
of the printer. However, this control can be exercised as long as
the symbols continue to be encoded purely as combinations of
digits. A transformation from one such encoding to another is
a perfectly proper action by the programmer. In particular, the
application of such transformation may offer useful economies
in certain activities, as we hope to show.

Entropy of a symbol source

Consider a message source, which can emit » distinct symbols,
and let P,(1 < i < n) be the probability that the ith symbol
occurs. Under certain conditionst we can define the entropy
of the source as

Y

Informally, the entropy of a source defines the minimum
average number of binary digits per symbol required to encode
messages from the source. Notice that entropy is inherently a
statistical concept; that it supplies us with a lower bound to the
average number of binary digits required per symbol; and that
in general this number is not an integer. The number of digits
other than binary digits required is simply found by appro-
priately changing the base of the logarithms in the definition of

n
H = -3 P;log, P; bits per symbol
i=1

entropy above, but whatever the number of different digits
available, the average symbol length (defining the length of a
symbol as being the number of digits contained in its encoding)
is not in general integral. Obviously the number of digits
required to encode any particular symbol must be integral; thus
if we are to find an encoding which approaches this lower
bound we must be prepared to accept encodings in which the
number of digits is variable. For obvious reasons such codes
are known as ‘variable length’ codes, and the most effective
such code was devised by Huffman in 1952. A recent paper by
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Maurer (Maurer, 1969) suggested using such codes; our work,é‘

started in ignorance of his, gives observations made on an
existing system.

Huffman codes

A minimum redundancy code (MRC) is one which has the<

minimum average message length, the average being taken over
all possible messages. If there is no form of correlation between
successive symbols (i.e. if the P; of equation (1) are not func-
tions of the preceding symbols) the average code length is
simply
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where /; is the length of (number of digits in) the encoding of
the ith symbol. If we order the P; in such a way that

P, >P, > >P,_ =P, 3)
it is obvious that for an MRC

L <1, <lL_, <1,
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We introduce the concept of a ‘prefix’; any code-word} has as
its kth prefix the first k£ digits of the code-word. If we are
successfully to decode a message encoded in a variable length
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code, then none of the code-words must be a prefix of anyS

longer code-word. A code with this property is known as a
‘prefix code’. Huffman showed how to develop a code which
has the property required by equation (4) and in which no
code-word is a prefix of any longer code. This is achieved
by developing a tree of order p whose leaves are the symbols,
the successive nodes being generated by grouping together
the p least probable ungrouped nodes (or leaves) and assigning
to this node a probability equal to the sum of the nodes
dependent from it. When the tree is complete digits 0 to (p—1)
are assigned to each branch at each node in an arbitrary way,
and the encoding for the symbol is given by listing the digits
which lie between the root and corresponding leaf. Fig. 1
shows this process for an arbitrary set of nine symbols and

*The work described in this paper was carried out under my supervision by four Final year students in Computational Science at Leeds.
It is a pleasure to acknowledge the efforts of Messrs. K. B. Shimman, R. G. Stone, J. W. Taylor and D. Viney.
1These conditions are summarised by saying that the source must be ‘ergodic’. A full treatment can be found in any book on information

theory, e.g. ‘Information Theory’ by J. F. Young. Butterworth 1971.

1By code-word we understand the encoding of a particular symbol.
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code symbol probability
0ol a 220
110 b 150
E
111 c 150 1
. 250
000 e 110 D
(0]
1
1010 f 63
. \
125
/ ®
1011 g 62 1
0010 h 60
120
A
0011 i 60 /

Fig. 1. Generating a Huffman code. The upper case letters by each node show the order in which the nodes are generated. This code has
entropy 2-994 bits/symbol and a mean code length of 3-025 binary digits/symbol.

p = 2. Binary Huffman codes approach the lower limit of num-
ber of binary digits per symbol at least as closely as any other
code. It is thus possible to estimate the likely compression that
can be achieved by encoding using a Huffman code, or one
derived from it, by estimating the entropy of the message source
and comparing this with the mean length of the encoding cur-
rently in use.

Results for the Eldon 2 file store

In this section we examine some results for a particular file
store, that associated with the Eldon 2 operating system in use
at Leeds. This used an encoding with eight binary digits per
symbol, a symbol being either a single character (e.g. a lower
case letter or a digit) or a multi-character symbol (e.g. an
ALGOL underlined word, or a ‘tab’ on a device which has no
hardware tabbing mechanism). The number of distinct symbols
is about 130, but some of these have very special contexts; for
example it is arguable whether the ‘end of file’ symbol is really
a symbol at all.

If we take all the files within the system, and treat this collec-
tion as a single message we can deduce a frequency distribution
for the symbols, and hence an entropy and a lower bound to the
mean code length per symbol. However, this collection of files
contains some which a priori have very different frequency
distributions from others, and from the mean. For example, a
file containing the text of a FORTRAN program is unlikely to
contain many of the ALGOL underlined words. We therefore
collected data for three classes of textual material which might
be expected to show the widest deviations:
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1. ALGOL program.

2. FORTRAN program.

3. Assembly Language.

The basic raw data for all subsequent work are simply the
frequency distributions of the symbols for each class of
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material; it is a trivial task to compute from this the entropieséy

as being:
ALGOL 5-58 bits/symbol.
FORTRAN 4-45 bits/symbol.
Assembly Language 5-19 bits/symbol.

Since our original symbols were encoded on eight binary digits
per symbol there is a potential compression here to between
55and 70 % of the original volume, a mouth-watering prospect!

We have achieved this dramatic saving by classifying our
text into one of three classes, and encoding it correspondingly.
We now examine the effect of using a single coding, which
covers all text, but is not optimal for any one class. If we use
primed quantities to denote this generalised class, we have the
following results. The entropy of a particular class is given by

H = — Y, p;log, p; bits/symbol
and its mean symbol length by
hyy = 2P 1; digits/symbol

Encoding the same messages with the ‘wrong’ code will give a
mean symbol length of

h,, = X, p; 1; digits/symbol

and the increase in mean symbol length will then be
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hoy = Zipi (I'; — 1)) digits/symbol ©6)

Now the /; are uniquely determined by the p;; in particular only
if p;, p'; are so different that they cause changes in the / ;do we
see an increase in the mean symbol length by using the ‘wrong’
code. Further it is only amongst the more frequently occurring
symbols that the changes are relevant. As is the case with
natural languages, the more common symbols account for a
very high proportion of the total (as a rough guide the 10 most
frequent symbols account for half the total) and these appear to
be remarkably consistent as between the various classes of
material. This consistency can be improved still further if one
is prepared to regard the upper case letters in which FORTRAN
and assembly language are usually presented as being a graphic
representation of the lower case letters favoured by users of
ALGOL. Other points emerging are:

1. The anomalous status of semicolon (;) used by ALGOL
and KDF9 assembly language as a statement separator
with a correspondingly high probability, but occurring
very infrequently in ‘FORTRAN files.

2. The anomalous status of the ‘tab’ symbol, used quite
frequently (p ~ 0-02) in ALGOL and assembly language
but very little in FORTRAN. The effect is twofold, in that
the virtual absence of ‘tab’ symbols in FORTRAN causes
a dramatic increase in the frequency with which spaces
occur. -

3. The astonishing resemblance of the frequency distributions
for these artificial languages to that of English text viz.:

English text ALGOL FORTRAN
space space space

e i I
t e (0]
a t T
0 a N
i S E
n d © A
s n R
h o C
r c S
d f M

Bearing in mind programmers’ predilections for integers to be
known as ‘i’ and for the presence in FORTRAN of DO, GOTO
as potent sources of letter ‘O’s, the resemblance is quite
startling.

The quantity defined by (6) is easily computed for encodings
of FORTRAN using a Huffman code corresponding to
ALGOL, but with the case of the letters reversed as described;
the increase in the average length per symbol is about 0-50
binary digits, if one assumes a binary Huffman code is in use.
We shall see in the next section that there are some advantages
in using codes which have a radix other than two, and in such
cases the expansion as defined by (6) is even smaller.

Other economic codes

We consider two extensions of the ideas discussed so far:
(@) A further examination of Huffman codes based on a
branching ratio other than two.
(b) The development of codes which are self-synchronising.

1. Non-binary Huffman codes

Huffman’s original paper considered the production of codes
in which there are more than two distinct digits, i.e. which have
more than two branches from each node of the associated tree.
When generating such a code, it is essential to augment the
symbol set with dummy nodes, each with a zero probability of
occurrence before attempting to construct the tree. If this is not
done the process described earlier leads to a tree whose root
has less than the maximum allowable number of branches
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leaving it. Such a code does not have the smallest mean code
length. For a tree with constant branching ratio p, and con-
taining # non-terminal nodes the number of leaves is readily
shown to be p x (n —1)/(p — 1). (Notice that for a binary tree
any number of leaves can be produced.) For a complete radix-p
code with S symbols the number of non-terminal nodes » is
obviously fixed by finding the least ‘»’ such that

o — 1)
w=D %

The number of zero probability terminal symbols to be added
to the S existing symbols is then given by S — p(n’ — 1)/
(p — 1). The tree is then constructed, and the zero probability
symbols ignored.

2. Self-synchronising codes
If, while decoding a stream of symbols encoded in a variable
length prefix code the decoder misses the end of a code word,
and hence starts subsequent decoding from within code words,
the decoder is said to be out of synchronisation. This can arise
if a digit is missing, or corrupted. With some variable 1engt§
codes there is a possibility that the decoder will automatically
resynchronise. 2
A code may be described as fully, partially or never self=
synchronising according as it will always, sometimes or nevet
come into synchronisation. A necessary and sufficient condition
for a code to be fully self-synchronising is the existence of &
‘universal synchronising sequence’; such a sequence whenev&(\g
itis encountered will always cause the decoder to resynchronise
Appendix 1 contains an (informally stated) algorithm fof
determining whether or not such a sequence exists; the algor2
ithm is based on a proof by Gilbert and Moore (1959) of the
statement above. Not all Huffman codes are fully self-synchrom
ising. The binary Huffman code shown in Fig. 1 is an examplé,
Bobrow and Hakimi (1969) define a class of ‘inclusion codes3
which are equivalent to any given Huffman code, in the sense
that they have the same code-lengths (and hence the same meafi
code length) as the Huffman code. They prove that every iz
clusion code whose code lengths are mutually prime is fully
self-synchronising. Their proof appears to contain an error;
but we know of no counter example, and an algorithm base
on their work appears always to generate codes which arg
fully self-synchronising. =

6 AqeLp

Transformations between fixed and variable length codes

We have seen that variable length codes may have som§
economic advantages over fixed length codes; however, for
many purposes, a fixed length code is much superior. In this
section we investigate the transformations between a fixe

length and a variable length code. =)

The transformation from a fixed length code to a variable
length code is economically realised by a simple table look up}
two entries are required, one giving the length of the code word
and the other the actual digits of the code. These are used to
control shifting and packing operations, and the entire oper-
ation is simply realised using either hardware or software. It
may be convenient to represent code words as non-standard
floating point numbers, with the length as exponent and the
digits of the code as the mantissa.

The transformation from a variable length to a fixed length
encoding is not straightforward, and if implemented entirely
by software may be disastrously slow. As before the output
from the process must yield the length of the code word,
allowing the corresponding number of digits to be discarded
from the input sequence after each transformation. We
describe below three techniques.

Thefirst two are a software and a hardware implementation of
a tree search, based on a stored representation of the tree from
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which the code is derived. The third is a decision circuit which
is in effect a direct representation of the tree.

Suppose the code is developed on a p-ary tree, the number of
terminal symbols being n. The total number of non-terminal
nodes is (n — 1)/(p — 1), and the total number of nodes is thus
n + (n — 1)/(p — 1). Each node contains either the addresses
of p nodes (if it is a non-terminal node) or the digits of a par-
ticular code word (if it is a leaf). The algorithm for searching
such a tree is:

1. Extract the root of the tree from the table, put it in W.
2. Extract the next digit, ¢, from the message, (0 < ¢ < p).
3. Extract the gth field from W, say W,.
4. Extract the W th word from the table

if this is a lcaf FINISH

if not, call this word W, return to (2).

Obviously at the conclusion the number of digits extracted in
step (2) is simply the code-length for this code. This decoder
works for any code which will fit into the table, and the code
is in fact defined by this table. The average number of read

operations in performing the decoding is one greater than the
average code-length. This algorithm can be implemented in
software, using as its store part of the main store of the central
computer. In the case where p is an exact power of 2 the algor-
ithm can economically be implemented by hardware. (It can of
course be realised in hardware for any p, but it is less economic.)
The decoder uses a shift register S to hold the head of the
message being decoded; associated with S is some form of
reloading to ensure that the shift register recharges as necessary.
S shifts in steps of log, p binary digits per shift. The leftmost
log, p digits drive a one-out-of-p decoder whose outputs gate a
field from the store buffer register SBR into the store address
register SAR. The store must hold n+ (n — )/(p — 1)
words, each capable of holding either p addresses in the range
0ton+ (n— 1)/(p — 1), or the fixed length pattern corres-
ponding to a terminal symbol, together with a flag to indicate
which of these is held.

A cycle of the decoder functions as follows. SAR is loaded
with the address of the root node, and the store stimulated,
loading SBR with a node-word. If the flag bit is 0, the node-

a

Shift in multiples of q binary digits

digits from recharge

mechanism

Top most

q binary digits

ﬁl«&'_

1 - of - p decoder

(0] (p-1

Flag

a binary digits

T )

202 udy 01 U0 188n6 AQ €1 GE/0E/7/S 1 /B101E/|UlLOO/WO00"dNO"0ILISPEDE//:SARY WO PAPEOUMO

stop

1l = run

SBR SAR

word from
ROM

Fig. 2. (a) Stored table variable-to-fixed length decoder.
Number of characters =n Branching ration =p

q = [log, p] = number of binary digits per code digit.

address to
ROM

a=1og,(n + (n — 1/(p — 1)1 = number of binary
digits per tree
address.
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Shift in multiples of g binary digits

Ldigits from
recharge mechanism

Shift
control

q binary digits at a time to each of

I

1 - of - p decoders

P-1

to next column

1ength
0o PpP-1 0
_ from
previous column
to p gates

ehele)

terminal node

j llength

Fig. 2. (b) Decision circuit variable-to-fixed length decoder
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J lpattern

—) conversion

complete

word corresponds to a leaf, and the corresponding fixed length
code is in SBR. If the flag bit is 1, the leftmost digit of S will
select the corresponding field of SBR for transfer to SAR and
the cycle will repeat. The store here can be a read only store, if
one is prepared to sacrifice flexibility for speed. The mean time
for a conversion is dominated by a term (1 + A,,)t where 7
is the cycle time for the store; the worst case time (1 + L,,,)7.
For a typical MOS read-only memory, where 7 is in the order
of 100 ns, and for a code withp = 2, L,, = 6 L, = 24 these
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times are about 700 ns and 2-5 us respectively, indicating that
conversion by this technique for such codes can run in real
time for existing file store devices.

If still faster transformation is required, it can be achieved by
a decision circuit technique, which implements the tree directly.
We again use a register S, holding the digits of the message for
some radix p, and having a recharge mechanism. The contents
of the leftmost L,,,, positions in S are supplied to L,,,, one-of-p
decoders whose outputs enable an associated column of two
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input AND gates, arranged in clusters of p elements to corres-
pond with the nodes of the original tree. It is then obvious that
starting from the left, one and only one AND gate in each
column will raise its output. This output corresponds to the
branch which is selected at this level of the tree, and corresponds
either to a leaf, or an entry to a further node,i.e. to a clus-
ter of p AND gates in the next column. The outputs correspon-
ding to leaves could beused to access a line in a store containing
the associated fixed length code and the number of places by
which S is to be shifted, i.e. the number of digits in the variable
length code. It is equally simple to construct decision circuits
to generate this information directly. These will consist in prin-
ciple of two clusters of OR gates, one for the fixed length code,
one for the length of the variable length code, with inputs from
the selected leaf to those positions where a ‘1’ is required. (In
practice the very high fan-in will require more than one level of
gating.) The circuit is of course asynchronous, and comple-
- tion of a decoding is signalled by an output appearing at an
AND corresponding to a leaf. To cover delays in the length and
pattern generating circuitry, it would be possible to generate
the conversion complete signal by taking an OR via a delay. If
we assume gates with a mean delay of 7, and a shift register
with a shift-time o, the average and maximum conversion times
are approximately 2t + L,(t + ¢) and 2t + L., (t + o),
which for typical IC logic where t ~ ¢ ~ 10 ns are about 160 ns
and 500 ns respectively.

Conclusions

We have seen that substantial savings in the total number of
digits required to represent a file may be possible by using a
single variable length code. For ALGOL, which has the richest
symbol set of the languages we have considered, a fixed length
code would need at least seven binary digits; the corresponding
variable length code would require rather less than 5-6 binary
digits per symbol on average. For FORTRAN and assembly
language as normally represented the corresponding savings
are from six binary digits to again about 5-6 binary digits per
symbol. However, there seems no good reason why one should
not have ‘FORTRAN compound basic symbols’ just as one
does for ALGOL; other benefits apart, their existence would
eliminate or simplify the lexicographic scan present in most
compilers. If this technique were adopted, a compression of
about 209, might be achieved for free format files—of course
no such compression is possible for fixed format files. The
economic effect lies not so much in the reduction in backing
store volume as in the reduction of backing store traffic; most
backing store devices have a total volume which is gross in
comparison with their long term average transfer rate and an
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effective 209/ increase in this rate would often be welcome.
Against this one must set the cost of extra equipment, hardware
or software, required to carry out the conversion. It is our view
that the economies may well be worthwhile.

Appendix 1

This algorithm is based on the proof by Gilbert and Moore
that the existence of a universal synchronising sequence is a
necessary and sufficient condition for a code to be fully self-
synchronising.

1. From among all the code words choose the one with the
longest sequence of zeros. If there is a choice choose the
code word with the longest sequence of digits after the
sequence of zeros. Denote by A4 the sequence of zeros and
the remaining digits of the code word, and by a the number
of digits in 4
(e.g. if the two code words with the longest sequence of
Zeros are

10100110100000010 g
101001101000000110 §
then A4 is 000000110 and a is 9). §

2. For i = 1(1) a — 1 attempt to decode A starting from the =

beginning of 4 and from the ith digit in 4. After each attempt S
write down the digits left over, calling them B,, B, etc. =
in ascending order of length Find the shortest sequence of 3
code words S such that B, S'is a valid message. Add S to the 5 D

end of A and repeat this whole step until the set B; 1s
empty, i.e. until 4 decodes completely wherever one starts
to decode it. A is now a universal synchronising sequence.

Proof:

A decodes completely from the beginning and after the ith ©
digits for i = 1(1)a. The code is exhaustive and hence contains 5
an ‘all zeros’ code word of length A or less. Consider decoding 3
any sequence GA: three possibilities exist:

1. G was completely decoded and thus 4 is decoded from the
beginning which by construction can be done completely.

2. The digits remaining after decoding G are those discarded &
in step 1 of constructing 4. A is decodable after the a-th &
digit by construction.

3. No other digits remaining after decoding G can force de-
coding of A to begin further in than the a-th bit. By con-
struction A is decodable from every position up to the a-th.
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