A review of algebraic manipulative programs

and their application
D. Barton and J. P. Fitch

University of Cambridge Computer Laboratory, Corn Exchange Street, Cambridge CB2 3QG

This paper describes the applications area of computer programs that carry out formal algebraic
manipulation. The first part of the paper is tutorial and several typical problems are introduced
which can be solved using algebraic manipulative systems. Sample programs for the solution of these
problems using several algebra systems are then presented. Next, two more difficult examples are
used to introduce the reader to the true capabilities of an algebra program and these are proposed as
a means of comparison between rival algebra systems. A brief review of the technical problems of

algebraic manipulation is given in the final section.

(Received May 1972)

1. Introduction

The computer’s ability to perform large quantities of elemen-
tary arithmetic has made such machines indispensable in many
areas of science. However, it is only during the past decade that
their ability to perform large amounts of elementary algebra
has been exploited, and it is reasonable to suppose that as their
capability in this area is increased, their use for solving practical
problems in science and engineering will also grow. There is
little doubt that the facilities which exist at present for the
mechanisation of routine algebra on computers are extremely
elementary and for the most part rather crude, but nevertheless
they have been found useful in a number of different branches
of science and in some areas they have made possible significant
advances which, in their absence, would have been much harder.
The users’ contact with a present day algebra system is gener-
ally via a programming language which is similar in its syntax
structure to languages intended for numerical calculation.
However, algebraic programming languages differ from con-
ventional languages in the essential respect that the ‘values’ of
the variables (or vectors or matrix elements) declared in the
program are algebraic expressions represented formally
within the computer memory. Thus, when the program contains
an instruction to form the sum of two variables, the symbolic
expressions that are the values of those variables are added
together according to the usual rules of algebra. The result of
the sum is itself an expression that, if printed, will appear on
the page as text containing letters, digits, parentheses, and so
forth.

In order to make use of an algebra system it is first necessary
to break down the problem that is to be solved into a sequence
of simple steps involving only such elementary operations as
addition, multiplication or differentiation, in exactly the same
way as a numerical problem must be broken down. Thus, if
the problem is to solve a given differential equation and obtain
the formal solution subject to certain boundary conditions, an
algorithm must be derived which reduces that problem to a
sequence of elementary steps. This reduction may not be easy,
but it is a labour that properly belongs to the users of algebra
systems and not to the system designer. It can be expected that,
as algebra systems become more widely available, library
routines will be constructed for the solution of various import-
ant and central problems such as the integration of differential
equations; recent work demonstrates that this has already
begun to occur. The existence of a large library of algebraic
routines will of course greatly simplify the task of obtaining
algebraic solutions to problems in exactly the same way as
numerical library subroutines simplify the writing of numerical
programs.

For a number of reasons it has taken a long time for the
development of computer programs for the manipulation of

362

algebraic expressions to reach the present state where they
can be of some use to scientists. Perhaps the most obvious Y
difficulty that arises in the construction of an algebra system is 5
that the hardware of a computer is not designed for the manipu- §
lation of algebraic expressions, and consequently the s1mp1e 3
facilities of addition and multiplication between expressions = 3
must be provided by program. No algebraic facilities can exist 3
on the computer at all until the program has been written, and =
the writing of the program, while it is in principle stralght-
forward, has in practice required the use of advanced and in &
many cases recently developed programming techniques. It has & S
frequently been the case that these programs could only be 3
constructed by small groups of dedicated programmers with &
access to large computing facilities providing interactive ter-%
minal systems. It appears that, at present, general purpose S
algebraic manipulative systems can only be made available on & 3
large computers. The construction of programs for the elemen- S 3
tary combination of algebraic expressions under, say, addition El
and multlphcatlon is, however, only the first step towards the 1
provision of a useful system for their manipulation. Once such & o)
programs exist a new set of problems appear, and these must &
be overcome before the programs can be of any real value.
Perhaps the most important of these new problems is the one
that is known as ‘blow-up’. It will be clear that when algebraic
expressions are written on paper they are not all of the same
length. So, when they are represented in the memory of a
computer they do not all occupy the same amount of space.
It has proved to be the case in practice that even simple prob-
lems involving the manipulation of functions, problems starting =
from and resulting in quite short expressions, frequently lead =
to intermediate expressions of inordinate length in the course of
computation. If these intermediate expressions become too S
long they cannot be retained in the computer’s memory, and g
the calculation cannot be completed. The problem of blow-up ®
is the problem of controlling this intermediate expression
swell. It has received a great deal of attention in the past few
years (Collins, 1965; Barton et al., 1970b; Bourne and Horton,
1971b) and to the extent that solutions to it have been found
the second step towards a useful symbol manipulation system
may be said to have been taken.

Suppose now that we have carried out some algebraic cal-
culations on a computer—we have evaluated an integral or
solved a differential equation. Obviously we need to be able to
read the answer, and this simple remark leads the system engin-
eer to the interesting and difficult problem: how should the
results of algebraic calculations be presented to the user given
the peripheral devices currently available on computers ? When
an algebraic expression is written on the page by hand, or
printed in a book, it is commonly presented in a two-dimen-
sional format using a very large character set extending over

ZOQLSE/ZQE/W

6 Aq

san

The Computer Journal

several alphabets, founts and types. Furthermore, the meaning
of the expression may well be context dependent, as is indicated
by the simple example x’, which means a component of the
vector x in some areas of mathematics, and the quantity x
raised to the power i in others. Significant progress has been
made in the area of producing machine output in a human
readable form using a number of different techniques (Martin,
1971) but the problem has not yet been satisfactorily overcome.
The character sets available on present day line printers and
typewriter terminals are so restricted that a really satisfactory
solution is unlikely to be obtained using that equipment. If
displays are available. it is possible to construct complex
mathematical symbols as these are needed from the primitive
symbols of lines and dots. However, when this is done, the
major limitation is the size of the display screen that allows
_only a comparatively small expression to be seen at any one
time. It is possible that some progress could be made using
high resolution displays and photographic techniques or, pos-
sibly, by automated control of a type setting machine, but that
would inevitably be expensive and leads one to question whether
long expressions should be printed or displayed at all. It may
well be more convenient in some cases to convert those long
expressions directly into the form of a FORTRAN program for
subsequent numerical calculation and graphical display, but at
present such facilities are hardly available in algebra systems.
Notable exceptions here are FORMAC (Xenakis, 1971),
Hearn’s REDUCE (Hearn, 1968) and Mesztenyi’s FORMAL
(Mesztenyi, 1971). The latter two systems provide FORTRAN
input, but this FORTRAN program must then be run
independently of the algebraic program. There has been a
tendency for researchers in the field to consider that the pro-
duction of algebraic expressions is the aim of their work and
little effort has been expended on the provision of facilities that
enable these results to be used easily in subsequent numerical
processing. It seems to the present authors that work in this
area would be profitable.

Simplification, the transformation of a given algebraic
expression into a previously defined ‘simple’ form under the
normal rules of cancellation and using the various relation-
ships between functions, is a central problem in the construc-
tion of algebra systems. Both the user and the system engineer
have an interest in the form of an algebraic expression; the user
will expect that any output resulting from a computation will
appear at his terminal in a simplified form while the system
engineer will be concerned with the simple and economic
representation of algebraic expressions in the machine.
Unfortunately it is not clear what constitutes a simplified form
to an individual user and it may well have a subjective definition
such as ‘that representation most easily comprehensible in the
context of the problem’. The system engineer’s requirement will
at least be more precisely stated; for example, it may be ‘that
representation which requires the least quantity of computer
memory for its storage’. Let us consider the case of a program-
ming system for the manipulation of polynomials over the
rational field, and ask whether it is correct for the computer,
for its internal use only, to represent an expression in a fully
expanded form. It is obvious that if the expression a* — b* —
(a + b)(@ — b) occurs the system should remove the brackets
and obtain zero. Furthermore, it is essential that the machine
do this because, should it fail to do so and the user’s next
instruction involve the above expression in some complicated
fashion, the result will probably be blow-up. However, it is
obviously not always correct to expand brackets as the example
of (1 + x)'°°° demonstrates. Expansion here leads instantly
to blow-up. Polynomials are, however, the simple case because
the program can in principle expand the expressions it obtains,
observe if the result requires less space and discard the less
economic representation. This procedure is possible because
we have a canonical form for polynomials and we can guarantee

Volume 15 Number 4

to recognise zero. The situation is similar for any class of
expression for which a canonical form exists, and for which an
algorithm for the reduction of an expression to that form is
available. In general such is not the case, and it may be shown
(Richardson, 1966, 1968) that for a sufficiently rich class of
functions the simplification problem is undecidable in the sense
that it is not possible to write a program that will reduce all
expressions in the class to a canonical form. Indeed it is not even
possible to determine if an expression is zero or not. Things are
not in fact as bad as this rather pessimistic result would imply,
but the problem should not be underestimated. The simpli-
fication of expressions occurring within the computer is of
critical importance to avoid blow-up, while the discovery of
even approximately simplified forms is an extremely difficult
and time-consuming task in many circumstances.

An aspect of the simplification problem that has achieved an
independent life of its own is the problem of determining the
greatest common divisor (gcd) between two polynomials in
several variables. In order to demonstrate the importance of
this problem let us consider a very simple example concerned
only with rational numbers. To add the two rationals P,/ oy
and P,/Q, for integral P,, P,, Q, and Q,, the followin
simple algorithm is sufficient,

Py, P, PQy + PrQy
0.0

WioJ) papeomwe

01
However, when applied to 4 and 1 this yields 4/4 and in order t§
obtain the expected result we must remove the factor 4.
Should we fail to do so then continued calculation with rationa§
will lead to the representation of numbers as the ratio of verg
large integers which will ultimately overflow the capacity of the.
machine’s registers. As might be imagined the correspondir:g
computation for rational functions of polynomials leads
rapidly to blow-up. The problem, however, is soluble using the
Euclidean Algorithm, but this technique turns out to be inording
ately expensive in terms of machine time and much work has
been devoted to discovering more economical methods (Browr%
1971; Horowitz, 1971b). The work on gcd algorithms fog
polynomials is also of the greatest importance in another area
of symbol manipulation—that of the formal integration
rational functions of polynomials where algorithms depen
on the ability to write the integrand in its partially factorised
form. &
This brings us to the problem of the integration of an alge3
braic expression in closed form, and here is the great challenge
for the system engineer. Integration is the main operation on
algebraic expressions that human beings find a real intellectu@
challenge. However, the problem is clearly defined in a way thaf
simplification is not, and the solution is of great practical value,
as has been demonstrated by applications in quantum electros
dynamics (Hearn, 1971) and celestial mechanics (Jeffery§
1971b). There is an undecidability result for the problem of the
integration of a sufficiently rich class of functions (Richardson;
1966, 1968) but nevertheless, using heuristic techniques,
systems have been designed that could integrate better than
most college students (Slagle, 1961; Moses, 1967) and recent
work indicates that the problem may be capable of total solution
within the limits set by the undecidability theorem (Risch,
1968a, b; 1969a, b; 1971). Although the algorithm has yet to be
programmed in full, it may be shown that it is possible to dis-
cover if a given elementary function has an integral in finite
terms and, if it has, to find that integral in a finite series of steps.
The joker in this algorithm is closelyrelated to the simplification
problem and it is unlikely to cause any trouble with expressions
that could be integrated by ordinary techniques by a human
being. The work that has been devoted to the integration prob-
lem has been rewarded with great success and it is one of the
outstanding achievements of this area of computer science.
Let us now examine in a few words the nature of the tool that

363

is an algebra system and see in what areas of science it is likely
to be useful. With this tool we can add, multiply and differen-
tiate algebraic expressions with ease. In many practical cases we
can express our results in a simplified form, although this will
sometimes prove expensive. We can integrate any expression
that a high school student would find easy and, at a little cost,
most of those that he would find difficult. Again, at some cost,
we can factorise some of our expressions and we can print
them out in a legible format provided that they are not too long.
Moreover, we can do all of these operations without error
under the control of a program that we ourselves write. We need
no longer concern ourselves with the length of the expressions
that arise, unless they are huge, and the only constraint on the
number of operations we perform is our ability to meet the
computing bill. In what areas is this tool likely to be useful ?
The simplest answer to this question lies in the published
literature that acknowledges the use of an algebra program but
this is not an appropriate place to reference such material in
detail. Here it must suffice to direct the reader to bibliographies
of the work. FORMAC (Xenakis, 1971) is probably the most
widely used system and the bibliography of Sammet (1966a)
contains about 300 references to algebra systems and their
applications that covers most of the early applications of that
pioneering system. ALTRAN (Hall, 1971) has also been widely
used and with reference to FORMAC and ALTRAN we must
draw the reader’s attention to the descriptions, reviews and
bibliographies of Hyde (1964), Collins and Griesmer (1966),
Tobey (1966a, b); Sammet (1966b, 1967, 1968, 1971), Raphael
et al. (1968), Marks (1968), Bond and Cundall (1968) and
Brown (1969a) which describe the application areas of these
two systems. Reviews by Hearn (1971), Jefferys (1971a) and
Barton and Fitch (1971) cover applications in particular
problem areas and finally a review by the present authors
(Barton and Fitch,1972) gives over 200 references to published
work by physicists that acknowledges the use of algebra
programs, often for very large calculations indeed. In this latter
field of theoretical physics, REDUCE (Hearn, 1970) is out-
standing for the number of applications published in quantum
electrodynamics while the field of celestial mechanics is out-
standing for the number of applications using specially
developed Poisson series manipulators for the computations.

This paper is divided into three main sections. In the next
section we describe the solution of a number of simple prob-
lems using several different algebra systems. Our intention here
is two-fold: to introduce the reader to the various algebra
systems, and to help him to understand how an algebraic
problem must be formulated prior to any computer work. In
Section 3 we briefly indicate the manner in which algebra
programs have been developed and in which applications have
arisen. We then come to the problem of comparing different
systems and propose two substantial calculations that could be
used for this purpose. Complete programs are presented for the
solution of these problems using REDUCE (Hearn, 1970) and
SCRATCHPAD (Griesmer and Jenks, 1971). The problems
chosen in this section are ‘real’ problems in the sense that they
and their solutions have been previously published in the
technical journals of physics. They involve an order of mag-
nitude more algebraic computation than those examined in
Section 2, but are substantially less formidable than are the
largest known algebraic computations necessary in physics.
While these problems are no longer simply demonstration
examples there is no doubt that an algebra system should be
able to complete them easily if it is to be really useful. In our
presentation we have described only the mathematical formu-
lation of the problems. We have tried to avoid technical termin-
ology and to focus attention on the application of the computer.
Section 4 presents a brief analysis of the central problems of
manipulative algebra from the point of view of a system de-
signer. Here we have confined ourselves to problems that are

p<0>=1
p<id =X
nin—(2,3,..., 5)
P> =((2#n-1) exapcn-1) - (n-1) # pén-2>)/n—

nin (071,...,5)
p<nd
P_:_1
0
P—:—X
1
2
3X -1
P : cmmmmeeeo
2 2
3
5X - 3X
Pl oo
3 2
42

Fig. 1. The Legendre polynomials obtained by the recurrence relation
using SCRATCHPAD. The lines typed by the user appear in

lower case and the computer replies in upper case.

relevant to applications, but we are aware of the sketchy
treatment that even this restricted field has received at our
hands.

We should like to acknowledge the permission granted by the
Institute of Physics to reproduce in this review a substantial
part of the material of our review (Barton and Fitch, 1972) that
appeared in Reports in Progress in Physics.

We should like to express our sincere and grateful thanks to
Miss Esther Sadie and Mrs. Vanessa Pearn for their help in the
preparation of this manuscript.

2. Elementary examples

2.1. Introduction

This section of the paper is essentially tutorial and our purpose =.
is on the one hand to introduce the reader to several different 3
algebra systems and the programming languages with which X
they are used, while on the other to indicate the type of cal-
culation that it is reasonable to expect of an algebra system.
We do this by reference to some particularly simple examples.
The section contains several problems that are treated using
different algebra systems and appropriately annotated pro-
grams are presented for each. These programs are to be read
as an integral part of the paper since they demonstrate in detail
the communication interface between the user and the various
algebra systems. A great deal of effort is currently being devoted
to the improvement of this interface and the reader can best
familiarise himself with the state of the work by studying the
programs themselves. The algebra systems that we discuss are
by no means exhaustive of the class of such systems. They have
been chosen because they are widely available, or because they
are particularly general systems, or because their linguistic
features make them attractive. Other systems, frequently those

The Computer Journal

judy 1 uo 1senb Aq 2091G¢€/29¢/v/S L/6|O!1J€/|U[LUOO/LUOO'dnO'O!LUepEOE//ZSdnL] woJ} pspeojumoq

N

=

with which important research has been performed, are
referenced in Barton and Fitch (1972). The examples chosen in
this section are intended primarily to illustrate how an algebra
system is programmed. The early ones are therefore so simple
that the semantic features of the programs are obvious and all
that concerns us is how to address the individual system in a
way that solves the problems. Later in the section other
examples of a more complex nature are used to illustrate how
problems of manipulative algebra should be broken down to
the point where a suitable program can be written. These latter
problems are also very simple, of their kind, and it should be
mentioned that the reduction of a problem in mampulatlve
algebra to a state where programming can usefully be begun is
frequently the most difficult task that one faces in obtaining a
solution.

2.2. Generation of classical functions

2.2.1. The Legendre polynomials

The first problem discussed here is the generation and output of
the Legendre polynomials and we do this using two separate
algorithms. Perhaps the most obvious means of generating
these functions is from the recurrence relation

nP,=Qn— DxP,_y — (n— DP,_,, n>2

with P, = 1 and P, = x. Fig. 1 shows a ‘program’ written for
the SCRATCHPAD system (Griesmer and Jenks, 1971) using
this relation, together with the computer’s reply. SCRATCH-
PAD is an interactive system that operates from an IBM 2741
communications terminal and runs on the IBM 360/65
computer at the Thomas J. Watson Research Center at York-
town Heights. The system is still in the development stage, and
as will be seen from the mathematical nature of the input typed
by the user, the lines appearing in lower case, is of an advanced
design. The main objective of SCRATCHPAD is to formalise
a language close to conventional mathematical notation in
order that the user may communicate with the algebra system
in a convenient fashion. Fig. 2 presents the protocol for the
same calculation performed by the IAM system (Christensen
and Karr, 1971). IAM is also an interactive system and it
operates from a teletype terminal connected to a PDP 10
computer. This system is currently under development and it is
clear from the example that its terminal language is very
similar to JOSS (Shaw, 1964). However, in order to use IAM
to compute the Legendre polynomials it was necessary to write
a small program in which the part of the program that is
repeated several times is numbered. From both the SCRATCH-
PAD and the IAM output we see that our results appear in
a two-dimensional format and this is typical of interactive
systems.

We now generate the Legendre polynomials using Rodrigues’
formula

‘in

2 n
> vd;a'(x D

P,(x) =

and for this example we obtain our results using the REDUCE
system (Hearn, 1968). The program is presented in Fig. 3.
REDUCE is also an interactive system operating from a tele-
type terminal and available on the PDP 10 computer, and it was
on that machine that the examples of the system presented in
this paper were obtained. However, REDUCE, being based on
LISP (McCarthy et al., 1965), is implemented on most other
large computer systems. The language of the program (Fig. 3)
is similar to ALGOL 60 in its syntactic structure and we see
that the notation adopted for differentiation by REDUCE is
DF(F, X) for dfldx and DF(F, X, N) for d"fldx". A linear
notation for differentiation similar in character to that of

Volume 15 Number 4

*COMMENT “LEGENDRE POLYNOMIALS BY hKECULKENCE KELATION"
*COMMENT "STEP 1.1 DEFINES THE BASIC HECUKRENCE RELATION"
*1el:t PCN)=C((2%N=1)*X*%P(N=-1)=(N=-1)*P(N-2))/N

#COMMENT "WE NOW DEFINE THE STARTING VALUES OF THE RELATION"
*r(0)-1

(1) -X

*COMMEN] "NOW AKRKANGE TO.PRINT THE VALUES OF THE ARRAY. P&
‘&«AS THEY ARE GENERATED"

#NONITOk P

#F0n N=2 TO 10, DO PAKT 1

2

P(2): 3%K /2 - 1/2
3

P(3): S%X /2 - 3%X/2

4 2
P(4): 35%xX /8 =~ 15%X /4 + 3/8

.5 3
P(5): 63%X /8 = 35%X /4 + 15%X/8

Fig. 2. The Legendre polynomials obtained by the recurrence relation

using the IAM system. The lines typed by the user appear
preceded by an asterisk and the ampersand character is used
as a continuation marker. The computer replies by typing
the remaining characters and the asterisks. Only part of
the computer’s output is included in the figures.

*COMMENT RODRIGUES' FORMULA FOR THE LEGENDRE POLYNOMIALS;

“«ARRAY P(10);

*FOR I~1:10 DO BEGIN
* PCI)=(Xt2-1)11;
* FOR J=1:1 DO P(1)=DF(P(I1),X)/(2%J);
* WRITE "P(",1,"). ",P(Il)
*END;
P(l) X
2
P(2) (3%X =~ 1)/2

2
P(3) (X%x(5%X = 3))/2

4 2
PC4) (35%X =~ 30%xX + 3)/8

4 2
P(5) (X%(63*X = 72%X + 15))/8

6 4 2
P(6) (231%X =~ 315%X + 105%X =~ 53716

6 4 2
PCT) (X*(429%X =~ 693%xX + 315%X = 35))/16

8 6 4 2
P(8) (6435%X = 12812%X + 6938*X =~ 1260*X + 35)/128

8 6 4 2
P(9) (X*(12155%X = 25740*X + 18018%xX =~ 4620*X -+ 315))/128

6 4

8 2
P(10) (46189*% = 109395%X + 90@98*X =~ 3B030*X + 3465*X = 63)

o¢/V/S L/6|O!1JE/|U[LUOO/LUOO'an'O!LUepEOE//ZSdnL] woJ} pspeojumoq

/256
The Legendre polynomials obtained from Rodngues”
formula using REDUCE. The lines typed by the user are1
preceded by an asterisk. The computer replies by typing thg
asterisk and the appropriate polynomials.

Fig. 3.

P(N)=DIPP(P(N))/ (2#N)
DOFND
WRITE P(N)

NDOEND
END

CY
PROCEDURE HMAIN Q
ALGEBRAIZ (Xsle) ARRAY (10) P o
INTEGER N, M ’ P
ALTRAN DIPP o
ALGEBRAIC DIFF 5
DO N=1,10. >
P(N)m(XaX=1)weN >
DO H=l,N S
=.
N
o
N}
~

¥ P(1)
X X
P(2)
IeXer2/2 = 1/2
P(3)
S*X#03/2 = 3¢X/2
P(4) ~
35eXand/8 = 15+Xww2/4 ¢+ 3/8
P(S)
63#Xan5/8 = 35«X#xe3/4 + 15«X/8
Fig. 4. The Legendre polynomials obtained from Rodrigues’ formula

using ALTRAN. The complete ALTRAN program is sub-
mitted to the computer. In this program an array P with 10
elements is declared that depends on the variable x up to the
10th power and the ALTRAN routine for differentiation is
requested. The results, only part of which are presented, are
obtained in the normal manner for jobs run in batch mode.

365

FOR H=1gls1e@
AlN)=(hhe1) N
POR M=1g1gN
AIN] (1/(2M))AA[N}/an

REPEAT
PRINT('A[', N,)=, A[N],CRLF)

REPEAT

sToP

START

Alyl=

Af2)= «<1/2-3/2h12>

Al3]= «<3/2h=5/2h13>

Al4l= <3/8~15/4h?2+35/8h14>

AlS]= <15/8h=35/4h?3+463/8h15>

Al61m. =<5/16-105/16h?2+4315/16h?4=231/16h16>

Al7]% «<35/16h=315/16h?34693/16h?5~429/16h17>

Al8l= <35/128-315/32h12+43465/64h?4=3003/32h16+46435/128h78>

Af9)= <315/128h~1155/32h7349009/64h?15~6435/32h17+12155/128h"9>

Allel= =<63/256-3465/256h12+15015/128h14=45045/128h16+109395/256ht8

=46189/256ht10>

Fig. 5. The Legendre polynomials obtained from Rodrigues’ formula
using CAMAL. In this program multiplication is implicitly
understood, and differentiation wrt 4 is written d/dh. In the
PRINT statement the mnemonic CRLF outputs a carriage
return and line feed symbol.

f<0>=1

3€0>=0

nin (1,2,3,...)

mudot=-3*nu*sigma

sigmadot=eps-2*sigma**2

epsdot=-(mu+2+eps)+*sigma

f<n>=mudot*d<mudf<n-1>+sigmadot*d<sigmadfin- 1)*epsdot'd<eps)f<n =1>-mu*glin-1>
g<n>=mudot*d<mudg<n=1>+sigmadot*d<sigmad>g<in- -1>+epsdot*d{eps>g<n-1>+f(n-1>

Fig. 6. The fand g series obtained by recurrence using SCRATCH-
PAD. The user has typed all the text shown here and the
computer’s reply is omitted from the figure.

“COMMENT “FIRST GIVE THE STAKTING VALUES"

“lels F(O)=1

*le2: G(OI-0

*COMMENT "U V W HOLD THE DERIVATIVES OF MU SIGMA EPSILON WRT TIME™
*COMMENT 'MU 1S REPRESENTED BY THE VARIABLE A"

*COMMENT "SIGMA BY THE VARIABLE B, AND EPSILON BY THE VARIARLE C"
*1+3: U-3%A%B

*%1le4: VeC-2%BxB

*1e5: W=-Bk(A+2%C)

*le.6: FOR N~O TO 18,D0 PAKT 2

*2e¢13 F(N+1)+~U*PDERIV(F(N),A)+V¥PDERIV(F(N) »B)+WkPDERIV(F(N),C)-A*C(N)
*2.23 G(N+1)~U%PDERIVC(G(N),A) +V*PDERIV(G(N),B)+WkPDERIVC(G(N),C)+F(\)
*COMMENT "ARRANGE TO PHINT THE VALUES AS THEY .ARE CALCULATED"
*MONITOK- FsG

D0 PAKT 1

Fig. 7. The f and g series obtained by recurrence using the JAM
system. The user has typed the lines preceded by an asterisk.
Part of the results for this program appear in Fig. 14.

REDUCE is also used by a number of other systems including
IAM and SCRATCHPAD. The ALTRAN system (Hall, 1971)
developed at the Bell Telephone Laboratories by Mcllroy and
Brown is a development from ALPAK (Brown, 1963).
ALTRAN is written in FORTRAN IV and runs on a wide
variety of machines. It is not an interactive system and expects
to be presented with a complete program which it then obeys.
The results are subsequently obtained in the conventional
manner for batch jobs. An example of the input and output for
the Legendre polynomials using ALTRAN is presented in
Fig. 4. The program for another early system is shown in Fig. 5.
Here the same calculation is performed using the batch proces-
sing system CAMAL (Bourne and Horton, 1971b) developed
in Cambridge for the TITAN computer. The language used for
this program is syntactically similar to TITAN Autocode
(Barron et al., 1967). Both CAMAL and ALTRAN have
presented their output in a linear form and consequently it is a
great deal less legible than that of the previous systems.

2.2.2. The f and g series

A problem that has been used as a test and comparison example
for a great number of algebra systems is that of the derivation
of the f and g series (Sconzo et al., 1965), that are used in
certain expansions of elliptic motion in celestial mechanics.
The series themselves are defined by recurrence relations in
terms of three variables p, o and ¢ that are related by

K PANDG
/7r1/ ‘V\IL ST&K RECORD{72)

c:(xs.aa)
,STAK, RECORD, SYALST
+PYLIET, PDERZY, PPROD, P3LH, POI?

RCAD(IH)
READ(IN)

C3LL DICAP (EPS,VDLS)
CALL DECAP (XU, VDLS)
CALL DECAP(SIGHA,VBLS)

2'°?RDD(’“U KUDOT)
P:u?rana(?:?s EPSDOT)
$

CALL PERASE(22)
CALL PERASV(?:)

CALL

PLRASE(

sz 1S=POIRIV (3, LPS)
21=2PROD(GSIG, sxsnar)
Q29PPROD (GXU, KUDOT)
*23sPPROD(0ZPS, ,EPSD0T)
TePSUN(QL,2) *

2
E3Y

1,1 .
(/i6 ¥ SUB,12)
ITF(OUT,F)

(/BH G SUs,12)
L PH?X?P(DUT 6)

éz2

xux
'P (l N) 30 20,21

EID

21

PASDG IXPUT

LL{+2Pawd) Leed)Sevp)
<

*vi)Sa¥2)

*1)8es1)
-b)u--O)s--z'((01!--:)5"o)s--o)
({{=1F#%ed)Meal) s (=2Ean]l)Rano)San))"

2

FANDG OUTPUT

P SU3 0 Lt
(((vifmud)itenn)Sund

[ETENY

2

£x3)%ee0)She0)

..))‘;.uis--n

Fig. 8. The f and g series obtained by recurrence using the SAC-l

system. This is a FORTRAN program that calls the several

sonb Aq Z091G€/Z9E/P/S L /o1NE/UlWod/W0d" dNo"dlWspeoe)/:sdjy Woj paPEOjUMOQ

—

:3

routines of SAC-1. SAC-1 is written in FORTRAN and must ©

be loaded with the above program. The text labelled FANDG 3
INPUT must also be presented to the complete FORTRAN

>

program as data. This data contains the expressions 1, 0, y., S

—3uo, 202 + €, (—
these expressions to the computation is self evident. The
results presented also appear in the same form as the input.

p=-3us , 6=¢—20%* , ¢= —a(u+ 2,
where dot denotes differentiation with respect to time. The

recurrence relationships defining the series are
j;u =f;1—1 — U&n-1 and &n =f;|—1 + gn—l >

together with
fi=landg, =0.

These series were first generated as far as f,, and g,, by Sconzo
et al. (1965) using FORMAC (Xenakis, 1971) and since then
they have been frequently calculated on most other systems.
In Figs. 6 to 12 we present complete programs and specimen

The Computer Journal

® — 2€)o and 12. The significance of ~

#COMMENT THE F AND G SERIES;
*ARKAY FF(19) » GG(19);

*COMMENT HAVING DECLAKED THE AKKAYS, AND SPECIFIED THEIR LENGTH,
#LE GIVE THE INITIAL VALUES;

¥FFL0) =15 GGCOI~03

FFCO) = 1

6GCO) = 0O ~.

*COMMENT THEN THE DERIVATIVES OF MU, SIGMA AND EPSILON WITH RESPECT
*T0 TIME;

*MUDOT = =3%NUKSIGMAS
NUDOT ~ = 3%MU*SIGMA

*SIGMADOT ~EPS~2#SIGMA12S

2
*SIGMADOT = = (2%SIGMA = EFS)
#EFSTOT - S1GMA®(MU+2#EPS) 5

EPSDOT ~ =~ SIGMA*(MU + 2%EPS)

#COMMENT FINALLY VE GIVE THE KECUKRENCE RELATIONSe IN THE FOLLOVING
#.00F WE ALSO SET FF(N=1) AND GG(N-1)> TO.ZEKO TO SAVE STORE SPACE;

#FOKk N-1:19 DO BEGIN .

* WRITE FF(N)=MUDOT#*DF(FF(N-1),MU)+SIGMADOT*DF(FF(N=-1)2SIGMA)+
* EPSDOT#DF(FF(N=1),EP5) ~MU*GG(N=1);

* UAITE GGCN) ~NUDOT*DF(GG(N=1),MU)+SIGMADOT*DF(GG(N=1),SIGKA)+
* EPSDOT#DF(GG(N=1),EPS)+FF(N=1);

* FF(N-1)+03 GG(N-1)=0

#END;

FRC() -0

G6C1) « 1

FF(2) » - MU

G6(2) = O

FF(3) = 3*%MU*SIGMA

66(3) = - MU

2
FF(4) = MU*(MU = 15%SIGMA + 3%EPS)

GGE4) = G6*MUSIGNMA
2
FF(5) = = 15%MU*SIGMA®(MU = 7#SIGMA + 3%EPS)

2
GG(S) = MU(MU = 4S*SIGMA + 9*EPS)

Fig. 9. The f and g series obtained by recurrence using REDUCE.
The user has typed the lines preceded by an asterisk and
REDUCE replies by typing the remaining text. Only part of
the computer output is presented.

F_AMD 6 SERTCS

NEFLIST (((a 1) (2 2) lr ﬂ) var
CSET (U (= (® (3 7) A A) x
CSET (V (s C (= (o l?\) l‘" B2 100
CSET (W (o (= (® 2 A)) (= (& (2 1) B C))))

(LAMADA () (PROG_(X F0 6A FN GN)

(SETG FN (QUOTE (7 1))y

(SETA 6N 9) (SETQ X D) A (ARBPRT (AU

;AR"DRT (AUNTE METRIC) l<=T’/; GO :,,,‘, OTE, METRIC) (SET FO Fi))
COND_((ENUSL (SETA X (ANNY X)) 15) (RETURN (FWPAGE 7)..)))
(ARRTERPRT (UNTE HETKTA)) (ARATERP

(SETA FN (STUP (L rST PLISS (ARATERPAL (QunTe weTRICD) S
(LIST STAR (COPY 1) (GTeF (2OPY'F0) 1))

(LIST STAR (COPY v) (iTEF (AOPY FO) 2))

(LIST STAR (COPY w) (DTFF (GOPY'FD) 3))°

(LIST DaSH (LIST §TAR (AUNTE A) (coPY S0

(SETQ GN (STHP (LyST PLUSS

(LIST STAR (COPY 1) (vTeF (roPV 6m 10)

{LIST STAR (COPY'v) (DIFF "(COPY'GO) 2))

(LIST'STAR (COPY W) (DYFF (ROPY 0)°3))

(COPY FO) §))

(60 A) D) ()

STOPININ))Y" -

3 2 5 2 23 3
633A +8B82BCA *10395AB +1575ABC =3150A B =9450ACB

2 22 2 4 . -2-3%
315¢ACB +630A R =225AC- 472548 =54CA ~A-

Fig. 10. The f and g series obtained by recurrence using the CLAM
system. The program is written in LISP and calls the LISP
routines of which CLAM is composed. The results for f;
and g, are presented.

results for this problem using SCRATCHPAD, 1AM, SAC-1
(Collins, 1971a), REDUCE, CLAM (D’Inverno and Russell-
Clark, 1971), ALTRAN and CAMAL respectively. The reader
should have no trouble in understanding these programs and
careful study of them will show the ease with which this type
of problem can be programmed for the various systems.
However, the problem does raise a technical difficulty and
illustrates some of the points made in the introduction.

First let us discuss blow-up. Blow-up of two kinds occurs in
this problem. The expressions f, and g, become very long and
the numerical coefficients of the several terms become very
large integers. Neither of these difficulties can be conveniently
avoided but it is clear that in order to calculate f, and g, we
require only the previous series f,_; and g, _ ;. We can therefore
arrange to save some computer memory during the calculation
by setting f,_; and g,_, to zero as soon as we have used them
for the generation of f, and g,. This procedure has been adopted
in the REDUCE program (Fig. 9) and could of course have
been incorporated into the other programs. However, it

Volume 15 Number 4

PRICZDUR® MAIN

AL3EBRAIS (Ailee,Bilee,Crlee) F,0,U,V W
ARRAY (0129) F,0

INT
AL 'nul Dlrr

ALSEBRAIZ DIFF

P(8) ™ 13 G(0) = 05 U = =3eAeB; V = C = 2eBae2
W = =Ba(h ¢ 2¢C)

DO ¥ = 1,19

P(N) = UsDIPP(P(%=1),}) ¢
VeDIPF (F(N=1),B) +
WeDIPP(F(%-1),C) =
A*G(N=1)

S(K) = UsDIPP(G(N=1),A) +
VeDIPF(G(N-1),B} +
NeDITF(A(N=1),C) ¢
r(R=1)

1F(X = 1) WRITE P(1),6(1)
IP(N == 2) WRITE P(2),0(3)
IF(K == 19) WRITE F(19),6(19)
DOEND

END

Fig. 11.

i

The fand g series obtained by recurrence using ALTRAN. In
this program the variable 4 represents u, B represents o and
C represents €. The quantities F and G are declared to be
arrays of 20 elements and they, together with U, V' and W,
are declared to depend upon 4, B and C. 4, B and C may
occur to any power up to 100. The ALTRAN routine for
differentiation is requested and the f and g series are com-
puted in the obvious manner. The conditional statements at
the end of the program arrange to write out f, and g fi
= 1, 2 or 19. No results are presented for this program.

~v PRICRAN o

14
| ke use the conventions
| a = wu, be> sigaa , c =» epsilon
riel = 1, ale] = ¢; v = =3aby V = ce=2bby W = =b(a+2c)
FOR N = 111319
PIN) » UVAP(N=1])/da & VAF(N«1]/4D + WAP[N=1)/4c - ad(N=-1]
3(K) = UAG(N-1]/da + VAG(N=1]/4b + WAGs(N~1)/dc + Fy(N-1'
REPEAT
PRINT(tP(19]® ' P(19),CRLF,'G(19]= *,a[19],CRLP) ~

rl191 ans)

sTOP
START 1

Begeoe)/:sdny wouy pepediumBa

Fig. 12. The fand g series obtained by recurrence using CAMAL.
the first line of the program the arrays F and G, each of 29
elements, are declared. Part of the results of this progra@l
appear in Fig. 13.

"dn

Pl19]% <22561587455281874abC?8+349188823373676008a%2bat7
+18352755073157400a'3bC?6+441307687222298800a14bC?5+412348138802838815bC14
+17136265618168a16bC?34249276379960a17bc?2+4863831808n16bC+262143819D
~1263448897495785090ab13C?7-1935953399506203000a12h13c76-1032799925837087160at3btacts
~242503303296662100A14bT3C 4~ 2&10234]16124960.!'5b'!hv3-12207320800376091'sbvgea,
=21120754139100a17b?3C-90319036500a18b73420341527249682138500ab "5
01054067582162!)!7voo-'1b'5='501‘93049!302915114500.v;n-scv4.;3;;53591.‘5.‘,.,...'.b-ggv,
+334370400695585100015b75C12413843215646533400a%6D150+4175418438510700817b15
ab?'7c?15-191237185993838985000a2bt7c4
13b17C13-16458387913622655000a14b17C12-1301110144780446000a75b17C
17¢5448623376450572812508b19C14+461626931895695666500082b9C?
00a73b79C124323206979589453960008'4D19C+1460201669317140750815b19
11C13-1037144834 *2bt11ct2

[woo/wo!

~11491642017677571
=275663787371139467500a73b711C~21423882877649752500a14b11141370157317492325862500ab%13c*2
48704520R4353948195000a'2b713C+123582816871856642500a'3b'13~861241742423747685000ab%15¢C
~2870605%0007915895000a72b"154221643095476699771875ah?17>

Fig. 13. The quantity f;, as printed by the CAMAL program
Fig. 12. Here the correspondence a = u, b = o and c =
has been employed.

698y /S| /o101e/|U

AT5%C195195%B12 = 203i%C)

+ ATL(SLI0EO50XBI4 = 12072060%B12%C + 164610%Ci2) = A3 v
#C1640LEL630NBI6 - 1122971850%B14ARC + 159720570%B12%C12 = 24B0956+%C13)
LA

#(YuELI36125%DTE = 13315121820+B16%C

¥ SLIEGAUEESOFBILKCTI2 = §18918300%B12xC13 + 9951525%C14)
N1B7495105T54B110 = 194628083754B184C + 21709437750¥B16+C12

~03e5120150RBI4NCTE + 6IES12675kB12#C14 - 9823275%C15)

Fig. 14. The quantity f, as printed by the IAM system using t|
program of Fig. 7. Here the correspondence 4 = u, B =
and C = € has been employed.

qv%'oz Iudy 61 uo 1senb Aq zoolge/

HE KEPLER ECUATIONS

UCE THE SIMPLIFICAIION HULES FOX SIN AND CO&S.

v
#7048 ALL UsU LET COSCUIXCOS(UI=(COSCU+VI+COL(TU=V)I /25

ALL UsV LET SINCU)#SINCV)=(COS(U-V)=COS(U+VIN/2;5

40 ALL UsU LET SINCUI#COSCU)=CSINCUSVI+SINCU-UY)I /25

ALL UsV LET COSCUI®SINCUI=m(SINCUSV)+SINCV-U)) /25

ALL U LET SINCU)12u(1-COS(2%U))/25

Cua ALL U LET COS(U)12m(1+COSC24%U))/25

v THEZ STAWTING VALUE 1S As0;

A0

w0 A=0:3 DO BEGIN

A*2)m0;

-}.ﬁ;l\.(u)#n ~A12/2+A14/24) +EXCOSCUI KCA=AT13/6+AT5/ 12033
TCK

wENSS

Fig. 15. The solution of the Kepler equation (2.3.1 — 1) by the algor-
ithm (2.3.1 - 4) using REDUCE.

367

Table 1 A comparison of various algebra systems computing f and g series

//:sdy Wou) papeojuMo(]

ede,

dnoolwep

SYSTEM MACHINE WORD CYCLE TIME MULTI- ORDER OF COMPUTING MEMORY NOTES
LENGTH IN u SECS PLICATION fAND g TIMEIN REQUIRED IN
IN BITS TIME IN p SECONDS UNITS OF ONE
SECS THOUSAND
WORDS
ALTRAN GE 625/635 36 1-5 6 19 158 51
Hall (1971)
CAMAL TITAN 48 4 7 19 6-4 3-8 For this program
Bourne and Horton only fio and g4
(1971b) were printed
CLAM CDC 6600 60 0-8 1 15 10-6 30
D’Inverno and
Russell-Clark (1971)
FORMAC IBM 7094 36 2 10 12 58-2 Not available
Xenakis (1971) :
Korsvold’s IBM 7094 36 2 10 12 178-2 Not available
system (1965)
MATHLAB PDP 10 36 1 10 12 20 Not available
Engelman (1971)
PM IBM 7094 36 2 10 27 105 Not available This program
Collins (1966) printed all the
results
REDUCE PDP 10 36 1 10 10 20 50 A large part of
Hearn (1970) the time was
spent printing all
the results
SAC-1 CDC 1604 48 4-8 36 . 12 759 21 Standard
Collins (1971a) FORTRAN
system
SAC-1 CDC 1604 48 4-8 36 12 385 21 The list process-

Collins (1971a)

ing routines
were written in
assembler code
and the re-
mainder was
written in
FORTRAN

Table 2 The computing time and memory requirements of CAMAL when computing / and g series on the TITAN computer whos

word length is 48 bits and whose store cycle time is 4 micro seconds. These figures include 2000 words for the program

ORDER OF f AND g

COMPUTING TIME

MEMORY REQUIRED

NOTES

€

IN SECONDS FOR EXPRESSIONS
IN UNITS OF ONE
THOUSAND WORDS
10 0-4 03
11 0-4 0-4
12 1-0 0-5
13 1-0 0-6 At this point double length fixed point arithmetic is
required
14 1-4 0-7
15 2:0 09
16 30 1-1
17 4-0 1-4
18 50 1-6
19 6-4 1-8
20 8-0 20 At this point single length floating point
arithmetic is introduced
25 17-0 30
30 28-4 40
368 The Computer Journal

202 1udy 61 U0 }sanb Aq 2091 G€/29€/v/G |/101e/|ulWod/WoD

A - EXSINCU)

A - (ExCE#SINC2xU) + 2%SINCUI)I/2
5

2 2
A= (- E«(R *SINCU) = 3#E SINC3xU) = 4XE#SINC24U) - BxSINCUY))/8

3 3 2 2
A = (Ge(BeE 4SINC4¥U) - 4¥E #SIN(24U) = 3«E *SINCU) + 9%E *SINC2#U)

+ 12#ExSIN(2%U) + 24%SINCUIYI/24

Fig. 16. Successive approximations to the solution of the Kepler
equation (2.3.1 - 1) produced by the REDUCE program
displayed in Fig. 15.

PRIGRAR o Al10)

Alo)=e

POR Ke9i113
YAXORDER=K+1 N
A[K+1]weSUBSTITUTE(u,A[K],u,sin{u) /Ke1)

| The SUBSTITUTE function replaces u by u+sAlK) in the

| expression sin{u). The series is expanded to K+l terms only
PRINT{'A(?,K+1,') ',A(K+1),CRLP)

The solution of the Kepler equation (2.3.1 — 1) by the algor-
ithm (2.3.1 — 4) using CAMAL. An array of 11 elements
named A is declared on the first line of the program and
successive approximations to the solution are stored there.

should be noted that in order to make use of this device with the
SCRATCHPAD system, it would be necessary to use the
conventional program features provided by that system and to
abandon the elegant mathematical formulation shown in Fig.
6. The program facilities of SCRATCHPAD are very similar
to those of the IAM system (Fig. 7). It is important to under-
stand that the decision to make free the memory occupied by
the expressions f,_; and g,_; must be taken by the user of the
algebra system, because the systems themselves have no way of
discovering that the expressions are no longer required. This
aspect of programming for an algebra system has no parallel
in ordinary numerical programming where all the variables
occupy the same small amount of computer memory. However,
it is a point that the algebra programmer must learn to keep in
mind at all times during the programming of his problems
because it will frequently make the difference between the
success and failure of his calculation. The CAMAL system
provides a facility to ensure that this idea is easy to implement.
In the CAMAL program (Fig. 12) the variables F[N — 1] and
G[N — 1] are written F:[N — 1] and G:[N — 1] in the
assignment to G[N]. This notation instructs the CAMAL
system to discard the corresponding expressions after they have
been used in the particular assignment, and is a shorthand
designed to ensure that the meaning of the program remains
clear. Of course the responsibility of where to place the colons
rests with the user. As an example of the difference that this
simple device makes to the performance of an algebra program
the CAMAL system requires a total of 3-8K words of memory
to generate f;, and g,, but if all the series are retained in
memory it can only manage f; , and g, in the same space, Of
course, should all the earlier f and g series be required they can
always be output to backing store by the various systems and
the immediate copy discarded to save memory in the manner
described above.

Another difficulty that arises in the computation of f and g
series is that of the layout of the results. Fig. 13 shows the
CAMAL output for f; 4. This is not easy to understand but it is
doubtful if it would be significantly improved by a two-dimen-
sional layout. The printout of f;, obtained from the IAM
system and reproduced in Fig. 14 is better simply because blank
lines are introduced between the terms. It is a subjective decision
which of these forms a particular individual prefers but, in the
authors’ opinion, two-dimensional output is not of very great
value for the practical problems of science at present.

It was mentioned in the introduction that there are vast
differences between the computation time required for various
algebra systems attempting the same problem. In Table 1 we
give a comparison of several systems for the generation of the
fand g series together with the names of the machines on which
the experiments were conducted. In Table 2 we give details of

Volume 15 Number 4

the CAMAL system for the generation of f and g series to
different orders to aid a fair comparison. The huge range of
times indicated in Table 1 is quite typical over the whole range
of problems and systems discussed in this paper.

2.3. Simple repeated approximation
We turn now to the study of two simple examples of the solution
of equations by the method of repeated approximation using an
algebra system. We show how it is possible to derive, for each of
our examples, an approximation procedure and how this may
be programmed for various algebra systems. The methods used
would not be suitable for hand calculation because they would
involve the mathematician in extensive algebra that he could
easily avoid by the use of more powerful mathematical tech-
niques. However, they are entirely suitable for machine cal-
culation because they are much easier to program than the
more powerful methods, and the computational labour is
undertaken by the computer. The great simplicity of the
methods illustrated here demonstrates that manipulative
algebra systems are very powerfu»l tools indeed for this type of
calculation. Our objectives in presenting these examples are t@
illustrate the nature of the work involved in solving each probs
lem, and to indicate those parts of the total labour that ares
performed by the machine. For each problem it is necessaryrl
to devise, by hand and without reference to a computer, ai‘;
certain approxnnatlon procedure to solve the equation. Onc@
the procedure is known it can be programmed for a particular;
algebra system; that program is then run and the algebral(g
results obtained. The derivation of the approximation prow
cedure is frequently a very complicated task in interesting case@
and at present very little work has been done towards aut0-3
mating the process.

2.3.1. The Kepler equation
Here we are concerned with the solution for E, as a function o
u and e, of the implicit equation

E=u+esinkE, 2.3.1-1)

where e is to be regarded as a small quantity. Equation (2.3.1 =
1) is known as the Kepler equation. The problem is capable o

e/|ulwoo,/Troo dno-ol

formal solution in terms of Bessel functions in the form g
© I}

: (o))

E=u+2ZM. (23.1-2)3

n 9

n=1 G>

In order to obtain E as a function of u and e correct to the IOtHc‘,’
order in e it would be perfectly possible to sum the first 105
terms of this series using a computer. However, consider what
is involved in this procedure. We must write a program to*
generate the individual Bessel functions and arrange to 1gnore3
those terms of order k > 10 that arise in e. Then we mus
write a program to form the sum indicated above. Such &
program is not difficult to write but it is even easier if we adopty
a repeated approximation procedure. From the Kepler equa
tion it is clear that E = u to the zero order in e. Suppose E =
u + A, is the solution correct to order k in e. Then clearly

Ak+1 =e Sin (u + Ak) (2.3.1 - 3)
where the right-hand member of equation (2.3.1 - 3) is to be

taken only to order k + 1 in e. Thus an approximation algor-
ithm may be stated as follows

E=u+ lim 4,
where
4’1 0o — (]
and s (23.1-4)
. A A :
Ay =‘[es1nu{1——-!"+4—!"— }
3
+ecosu{Ak—i"+...}])
! k+1

Al esin(u)

Al2) asin(u)
*1/2e'281n(2v)

Al3) <o=1/3ct3>sin(u)
+1/2e284n(2u)
+3/8e'38in(3u)

Ale) <e-1/8e'3>sin(u)
#<1/2012-1/6014>51n(2u)
*3/8e%331n(3u)
+1/3et4sin(4u)

Als) <e=1/Ce?341/192¢S>s1n(u)
#<1/2092-1/68%4>8in(2u)
4<3/8013-27/128¢15>31n(3u)
*1/3e%4sin(4u)
+125/38421534n(5u)

Ate) <e=1/0e?3+1/192e'5>s4n(u)

#€1/2072-1/6€14+1/4816>51n (2u)
+<3/8013-27/128e'5>84n (3u)
4<1/30%4-4/15¢16>34n(4u)
#125/3842534n(Su)

/] +27/80et6s1n(6u)

Fig. 18. Successive approximations to the solucion of the Kepler
equation (2.3.1-1) produced by the CAMAL program
displayed in Fig. 17.

<o x._n’ INTRODUCE THE SINPLIFICATION FOR PRODUCTS OF COSINESS
L U,V LET COS(U)*COS(V)=(COSCU+V)+COS(U-V))/2;

T GIVE THE 7IRST APPROXIMATIONS TO RHO AND C;
COS(V);

CO¥MENT AND OUR PARTICULAR VALUE OF THETA;
THETA-1 +2#14+X12%C0S (20U) +M1 4%COS(4nU) +M16%COS (63U 5

FOR X-2:6 DO BEGIN .
CGXIMENT ARRANGE TO KEEP ONLY TERMS OF ORDER LESS THAN Ke2 IN M
LET NT(K+2)=20;

Y~DF (RHO, U, 2)+2%C#DF (DF (RK0,U),V)+C12«DF (RHO,V, 2)+ THETA®RHO;

CCMMENT DEAL WITH THE CORRECTION TO THE EIGENVALUE;
LET COS(V)=@; TEMP-Y; CLEAR COS(V);

NP Y-Y-TEMP;

/(24ACOSCV)) ;5

COMNENT NOW DEAL VWITH THE OTHER RESONANCE TERNS;
COS(-2U+V)=@; TEMP-Y; CLEAR COS(-2U+V);
P=Y-TEMP; Y-Y-TEMP;

RHG-RHO-TEMP/ (4%M);

COMMENT FINALLY DEAL VITH THE NORMAL TERMS;
FCRALL N LET COS(2#N#U+V)=COSC2oN*UsV)/ (4xN®(N+1));
TEMP=Y; CLEAR COS(2¢NeUsV); Y-TEMP
WRITE X+1,"TH APPROXIMATION ", RHO-RHO+Y,
CLEAR X1 (K+2)

END;

Fig. 19.

"WITH EIGENVALUE *,C3

The solution of the Hill equation (2.3.2 — 1) by the algorithm
(2.3.2-6) using REDUCE. For this example we have
chosen

3
0=1+2m+ > m*ncos2nu.

n=1

PROGRAK 1 1l6)
I &e>o
| tho => 2
| theta => x
I"The {nitial values of the approxiration
Z=acos(v)
ce1 .
X=142e¢012c08 (2u) +e?4cos (4u) +et6cos (6u)
POR K=oi116
! Arrange to keeP only terms of order less than K¢2 in e
SELECT=<e? (Ke]1)
| *u veans Aifferentiate wrt u,
YeZeous2C(Ieu) sveCCZrOVXZ
- | We now take the expression Y to pleces term by tera
11 =2 IP Y=o
! get the NEXT §armonic term,remove it from Y and place it in B
BEHREXT(Y)
"1 And £ind the coefft of u a
HPARSE (AT TIe1) of u and v,that of u 1s 2n and that of v {s +-]
! 1[1) contains 2n, the coefft of y,

*v is second derrivative wrt v

1{2] conteins +
| The naxt line arfanges to aca) witn' the tru:uf:;nut:ont:hlgoéiﬁntt v

| alvays makes namely cos(=x)mcos(x)

I{1)==I{1) IP I(2]<0

| Calculato K using integer division by 2

Well1)s2

| Deal with gpectal cuu

*3 IP Nug) <4 IP Nua

! And correct rho An all other cases

z-zulul(‘nnl

-1
24 rnxlr(xon ftn approximation to rhoi,CRLF,CRLF,Z, |
with eigsnvaiue 1,c,CRLF,CRLP
REPEAT
sTIP

| Correct the eijenvalue
34S=Ce(1/2)PCOZFFT(B) /a; =)

| Cofrect z 1N THE CASE OF THE RESONANCE term in cos(- 2u¢v)
nl-z-l/(ulr -1
STA!

Fig. 20. The solution of the Hill equation (2.3.2 — 1) by the algorithm
(2.3.2 - 6) using CAMAL. In the first line of the program the
index array / of seven elements is declared. This array is used
by the function HPARSE (B, I[0]) one of whose arguments
B must have a value of the form

Pi';‘s Gu+jv+kw+i'x+jy+kz)

where P is a polynomial coefficient, i, j, k, i/, j’ and k" are
integers and u, v, w, x, y and z are symbolic variables. The
result of HPARSE is to load the integers i, j, k, i’, j’ and k’
into the array 1. For this example we have chosen

3
0=1+2m+ > m?cos2nu
n=1
and used the correspondence
e=m.

370

Here the large parentheses and the subscript £ + 1 indicate
that terms of degree greater than k + 1 are to be ignored in the
calculation. It is normal to express the result of this computation
as a linear expression in the trigonometric functions and con-
sequently when the calculation is performed by a computer it is
necessary to carry out the linearisation of these functions given
by

sin u sin v = 4(cos (u — v) — cos (u + v))

cosusinv = 3(sin (u + v) — sin(u — v)) (2.3.1-5)
and

cos ucos v = ¥(cos (u + v) + cos (u — v))

for all 4 and v.

Let us now consider the programming of the algorithm
(2.3.1 - 4) for two algebra systems beginning with REDUCE.
The REDUCE system, in common with many others, is aware
of the trigonometrical functions and implements automatically
such simplifications as sin (0) =0, cos (0) = 1, sin (—u) =
—sin # and cos (—u) = cos u. However it is not aware of the
relations (2.3.1 — 5) and so we define the simplifications required
on these functions by means of the LET statements at thea
beginning of the program presented in Fig. 15. This ability to2
define a simplification procedure is an extremely powerfub
feature of REDUCE that has been duplicated in several othet%
systems. In the next part of the program we set the initial:
approximation 4 to zero and then begin the iterative loop. TheS
first operation in the loop is to arrange for the roundmg downz.
to order £ + 1 in e to occur automatlcally, and this is done b}P
means of another simplification using the LET constructlon,n
namely LET E1(K + 2) =0. Following this statementm
whenever terms in e of order greater than k + 1 are constructe@
they are automatically set to zero until the CLEAR instruction®
is encountered. The body of the program simply arranges tog
compute the right-hand member of the third equation of3
(2.3.1 -4) in the obvious way and to write out the results3\
shown in Fig. 16. When the algorithm (2.3.1 — 4) is 1mplemente@
using the CAMAL system the program is slightly shorter sinces
CAMAL implements the simplification rules between cosineX
and sine (2.3.1 — 5) automatically and also provides an auto-2
matic implementation of the expansion of sin(u + A4,) in;
equation (2 3.1 -3). The rounding down to the partlcularh
order in e is performed by the MAXORDER statement in the>;
CAMAL program Fig. 17 and the expansion of sin (v + A,
is performed by the SUBSTITUTE routine. The resultg

produced by CAMAL appear in Fig. 18. N
o
<

2.3.2. The Hill equation %

In this example the problem is to determine a periodic solution®

to Hill’s equation %

p+0p=0. (2.3.2—1);2

where dot denotes differentiation with respect to time. ES
For the purpose of the example we may assume that §
~

0 =0, + 3 0,cos2nt), 0, =1 + 2m + O(m?),
n=1

and that 0, are known polynomials in m of degree 2n. Here m
is a small quantity. We seek a solution in the form

20‘,0 A, cos 2kt + ct + &)

=-

(2.32-2)

involving arbitrary constants 4, and £ and a disposable param-
eter ¢. The quantity ¢ appears as an eigenvalue of the problem
and is used to ensure that a periodic solution is obtained. We
shall proceed in powers of m and observe that to order zero in m
we have
p+p=0

with solution

= A, cos (cot + &)
and so

The Computer Journal

(:0 = l .

Assume now that the solutions p, and ¢, satisfy equation
(2.3.2-1) to order k in m and write

Pr+1 = Pr T &,

Crr1 =C 1.
Further, write u for ¢ and v for ¢t + & then (2.3.2 - 1) may be
written
Eyuu + 26,40 + Epp + E=2nC0s (V) — Yy 2.3.2-3)
where
Yk+1 = [pk un T 2Ckpk,uv + cipk;vv + pk9]k+1 s (232_4)

&,,8 = 0%¢/000P and the parentheses and subscript mean that
terms of order greater than k£ + 1 are to be omitted. From
equation (2.3.2 - 4) it is clear that

Y= 3 BycosQmu+v) (232-5)

n=—oao
where the B, may be easily determined from p, and ¢,. The
solution to equation (2.3.2 - 3) is then obviously

. — ZB cos (2nu + v)

4n(n + 1)
[+ o]
and this summation must exclude the resonance terms corre-
sponding to n =0 and n = —1. The n =0 term may be
removed by setting
n = 1Bo/A,

and this yields the correction to the eigenvalue c. The remaining
resonance term may be removed by adding to p, a complemen-
tary function &/ cos (2u — v). This term, of degree k in m, will
not affect the solution to order k but will contribute an amount
4mof cos Qu — v) to Y., as a little algebra shows. Thus
choosing &/ = B_,/4m ensures that the resonance terms are
eliminated. We have therefore, the following algorithm for the
solution of the Hill equation.

po = Aocos(t+ p),co=1 a
B, cos 2nu+v 1
Pr+1 = Px + Z 4n(’§+1)) EB_I cos (2u—v), } b
Cr+1 = Cx + 3Bo/Ao c
(2.3.2-6)
and the terms in the summation exclude the cases n = 0 and
n = —1. It should be noted that this algorithm ensures that

the result is correct to degree k in m only when the terms of
degree k + 1 have been partly determined.

To implement the algorithm given the initial values of p, and
¢o (2.3.2-6a) it is simply necessary to compute Y, from
(2.3.2 - 4) and arrange it in the form (2.3.2-5). The B; are
then known and so the expressions (2.3.2 — 6b and c) may be
easily constructed. Repeated application of the algorithm
yields the result to any desired degree in m. Let us now examine
the REDUCE program for the implementation of this algor-
ithm shown in Fig. 19. As is usual in problems of this type we
begin with the simplification rules for cosine. Then the program
proceeds in the obvious way making use of the statement
LET M 1 (K + 2) = 0 to remove unwanted terms. However,
a difficulty arises when we need to generate from Y.,
equation (2.3.2 - 5) and variable Y in Fig. 19, the corrections to
p and c. It is necessary to separate the terms of the summation,
treat the B, and B_, terms in their particular ways and re-
assemble the remainder according to equation (2.3.2 - 6b).
This operation can be performed using the LET facility of
REDUCE and this is the means adopted in the program. A
copy of the variable Y with the term in cos (v) suppressed is
obtained by the sequence LET COS (V) = 0; TEMP « Y;
CLEAR COS (V). Then the term-in cos (v) can be obtained

Volume 15 Number 4

zta uppraximation to'rho
xcos{v)

vith eigzavalie <lt+c>

2th approxinatioa’ o rno

azoa(v)
t

<l+e-1/2e%2>

I QxaniaaL oa o rho

aco..(v)
+<1/1Ghe12-1/32a013>c08 (2usv).®

=<1/83e+1/168012>-93 (2u=v}

-i/123ae?3c08 (6u=v)

With clgeavalue <lee-1/2e'2+415/32213>

¢tn approxination to rho

acos (V) .
+<1/15uet2=1/32ae13+1/32ne14>c0os {2uvV)
~<i/Bae+1/16ae?2-15/512a613>cos (2u=v)
17/7582214C08 (4utv)
=<1/128a9813=13/256ae14>c05 (4u=V)

with eigenvalue <1+e-1/2012+15/32813-19/32014>

5th approxization to xho

aeos (V)
¥<1/16ac12=1/32ac73+1/320014=93/2548aetS>cos (2usv)
~<1/8ac+1/16a¢12~15/512a613+29/.024aet4>con (2u=v)
+<17/7682e14=37/46068ac15>C0s ((uvv)
=<1/128a213~13/256a€14=463/8192ae15>C05 (4u~v)
~17/6144ae15c08 (6u=v)

+ with eigenvalue <l40-1/2012+15/32a13-19/32e14+1695/2046¢15>

sth ppraxifation to rho

acas(v)
+<1/155e12-1/32a01341/320014=03/20480815+652/122884016>C05 {2usV’
=<i/8a0+1/16ae12-15/512a073+29/1024ac 14~ 391/15)34n='5>cosq 2u=v)
Fe17/768a014ns 7/46082e15+497/138242016>C08 {4+
<i/128a813= ll/zseanid-463151§2a"5~10$/409650'S>cns(Lu-v
*333/73728n9'6e05(6u0v)
.=<17/61448015~59/33722816>C05 (6u=v)

Fig. 21. Successive approximations to the solution of the Hilb
equation (2.3.2-1) produced by the CAMAL pr
displayed in Fig. 20. The correspondence ¢ = m is employed =

| papeojuMo(]

e3e/:8d

independently by the assignment TEMP « Y — TEMP;8
A similar technique is used to obtain the term in cos (2u — v)a
and hence RHO and C are updated to their new values by3
elementary methods. An alternative technique is employed byo
CAMAL because that system provides facilities which enablcc
the several terms of the series Y, ., ; to be removed and examine 8
independently. The annotated CAMAL program appears ins
Fig. 20 and the results in Fig. 21.

3. The application of algebra systems

3.1. Introduction
Two essentially different paths towards the construction ofa
algebra systems have been followed during the past decade.; 3
On the one hand computer scientists developed systems too
perform algebraic manipulation with the intention of addressing®
a wide problem field. These workers soon discovered the limit-2
ation of computers in the area. They identified the ma]or'\’
problems of implementation, and their work then began tQQ
concentrate on the resolution of these problems. Meanwhile a3
quite separate group of people, drawn from disciplines for*
which the computer is no more than a necessary tool, encount-_.
ered problems in their own fields that required huge amounts;
of algebraic manipulation for their solution. These people set=.
out to build algebra systems to solve those problems and, in
those few cases where the major problems of machine algebra’®
were encountered at all, avoided the difficulties by any device
at their disposal including fundamental restatement of the
initial problem. Subsequently these workers have either re-
turned to their original science when their problem was solved,
or in some cases have attempted to generalise their algebra
systems to a wider problem area.

The two groups have always learned from each other and
each have had their systems improved and extended by the
experience obtained from the alternative approach. However,
this process is far from complete and currently there is no
single algebra system that can successfully perform all the
calculations that have been described in the literature. It has
been demonstrated by physicists that algebra systems are
capable of calculations that enable significant original work
to be undertaken in three main fields. These fields are quantum
electrodynamics, celestial mechanics and general relativity and

/e|0!ue/|U.fLuo

3n

reviews of the applications of algebra programs to these dis-
ciplines appear respectively in Hearn (1971), Jefferys (1971a)
and Barton and Fitch (1971) together with a review of all three
fields in Barton and Fitch (1972). However, while the problem
area of many general purpose algebra systems in principle
includes some or all of the above fields there is currently no
single system that is able to make real progress with the more
difficult problems of all three. There remains at present a
considerable gap between the capabilities of portable general
purpose systems and the requirements of the user community.

A complete list of references to all of the individual appli-
cations of algebra programs easily contains many hundreds of
entries and we shall confine ourselves here simply to references
to reviews of such work. Applications that lie outside the three
areas of physics named above are difficult to classify usefully
and about all that can be said is that they are drawn from many
separate disciplines in the fields of physics, mathematics,
engineering and chemistry. As we mentioned in the introduc-
tion, reviews of these applications may be found in Sammet
(1966a, b, 1967, 1968, 1971), Hyde (1964), Collins and Griesmer
(1966), Tobey (1966a, b), Raphael et al. (1968), Marks (1968),
Bond and Cundall (1968) and Brown (1969a). If we are to
generalise then it is clear that the broad field covered by the
above reviews represents the applications area of general
purpose systems such as FORMAC and ALTRAN while the
more specialised fields covered by the reviews of Hearn (1971),
Jefferys (1971a) and Barton and Fitch (1971, 1972) represent
the applications area of systems designed with a more specific
problem field in view. The former reviews cover a broad class of
applications giving rise to relatively small quantities of alge-
braic manipulation while the latter deal with more specific but
commonly huge algebraic calculations.

It is clear from the literature that applications have originated
either around a particular system or within a particular problem
area. In the first case the existence of general purpose systems
has led to a proliferation of separate applications, while in the
second a particular problem area has led to a proliferation of
algebra systems designed to deal with problems in that area.
Over the broad applications field FORMAC (Xenakis, 1971)
and ALTRAN (Hall, 1971) have been most successful. In
quantum electrodynamics REDUCE (Hearn, 1970) is clearly
in a pre-eminent position with about a hundred publications
acknowledging its use while about a dozen other systems have
been constructed to perform the algebra involved in this field.
These are listed in full in Barton and Fitch (1972). In celestial
mechanics the position is less clear. CAMAL (Bourne and
Horton, 1971b) is probably the most powerful system although
the major work in the field has been performed using two little
known systems namely MAO and ESP (Rom, 1969, 1971) and
also using a system developed by Chapront (Kovalevsky,
1968). Again about a dozen other systems have been developed
that are listed in Barton and Fitch (1972). Finally in general
relativity where a general purpose efficient system is essential,
FORMAC (Xenakis, 1971) has been successfully used but the
major applications were undertaken with CAMAL (Barton et
al., 1970a) and ALAM (D’Inverno, 1970). Although a little
slow, REDUCE has been successfully used for calculations in
both celestial mechanics and relativity.

In order to produce an algebra system that on the one hand
provides a comprehensive range of facilities and so is capable
of application over the entire problem field while on the other
ensuring that it is not prohibitively expensive we must seek
both to improve the runtime efficiency of the general systems
and also to extend the power of the efficient systems. However,
the difficulty here is, in part at least, one of measurement.
Workers in the field generally have their own opinions as to
which system is in some sense the most efficient but hitherto
these views have rarely been supported by real evidence. Tobey
(1971) has firmly pointed out the importance of making

372

exact measurements of the runtime activities of algebra
systems in order that some comparative judgement of their
efficiency may be obtained and indeed his remarks have already
initiated research in this field (Fitch and Garnett, 1972). One
way in which we might seek to measure the performance of an
algebra system is by running a series of bench mark tests using
programs drawn from a wide but well-defined problem class.
However, in this type of measurement a serious problem occurs
because before such measurements can be undertaken it is
necessary to define a suitable problem base and to assemble an
appropriate suite of programs. The danger is that in assembling
such programs there is a strong tendency to concentrate on
elementary problems of the type discussed in Section 2 simply
because they are so easy to understand, and to ignore the huge
manipulative problems of physics with their attendant data
processing and store management difficulties. An objective of
this section is therefore to present two problems together with
appropriate programs that can be used in any subsequent
examinations of system efficiency. These problems have been
chosen because they are representative of the calculation
performed by workers in the relevant disciplines (celestig
mechanics and general relativity); because they may be madg
very simple by suitable choice of input data, and therefore caﬁi
be run with any system provxdmg the elementary mampulatlve
facilities that they require; because they can alternatively be
made very complicated by a different choice of the input data_,
and are therefore capable of placing severe strains on an algcbr&f
system; because to some extent comparisons are already avalk
able for these problems and, finally, because they can b@
easily expressed in terms of a few equations or a simple pros
gram and they do not require an extensive understanding of thg
physics from which they are drawn. The programs presented
for these computations are respectively written for REDUCE
and SCRATCHPAD because these systems are widely know
and the programs can be easily understood.

3.2. A problem for a Poisson series processor

e/ufwoo/ o

series is a series of the form

Q(x, y) = Z oo ()

A Z0915€/29

where x is a vector of polynomlal variables, y is a vector ¢f
trigonometric variables and j is a vectdr of integers. P; is &
polynomial indexed by j in the polynomial variables x. The
coefficients of these polynomials may be either rational numbers
or floating point numbers, and sometimes P; is allowed tg
include negative exponents. These Poisson series are closea
under the operations of addition, subtraction, multlphcatlorg
differentiation and, if the polynomial variables are treated as
small quantities and certain assumptions are made, under
division and substitution. Further, provided that there are no
side relationships between the variables, every Poisson series
can be written in a unique canonical form. Thus the really
difficult problems of symbol manipulation do not arise when
manipulating Poisson series. Nearly all of the truly enormous
calculations of celestial mechanics fall into this area of manipu-
lation and it is for this reason that Poisson series manipulators
are important.

As an example of the use of a Poisson series manipulator we
present a calculation drawn from the theory of the motion of
the Moon. The notation that we adopt will be that convention-
ally used in celestial mechanics but we shall avoid the use of
technical expressions by presenting the problem in terms of
equations only. The fundamental problem is to obtain the
expansion of a certain function R in terms of certain variables.

The Computer Journal

The variables concerned are called e, €, y, and a/a’ and these
are all to be thought of as polynomial variables. Consequently
in subsequent work they may appear only as the arguments of
polynomials. These variables are also to be thought of as small
quantities and their numerical values are approximately 1/20,
1/60, 1/11 and 1/400. We therefore regard e, e’ and y as quan-
tities of the first order of smallness and a/a’ as a quantity of the
second order. The function R also depends on six trigono-
metrical variables namely /, g, h, I, g’ and &’ and these variables
may only occur in lingar combinations as the arguments of the
functions cosine or sine. Now initially the function R is given
in terms of other quantities by the infinite sum

2 2 4
=22 6o 2 e
(32-1)

where P; (i =2,3,...) are the well-known Legendre poly-
nomials. We shall see below how to compute r/a, a’/r’ and S
in terms of the variables we actually require. Now the entire
problem is to compute R in terms of the variables specified
above to the nth order in small quantities where n is a positive

integer.
To compute r/a we must use the two equations

|=F —esinE (32-2)
and

;=1—ecosE. (3.2-3)

We have already seen in Section 2.3.1 how the Kepler equation
(3.2 - 2) may be rewritten in the form E = / + (Poisson series
in e and /) to a given degree in e. When this result is substituted
into (3.2-3) and a suitable expansion performed for cos E
we obtain a Poisson series for r/a. We are now in a position to
obtain a/r in terms of e and / using the relation

a_dE
rdl
and the expression for a&'/r’ is obtained by writing primed
variables for the unprimed ones in the latter expression. It
remains now to demonstrate how S is obtained as a Poisson
series. S is defined using certain trigonometric variables fand f”
by the equation
S=(1—-y)cos(f+g+h—f —g — k)
+9y2cos(f+g—h+f +g +Fk) B2-5

and fis related to e and / by the equation

df az 2\. Y%
al (7) (1~ eh): %

It is clear that we can obtain df/d! as a Poisson series in terms of
e and / simply by writing a suitable power series approximation
to (1 — et in (3.2 - 6). Integration of this Poisson series with
respect to / is obviously trivial because of the manner in which
the Poisson series involves /. A slight difficulty occurs when we
apparently have to integrate the term independent of / as this
destroys the Poisson series structure. In fact we are able to
avoid it because it may be shown that f = I + (terms periodic
in /) obtained by integration of (3.2 — 6). Once we have obtained
fin the form f = [+ (Poisson series) we can substitute this
into (3.2 - 5). Substitution of an equivalent form in terms of
primed variables must also be performed for f* and thus we
obtain S in the required form. Finally a direct substitution for
r/a, a'/r’ and Sinto (3.2 — 1) yields the desired expression for R.
If the calculation is performed to degree n in the small
quantities e, ¢/, y and a/a’ then for n < 2 it is easily done by
hand, for 2 < n < 4 it becomes a substantial hand calculation,
for 4 < n < 6 it has been done by hand but the calculation
probably requlred about a man-year of effort. For 6 < n < 8
the calculation has been performed only by machine. A number

(32-4)

(3.2-6)

Volume 15 Number 4

3/4%COSCV)I*B -

*B + 9/8%COS(2%X + U + 2%Y = U = 2#Z = 2%W)*E#B - 3/B%COS(24X + U

+ 24y - 30 -

. 2
= 24W)B + S1/B%COS(24X + 4%V + 24Y - 2%U - 24Z - 2%W)*B -63/8*

COS(2%X + 3%V + 2%Y = U = 24Z = 2¢W)E4B + 21/8#COS(2¢X + 34U + 2%Y

- 3%U - 282 -

WISB = 9/4%COS(2#X + 2%V + 2%Y = U = 24Z = 2%W)*E + 3/4%COS(2%X + 2

*U o+ 20Y = 4xU

2
' Z + 24WIKE = COS(2%X + 28U + 24Y = 24U = 24Z = 24W)I(15/B%E +3/2%

2 2
D ¢ 15/6%B =

2 2
25X + 28U + 24Y - 26Z - 24UDSE + 3/2%COS(2%U + 2%W)I%D + 9/B%COS(2
2 2 2
VDB = 1/B%COSC2#UD*E + 3/6%COS(X + UV ¢+ Y = U = Z = WA + 5/8%

2 2 2
COS(3#X + 38V + 34Y = 34U = 3#Z = 3#W)*A + 3/B¥E - 3/2%D + 3/8%

1724COSCUI*E = 3/4%CIS(V + UDSE#B = 3/4%COS(V - UISE

Fig.22 (a)

2%Z - 24W)E®B = 3/B%COS(2¢X + V + 2¢Y = 24U - 2%Z

2%W)SE¥B + 21/8%COS(2%X + 3%V + 2%Y = 2%U = 2%Z = 2%

2 -
- 28Z - 2%W)SE + 3/4%COS(2%X + 2%V + 2#Y - 3xU - 2%

. 2
3/74) + 3/2%COS(2%X + 2%V + 2xY - 2xZ)*D + 15/8%COSC

/|uloo/W oo dno"olWwapeoe)/:sdyy WoJj papeojumoq

GAMCT 4 JyK>m(NFC
GAMCL, 1oK>
GCiT,0>=0
GC3T, ID=1/G<I, T
XSUM= 1

GAMCT 4 JiK>=GANS

<J
XCIDD6<I K>+ DFCXCIPIGLT ¢ KI=DF <XKKIIG LT 9d D) /2 IF 1> J

>

Je1ik> IF T < 4

2
B + 174
*1C
Fig. 22. (a) The computation of the Delaunay dlsturbmg function by 5
the method of Section 3.2 using REDUCE. The results are =
presented to the second order of small quantities. (b) Thez
second order terms of the lunar disturbing function as o
printed by the REDUCE program displayed in (a). 3
(1. S
J. K |. P} IN (041,243), w
::{ l)'FXl‘(l’lll)) (ﬂ
G<2 4 2>=Re"2
?23.?)'1!‘3['{(\])).!1' 8
;<g;::- EXP(QIR)) N
X<1>=R o
X<2>=u <
i =
DFCUSSINIUI=COS (1) &
DFCU>COS(U) ==S IN(UY 2
NFCRIEXP(R)=EXP(R) g)-
NFCROP (R)=PP(R)
NFSR>O(R)=NO(R) S
DFCROPP(R) =PPP(R) >
NFCRICQIRI=00Q(R) b
XNF=] ©
GAMCT J KO=GAMCI Y T4K> TF | >
©
N
o
N
~

GAMCT, x>-sun<
D=
GANCL,] r‘>
GAMCL, 151>
GAMCI 132>
GANCL, 133>

RCT 4J oK yL>==R<Jy

RCToJgKyL>==RL<T

PIGCIKPI*GANC Ty Jo P

TeKel> IF 1 < J
sdeleK> TF K < L

RCTaJrKoLO=RCKoLs T0d> TF Too%d < KeduL

RCT4JoKol>=0 IF

(I = J) OR (K = L)

RT3 J oK oLI=DFCXCKIDGAMCI oL o I >=DFCXCLIDGANCI 1 Ko 1>

+SUMCPIGANC K3 PYHGAMCT 4Ly P> -~
= SUMCPIGANCIILIPI*GANC oKy P> - b

IF 150 ¢ K)LLIO&'J)'KO#‘L
RCTU>ER<CIVI> TF 1
R<I|J>-SUN(P>SUN<L>ﬁ< P.L)'R(l-’.d.l) JF 1 >=' J

Fig. 23.

The computation of the Ricci tensor using SCRATCHPAD.
This program makes use of the equations defining Ry
presented in Section 3.2. Using SCRATCHPAD the
quantity 4; ! is presented as A</ ; i). Here the user has typed
all the text including the definition of differentiation on sine,
cosine, exp and the unknown functions p(r) and g(r). When

the program is run it prints out g¢;, [11, k] and {lkl} .

However the results are too long to be included in this
figure.

313

of papers discuss this calculation (Barton, 1966, Jefferys, 1970,
and Broucke, 1970), and it is probably fair to say that if a
system can complete the case n = 8 in a reasonable time then
it could also do the Lunar theory completely. The calculation
of this function R is very large indeed in the case » = 8 when
compared with the examples of Section 2 but it is essential to
make it clear that the computation is only a trivial first step in
solving the current problems of celestial mechanics and unless
a system is able to perform the manipulation indicated it is not
likely to be of great value in that field. Certainly it will not be
competitive with Roms’ systems (Rom, 1969, 1971).

To complete this example we now set down the steps required
to solve the above problem and present (in Fig. 224, b) the
REDUCE program and result for the solution. The steps are
as follows:

1. Solve the Kepler equation (3.2 — 2) by the method described
in Section 2.3.1.

2. Substitute into (3.2 — 3) to give r/a in terms of e and /.

3. Obtain a/r from (3.2 — 4) and f from (3.2 - 6).

4. Substitute for fand f” into S using (3.2 - 5).

5. Substitute for a’/r’, r/a and S into R using (3.2 - 1).

3.3. A problem for a general purpose system

The problem we present in this section is drawn from the theory
of general relativity but it involves a great deal of algebraic
manipulation that, from a human’s viewpoint, is essentially
very simple. The algebra potentially involves all the elementary
functions and consequently if this calculation is to be performed
automatically it must be programmed for a system that is able
to manipulate these functions and take advantage of their
various inter-relationships in the course of its simplification
procedure. It is in this area of simplification that the problem
tests out a general purpose algebra system as well as testing its
runtime efficiency by simply causing a huge amount of algebra
to be performed. Once again we shall try to avoid the use of
teéchnical expressions by presenting the problem in terms of a
set of mathematical equations but we shall refer to the various
quantities computed by their usual names.

The problem is essentially concerned with a 4 A4 symmetric
array of functions g;; i=0,1,2,3 and j =0, 1, 2, 3. There
are 10 of these functions and they depend on four independent
variables x' i = 0, 1, 2, 3. The functions g; ; are the elements of
a matrix whose inverse matrix has elements that are written
g". Clearly we have

g g = o

where the repeated superfix and suffix j implies summation
over the possible values of j namely 0, 1, 2, and 3. The array d;
is the well-known Kronecker delta array with zeros off the
diagonal and ones on it. The summation convention introduced
above will be used in what follows without further comment.
It is essential to understand that all that is implied by this
economical notation for repeated summation are the operations
of multiplication and addition. The first part of the problem
is to determine the array g"/ and to do this we must effectively
solve a set of linear equations with algebraic coefficients, and
therefore we can normally expect the algebraic form of either
the array g' or the original array g;; to be substantially more
complicated than the other unless it should happen that both
are diagonal. Furthermore, it is clear that the inverse array g/
must contain the operation of division in the expressions for its
elements unless some fortunate coincidence makes this operator
redundant. The algebraic expressions are therefore almost
bound to be complicated.

We are now able to define a three-dimensional array of
functions called the Christoffel symbols of the first kind. These
quantities are written [i, j, k] and are given in terms of the
first derivatives of the functions g;; by

3N

.., 0g; og; 0gii

k] =42k 4 ik ou

[0, =+ {52 + B — B
where i, j and k range over 0, 1, 2, 3. We note that this array of
Christoffel symbols is symmetric in the indices 7, j and so there
are at most 40 distinct algebraic expressions here. A second
array, the Christoffel symbols of the second kind, is defined in

terms of the first by
{.k.} = g*’[ij, p]
ij

and satisfies the same symmetry condition. Consider now the
Riemann tensor that we define by

0 .. 0 . . . Pl _ p
Rips= U1 = Ui + 01 {) = T) {7

where i, j, k and / range over 0, 1, 2, 3. This tensor obviously
depends on the second derivatives of the original array g;; and
a naive inspection indicates that it is a four-dimensional array
with 256 elements. It is clear that the elements of the Riemang,
tensor are likely to be algebraically complicated and so it i8
worth attempting to reduce the effort required for its compus
tation as much as possible. In fact it may be shown that owingg’
to a great number of symmetries that are exhibited in the
program presented in Fig. 23 there are only 21 distinct elementg
in the Riemann tensor. If we are to calculate the tensor on &
computer it is absolutely essential to take advantage in oug
program of these symmetries because we shall then perforny
far less manipulation and require far less computer memorys
Of course cheaper computing machines would make these gai

less obvious, but at present there can be no doubt that they are
well worth while, even when the extra programming effo@
required is taken into account. From the Riemann tensor wg
immediately obtain the Ricci tensor R;; given by

Rij = 87 Ryip;
which is again symmetric in the indices i and j. Next we easi
obtain the Ricci scalar R where

R = gMR,,
and finally the Einstein tensor given by
G =R — 3Rg;;

The Einstein tensor is symmetric in i and j. We observe froxg
these definitions that the Einstein tensor G;; may be computed
from the elements of the original array g;; by the operations ¢f
addition, subtraction, multiplication and at most two diﬂ‘ereﬁ%
tiations. The division operator is required only during the inver2
sion of the original array. S

The entire algebraic problem is to compute all of the quantities
defined above and print them out when once an initial arrag
gi; is set down. In many cases the array g;; is diagonal angd
although there would be considerable interest in non-diagonat
arrays the lengthy algebra involved has normally prohibiteﬁ
their serious study. We here present two distinct sets of func-
tions g;;. For the first of these the above computation is very
easy indeed while for the second it is a little more difficult.
Several really difficult arrays are given in Harrison (1959). The
first array is

Joo = e, g1 = —ePh, gij = O when i # j,

922 = —(x")%, g3z = —(x'sin x%)?,

where p(x!) and g(x') are arbitrary (unknown) functions of x.
The second array is

€/29€/¥/S L /o10IHEFufWod/ W

ij

VezB 2
8o0o = —1 — U*(x')? €%, 822 = —(x)* ¥
. - 2
g33 = — (x'sinx?)? e, 801 = 810 = €°*
and

The Computer Journal

Table 3 A comparison of various algebra systems computing the Ricci tensor and Einstein tensor for the second array displayed in

Section 3.3
SYSTEM MACHINE WORD CYCLE TIME MULTI- COMPUTATION MEMORY NOTES

LENGTH IN IN p SECS PLICATION TIME IN REQUIRED IN

BITS TIMEIN u SECONDS UNITS OF ONE

SECS THOUSAND
WORDS
ALAM ATLAS1 48 3 8 240 50 A large amount of
D’Inverno (1969) the time is spent
printing the results

CLAM CDC 6600 60 0-8 1 18 40
D’Inverno and '
Russell-Clark (1971)
FORMAC IBM 7094 36 2 10 1,800 approx. Not available
Clemens and Matzner
(1967)
GRAD ASSISTANT IBM 7090 36 2:4 34 1,020 approx. Not available
Fletcher (1965)
CAMAL TITAN 48 4 8 140 18
Barton et al. (1970a)
REDUCE PDP 10 36 1 10 360 70

Hearn (1970)

€02 = 820 = U(x")* €,
with all the remaining g;; = 0. The functions U, V, B and y
are arbitrary (unknown) functions of the coordinates x°, x*, x*.
The latter data has been used with programs for the above
computation on several algebra systems and we reproduce in
Table 3 some statistics obtained by D’Inverno (1969) for these
systems. We have augmented the table with the appropriate
entries for CAMAL and REDUCE. A program for the above
computation using the first set of data and taking advantage of
all the symmetry available is presented in Fig. 23. This program
is written for the SCRATCHPAD system (Griesmer and Jenks,
1971). Once again it must be emphasised that for an algebra
system to be really useful in this field it must be capable of
calculations at least an order of magnitude more difficult than

either of those mentioned above.

4. Manipulative algebra

4.1. Introduction

This section is confined to a discussion of several of the more
interesting and difficult problems that impede the development
of manipulative algebra systems. There is insufficient space
here to enter on a detailed review of all the technical problems
of symbol manipulation and unfortunately it has been necessary
to omit a great deal of material that is important to the dis-
cipline. We have included only those developments that appear
to us to be of immediate importance to the applications area
or those theorems that indicate the ultimate theoretical bounds
of the subject. Much of our material is drawn from the Proceed-
ings of the Second Symposium on Symbolic and Algebraic
manipulation held in Los Angeles in 1971. The reader should
refer to those proceedings and to the ACM Communications
for August 1971 and the Journal for October 1971 for an
excellent and complete review of the state of the art.

In Section 1 we mentioned the importance of the areas of
simplification, gcd computation, symbolic integration and the
input and output of expressions to the applications field. We
now discuss these subjects in more detail.

4.2. Simplification
Simplification is an active and important area of research in
symbol manipulation that frequently presents severe difficulties

Volume 15 Number 4

in the applications area. These difficulties manifest themselves
either by causing algebra programs to suffer blow-up and hence
to fail to run to completion, or by producing answers that
because of their unsimplified nature are incomprehensible.
The first difficulty can be avoided in some cases by casting the

. o
computation in terms of functions for which a canonical form

exists, but not every calculation can be so expressed and some
of those for which a recasting is possible are then forced into
an unnatural form. The unnatural form is perhaps not import-
ant if the result itself is of great value, but if the algebra
system is to be used as a desk calculator every effort must be
made to ensure that expressions are printed in as comprehens-
ible a fashion as possible. Research into simplification therefore
follows two paths. The first seeks to ensure that communication
between the user and the machine takes place in a natural
manner, and that any results presented to the user can be
easily understood. The second seeks to extend the class of
functions for which canonical forms are available.

[woo

dny woly papeojumoq

(2]
<
=
o

Q
©
Q
(0]
2
o
c
©
o
o
3
2

/ajo1e/|u

-

o
21
=
=
w
»
N
N
w3
=
»
o
¥}

Moses (1971a) has classified the various philosophies of £

simplification adopted by algebra systems in a particularly€

graphic manner. Those systems that adopt adoctrinaire attitude
towards the internal representation of expressions, by forcing
them in all circumstances into a well-defined internal canonical

o
D
(2]
—
o
35

N
[¢e]

form, he terms radical. Radical systems are on the whole early{;‘>

systems—either polynomial, Poisson series, or rational function
manipulators, and typical among them are MAO (Rom, 1969),

N
o
N

ESP (Rom, 1971), REDUCE I (Hearn, 1968), CAMAL’s"

polynomial and Poisson series modules (Bourne and Horton,
1971a; Barton et al., 1968), ALPAK (Brown et al., 1964),
SAC-1 (Collins, 1971a, b) Chapront’s system (Kovalevsky,
1968), MATHLAB?s rational function system (Martin, 1967)
and MACSYMA'’s rational function system (Martin and
Fateman, 1971). The chief advantage of radical systems is
simply that they are very efficient and have proven problem
solving capability. Their disadvantage is that they frequently
find themselves in trouble with the unnecessary expansion of
expressions resulting in blow-up. However, their success has
stimulated much research into the discovery of canonical forms
for larger classes of functions in order to take advantage of the
undoubted power of the radical approach. Exactly the opposite
view of simplification is adopted by the conservatives of Moses’
classification. Conservative systems will in no circumstances

375

attempt to simplify or transform an expression unless explicitly
instructed to do so by the user, thus placing the burden of
simplification on someone who is probably able but unwilling
to bear it. Consequently, the conservatives FAMOUS
(Fenichel, 1966) and FORMULA ALGOL (Perlis et al., 1966)
have fallen out of use. Between these extremes we have liberal
systems. The liberals’ view is that while some simplification
transformations are almost always worthwhile, the majority of
complex transformations must be left for the user to initiate.
The liberals however appear to have begun to alter their policy,
and while a number of user modifiable simplification procedures
of a liberal character are in existence (Goldberg, 1959; Hart,
1961 ; Wooldridge, 1963 ; Korsvold, 1965), there are few algebra
systems of a distinctly liberal flavour left in general use. In their
place a party that Moses calls the new left has appeared whose
view of simplification is a little more liberal than the radicals.
New left systems, such as REDUCE II (Hearn, 1970),
CAMAL’s functions module (Barton et al., 1970a), and
ALTRAN (Hall, 1971) give the user a little control over the
simplification algorithm by allowing him to prevent some large
expansions from being performed but retain most of the trans-
formation power themselves. Because they insist on a nearly
standardised internal representation of expressions they are
able to conserve most of the efficiency of the radicals while
affording a measure of control over blow-up. Finally there are
the catholics whose aim is to please everybody by the inclusion
of multiple simplification algorithms and multiple representa-
tions of expressions in their systems. With the intention of ad-
dressing a larger problem field they throw efficiency to the wind
and they have yet to demonstrate their capabilities on the larger
of the problems discussed in Barton and Fitch (1972). Catholic
systems indicate a new and exciting future for algebraic
manipulation and typical of these systems are SCRATCHPAD
(Blair et al., 1970, Griesmer and Jenks, 1971), IAM (Christensen
and Karr, 1971) and MACSYMA (Martin and Fateman, 1971).

New left and catholic systems represent the major areas of
work today. From the catholics we can expect a vastly improved
interface between the scientific user and the algebra system.
We have already seen examples of this in the elegant programs
for SCRATCHPAD presented in Sections 2 and 3. Progress
towards improved formatting of output can also be expected
and this will mean far more than simply using a two-dimen-

" sional layout. We can expect that machine printed expressions

will be ordered in a manner akin to that used in conventional
mathematical notation and that the bracketing of the expression
will be structured in a natural way. There are huge gains in
comprehensibility to be made in the area of machine/user
communication but the technical problems are very difficult.
Problems no less difficult but rather better defined are encount-
ered by the new left. Their aim is to extend the class of expres-
sions that can be conveniently represented in a canonical form
and their search has made considerable progress during the last
few years; progress from which both the new left and the
catholics can expect to benefit. It is already clear that canonical
forms exist for polynomials, Poisson series and rational
functions of polynomials, and research has been diverted to
more complicated classes of functions. So far there are few
absolutely solid results in the field but if certain conjectures
of theorems of pure mathematics are adopted a number of
useful algorithms can be constructed. The nature of the con-
jectures is such that they are widely accepted and even if they
prove to be false they are unlikely to render the algorithms
derived from them useless in everyday circumstances.

In an important paper Brown (1969b) has described a simpli-
fication algorithm for the set of nested exponential expressions.
These rational exponential or REX expressions are generated
from the constants i = /—1 and = together with the finite set
of variables X, X,, . . ., X,. In the set of REX expressions the
normal arithmetic operations are allowed, namely addition,

376

subtraction, multiplication and division and further the
exponential of a REXexpression is a REX expression. Thus the
trigonometric, hyperbolic and exponential functions are all
REX expressions. Brown makes the conjecture that, if0y,...,0,
are REX expressions that together with the quantity in are
linearly independent over the rationals, then the quantities
e, e%, .. ., e%, x,, X,, . . ., X, and in are algebraically indepen-
dent over the rationals. Using this conjecture Brown demon-
strates a simplification algorithm that will always reduce a zero
REX expression to zero, but his algorithm as stated does not
define a canonical form. Moses (1971a) gives an example of
two non-zero REX expressions which, although equal, are
reduced to distinct simplified forms by Brown’s algorithm and
subsequently Moses proves an existence theorem for a canonical
reduction of REX expressions. Unfortunately no efficient form
of this algorithm for canonical reduction exists at present.

Without making any conjecture at all Caviness (1970) has
proved an algorithm for a canonical reduction of a subset of
REX expressions. In this set Caviness allows no division and he
restricts the functions to contain only one variable x. The
constant n is excluded from the set and exponentiation i
allowed only to a depth of one. Subsequently Caviness makés
the conjecture that if ¢;, . . ., ¢, are distinct constants in the set
then the quantities e°t, . . ., e are linearly independent over t@
rationals. Using this conjecture he is able to remove the re-
striction on the depth of nesting of the exponential function
and still prove an algorithm for a canonical reduction of the
resulting larger set of expressions. Moses (1971a) has provea,
again subject to a conjecture, that REX expressions that do ngt
contain i or = and for which no nested exponentials occur m%/
be reduced to a canonical form. » 3

Richardson (1971) has studied the problem of zero detes-
mination for a class of functions generated from the indepes-
dent variable x, the reals and the functions €*, sin x, cos x a (B
log |x|. The operations of addition, subtraction, multiplicaticn
and division are allowed in Richardson’s set and the fomr
functions may be arbitrarily nested to any depth. The expre§—
sions so constructed are, however, subject to the restricticn
that they must be totally defined on the interval being examinea,
and this means that they remain bounded at all finite points of
that interval. Richardson is able to reduce the zero determif-
ation problem to that of determining whether or not a constagit
expression is zero and, as Moses points out, this can normally
be done by evaluation. However, the constant problem has ngt
been formally proved decidable and consequently this part pf
the work remains as a conjecture. Moses et al. (1972) hage
shown that Richardson’s work can be extended to include
functions defined as solutions to first order differential equa-
tions and this work is of importance to the manipulation of
the Spence functions that arise in quantum electrodynamics.
Johnson (1971) also discusses the problem of zero determig-
ation. Other work on simplification theory that may well be of
importance to applications in physics appears in Caviness
(1967), Bajo et al. (1969), Fateman (1971) and Fitch (1971).
Finally the bounds of simplification theory have been drawn
by Richardson (1968), who proved that the zero determination
problem for a large set of functions is undecidable. Richardson’s
set contains the rational numbers, 7, /2 and the variable x.
Further members of the set are generated by addition, multi-
plication, the sine function, the logarithm of the absolute value
function and nested combinations of these. Richardson’s proof
is based on a theorem of Davis et al. (1961) concerning the
solution of exponential diophantine equations. Caviness (1970)
has shown that a similar theorem may be proved for the above
set of functions excluding /2 and replacing the logarithm
function by the absolute value function. His proof is based
on the unsolvability of Hilbert’s Tenth Problem which has
recently been demonstrated (Matijasevic, English translation,
1970).

The Computer Journal

4.3. GCD algorithms

In this section we are concerned with some of the problems that
confront the designer of a system for the manipulation of
rational functions of polynomials. During a computation
involving rational functions it is conceptually obvious that it
is desirable to remove the greatest common divisor (gcd)
from any rational expression that occurs. Clearly few people
would be content with a printed result in which this simpli-
fication had not taken place but it is by no means clear that
each and every intermediate expression obtained in the course
of calculation should be so reduced because of the computer
time that this would require. Nevertheless, the reduction must
be undertaken for many intermediate expressions because
failure to extract gcd’s from rational functions leads to incom-
prehensibility in the printed results and blow-up in the inter-
mediate calculations. This point is simply illustrated by the
example of the product R, R, where

R _x3—6x2+11x—6
1 X+ x + 21

x® — x* 4+ x2 +20x — 21

R=
2 x> —4x2 +x+ 6

The unreduced product R R, is

x8 —7x7 + 17x° — 16x° 4+ 20x* — 130x3 + 340x2 — 351x + 126
x7 —4x% + x5+ 7x* +17x3 —83x2 +27x+ 126

while the reduced result is
x2—2x + 1

Rk = x+1

Our problem then is to discover an efficient algorithm for the
computation of the ged of two polynomials in one or many
variables and it is of very great importance to the applications
field. Many calculations in celestial mechanics that are most
naturally expressed in terms of rational functions cannot be
conveniently solved in that form in the absence of a gcd
algorithm, simply because they result in blow-up. It is true that
by reformulating the problems a solution can frequently be
obtained using a polynomial manipulator, but generally this
is at the expense of much greater programming effort on the
part of the user. An efficient gcd algorithm is also essential in
order that symbolic integration programs can function with
efficiency. Extensive use is made of gcd extraction algorithms
in programs for the integration of rational functions and in
other more general integration procedures. In a continuous
research over the past decade Collins, and independently
Brown, have proposed steadily improved algorithms for the
discovery of ged’s and at present the major difficulties have
been substantially overcome. Their major effort will be rapidly
absorbed into other algebra systems and their work can be
expected to expand substantially the applications field.

The starting point for the work of Brown and Collins is the
well-known Euclidean algorithm for the determination of
ged’s. This algorithm, when applied to the integers operates as
follows. Let I, and I, be two positive integers with I; > I, > 0.
Construct a sequence of decreasing positive integers 7;, i = 3,
4,...by

Ii = Ii—2 mod Ii—l .
The sequence obviously terminates and the last non-zero
element may be shown to be the ged of I; and I,. This algorithm
works well for small integers, but if the integers are large, and
several words of computer memory are required for their
storage, then the repeated divisions become expensive. Knuth
(1969) has shown how this problem may be considerably
reduced. With a little modification the Euclidean algorithm
may be restated for polynomials over a field. Let P, and P, be
two polynomials with degree (P;) > degree (P,) > 0. Con-

Volume 15 Number 4

struct a sequence of polynomials P;,i= 3,4, ... by
P,_,=H;Pi_y + P

where H, is a polynomial and degree (P;) < degree (P;_,).
Again the series terminates and the last element of non-zero
degree is the gcd of P; and P,. This algorithm does not work
very well. If the polynomials are over the rational field it is
generally found that as the calculation proceeds the rational
coefficients of the polynomials P; became the ratios of either
large integers in the case of one variable, or polynomials in the
multivariable case. Thus it becomes necessary to compute the
ged’s of these coefficients, and even then the problem is not
totally eliminated. The algorithm is therefore very expensive in
terms of computer time. A further serious objection to the
algorithm is that it applies only to polynomials over a field.
What is needed is an algorithm for polynomials over an integral
domain because one then avoids working with rational
coefficients and consequently the multivariate case becomes
substantially easier. The coefficient growth referred to above
was studied and ultimately controlled by Collins (1967), and
subsequently he was able to eliminate the problem altogether.
Independently Brown achieved a similar result and Knuth
(1969) describes their so-called modular algorithm.

Once again we do not attempt a complete revision of work in
this field but refer the reader to Jordan et al. (1966) to Brown’s
tutorial paper (Brown, 1971) and to Horowitz (1971a) for
more detailed information. Essentially two lines of attack on
the ged problem have been developed. One based on a theory
of subresultants and representing a development of the
Euclidean algorithm (Collins, 1971b; Brown and Traub, 1971),
and the other based on the use of modular arithmetic (Knuth,
1969) that maps the given polynomials into polynomials over a
simpler domain. The first of these methods controls the co-
efficient growth that is the principal defect of the Euclidean
algorithm and in the multivariate case it eliminates the need for
recursive application of the gcd procedure. The modular
algorithm reduces the problem to that of computing the gcd of
two polynomials in one variable over GF(p) for some prime p.
This latter calculation is easily performed by the Euclidean
algorithm since GF(p) is a field in which coefficients cannot
grow. Brown (1971) concludes that the two methods are of
equal value, the subresultant algorithm giving faster results in
the case of a large gcd and the modular algorithm proving more
economic in the case of mutually prime polynomials.

4.4. Symbolic integration

The problem of symbolic integration has been extensively
studied during the past decade by Moses (1967, 1969), Risch
(1968a, b; 1969a, b; 1971), Manove et al. (1968), Horowitz
(1971b) and Tobey (1967). Very substantial progress has been
made in this field and it is now possible to integrate a great
variety of complicated expressions automatically. The most
successful program to date is Moses’ symbolic integration
program SIN that followed Slagle’s program SAINT (Slagle,
1961). SIN emulates in many ways the strategy adopted by a
mathematician in performing an integration, and this method
has a great deal to recommend its use. When the program is
successful it produces results that are expressed in terms similar
to those of the integrand. Thus SIN produces the ‘expected’
results, and these are easily comprehensible. On the other hand
when an algorithmic approach to integration is adopted simple
integrands are generally transformed prior to integration, and
because the results are expressed in unexpected terms they are
frequently difficult to understand. However, SIN is unable to
decide whether or not a general function is integrable in closed
form and so it must sometimes fail. In order to deal with the
situation Moses has recently begun to program an algorithmic
integration procedure into the latter stage of SIN which can
take over when the heuristic methods fail. The algorithmic

3n

202 udy 61 U0 188n6 AQ Z091LGE/Z9E/7/G 1 /B1014E/|UfL00/W0d"dNO" oIS PEDE//:SARY W) PAPEOUMOQ

integration procedure is due to Risch who has formalised a
method of Liouville. However, only parts of the method have
currently been implemented.

SIN proceeds in three stages to integrate a given elementary
expression. In the first stage the integral is expanded to its
fullest extent and then the integration operator is commuted
with addition, thus

I(x + sin x)? dx - j(xz + 2x sin x + sin? x) dx
—»szdx+ j,2xsinxdx+J.sin2xdx

These simplified integrals are then examined to see if any of
them match the form

I of (u(x)) u'(x) dx

for constant c. Hereu(x) is any elementary expression and f(x)
is any elementary function. If a match is achieved the integral
is trivial. If however, no such match occurs the second stage of
SIN is entered. During this stage SIN determines on the basis
of the type of expression occurring in the integrand which of
11 integration methods might be suitable for the problem at
hand. Having made the selection the appropriate method is
implemented and this generally causes a transformation that
yields a simple integral. For example, given

j. x+ldx
N 2x + 3

SIN will transform according to
x+1
y = —_—
«/ 2% + 3

y2
|imm @

If SIN is successful in obtaining a rational expression to integ-
rate as a result of one of the transformations then Manove’s
implementation of the Hermite algorithm for the integration of
rational functions is entered (Manove et al., 1968). Otherwise,
the new integral is submitted to the first stage of SIN again. If
both the first and second stages of SIN fail then the final stage
is entered. Here Moses originally anticipated the Risch
algorithm and used his so called educated guess or EDGE
heuristic. The purpose of EDGE was to inspect the integrand
and, on the basis of the form and combination of the functions
present, to make a guess at the form of the integral. This done,
EDGE inserted into the guess a number of constants and after
differentiating the guessed solution tried to discover suitable
values for those constants. Later versions of SIN have replaced
EDGE with parts of the Risch algorithm.

A central and important part of the second stage of SIN is the
Hermite algorithm for the integration of rational functions.
This well-known algorithm will not be reproduced here but two
remarks must be made about its application. Our first point is
concerned with gcd extraction. Given an integrand R(x)/S(x)
where R and S are polynomials in x with degree (R) < degree
(S) it may be shown that we can express the integral in the form

k
jgdx = f(x) + zj Vix) dx
j=1

and obtain

Wi(x)

by partial factorisation and integration by parts. Here f(x) is a
known rational function of x, Vj(x) and Wj(x) are known
polynomials in x with degree V; < degree W; and W has only
simple roots. In the course of this reduction frequent extensive
use is made of a ged algorithm for polynomials, and it is here
that a major application of the methods of Collins and Brown,
discussed in Section 4.3 occurs. Our second point is concerned

3718

with the factorisation of the quantities Wj(x). If these are
already linear functions then the integration problem obviously
becomes trivial. In other cases it is known that the polynomials

W contain only simple roots, and consequently the integration
algorithm depends on our being able to discover the factors of
such polynomials. Manove uses the Kronecker factorisation
procedure to determine linear factors (Van der Waerden, 1949).
Berlekamp (1971), Brown and Graham (1969) and Zimmer
(1971) have discussed alternative factorisation algorithms.
However, as Tobey (1967) indicates, the factorisation problem
is unavoidable in most circumstances, and of course in general a
polynomial of degree >5 cannot be factored in terms of
radicals. These difficulties of the rational integration algorithm
detract little from the power of SIN and Moses’ program is
able to integrate most of the examples normally presented to
sophomores. It is unnecessary to say that it is very much
quicker.

Turning now to the algorithmic approach to integration that
is embodied in the Risch papers, we encounter a contribution
to symbol manipulation of the greatest importance. The algor-
ithm is based on Liouville’s theorem which states that if fis @
function in a field of elementary functions F then 2

[fdx=Vo+ 3 C,logV,;
i=1

1} papeoju

where VeF, (i=0,1,...,n) and the C; are constants3
Risch’s algorithm is complex and we shall try to give the
flavour of it by example. Let F be the rational field extended by
the simple variable x. Thus F is the field of rational expressions
in x. Suppose that we have to integrate f(x), a given ration

function of log x with coefficients in F. This function is not &
member of F because it contains the function log x. The fun¢
tion log x is used to form a new field &, an extension of the
field F, and since log x is not the root of an algebraic equatiod
in Fit is said to form a monomial extension of F. (New function%
that do satisfy algebraic equations in F give rise to algebrai&
extensions of F and are separately treated by the algorithms)
We observe from the function f(x) that, while it is not a membeé
of Fit is a member of the monomial extension & of F formegd
by augmenting the field F by the function log x. The Liouvillg
theorem tells us that &

[f)dx=Vo+ 3 Cilog V;
i=1

&oLGe/eoe/

where V;€ F and C; are constants. The Risch algorithm tak
advantage of the rational property of the function f(x) in log
over F. Thus we note

6

3
QO(log x) s
= P(l ==
f(x) = P(log x) + R{log %) 3
©
where P, Q and R are polynomials in log x over F and degreg
O < degree R Risch’s algorithm now asserts that =
o
2(log x) " N
dx = 2(l ——= .
jf(x) x (log x) + F(log) + E,l C;log V;

where 2, 2, # and V; are polynomials in log x over F, degree 2
< degree # and the C; are constants. The algorithm proceeds
to explain how the functions 2, #Z and the V; together with the
constants C; may be determined from Q and R by a method
similar to the Hermite algorithm for the integration of rational
functions of x. As in the Hermite algorithm, a gcd procedure is
necessary here. The Risch algorithm then demonstrates that the
polynomial 2 can be constructed from the polynomial P
provided only that formal integration in F is possible and these
latter integrals are simpler because they cannot contain log x
in the integrand. A monomial extension to F can also be pro-
duced by the function e* and the method of integrating expres-
sions containing e* is similar to that described for log x. Again
the determination of the corresponding polynomial #2(e*)

The Computer Journal

reduces to integration in F. However, in more complex cases a
serious difficulty arises here (Moses, 1971b; Risch, 1968a).

Now let us suppose that F extended by log x to & is further
extended by e* to #'. The above argument indicates that we
can reduce integration in &’ to integration in & and then
integration in & to integration in F. So we can solve the
problem of integration with two monomial extensions. Clearly
this procedure can be adopted for any finite number of mono-
mial extensions, and so, given any arbitrary function we need
only identify the monomials, arrange them in some order and
apply the algorithm recursively. However, Risch’s algorithm
requires that the monomials are algebraically independent,
and the recognition of a suitable set of algebraically inde-
pendent monomials in general begs the constant problem of
simplification introduced in Section 4.2.

The Risch algorithm depends heavily on the properties of the
exponential and logarithmic functions under differentiation and
it is a defect of the method that in order to make use of it any
proposed integrand must first be written explicitly in terms of
those functions. Thus the basic structure of a trigonometrical
integrand is immediately lost and the integral, while correct,
may well be incomprehensible. The exponential and logarith-
mic functions are not the only functions capable of being used
to generate extensions to the basic field and Moses (1971b)
gives an example of the error function so employed. Indeed,
there is hope that the Spence functions of quantum electro-
dynamics may be capable of treatment by this method. So far
as is known to the present authors no complete implementation
of the Risch algorithm exists and the most advanced program is
in the third stage of Moses’ SIN, but several groups are
presently engaged on separate implementations of the pro-
cedure and in the near future it is expected that general purpose
systems such as REDUCE, CAMAL, SCRATCHPAD, and
SIN will contain the full fruits of Risch’s work.

4.5. Mathematical input and output

Most scientific disciplines employ some form of two-dimen-
sional notation and it is clearly a desirable objective to enable a
computer to understand such hand written symbolism and to
construct it as output on a suitable terminal. This is the problem
to which we now address ourselves. As might be expected the
easier problem here is that of constructing automatically two-
dimensional symbolic output, and indeed we have already seen
examples of this produced by the REDUCE, SCRATCHPAD
and IAM systems. The problem of recognition of hand written
input is far more difficult, and there are no general purpose
systems freely available today that provide this capability.

References

ANDERSON R H 1968 Proc. ACM Symposium on Interactive Systems for Experimental Applied Mathematics (eds M Klerer and J Reinfelds)

(New York: Academic Press) 436-59

Returning to the output problem the major fimitation at
present seems to be an economic one. In order to obtain really
satisfactory two-dimensional output that faithfully represents
what is technically possible from the programming point of
view it is necessary to provide the user with an expensive display
terminal. On such a terminal characters of arbitrary size may be
displayed at arbitrary positions and orientations (Martin, 1967
and Siret, 1971). At present it is quite impossible to produce that
degree of flexibility using a conventional typewriter. In practice
using a typewriter terminal system such as Millen’s CHARYB-
DIS (1968) two-dimensional output may be obtained that
certainly substantially improves the legibility of short expres-
sions, but two-dimensional formatting enables little to be
gained in this direction when a long expression is encountered,
and most practical systems return to a linear representation in
that case. Two-dimensional output is an area in which the
techniques are straightforward and are developed beyond the
capability of inexpensive hardware; we must wait for the
development of an appropriate terminal. The problem of hand
written input is a rather different story. Suitable hardware exists
in the form of ‘tablets’ on which the user ‘draws’ with a ‘pen’.
The position of the pen on the tablet is discovered by the
computer that is able to detect either light, sound or variations
of electric field caused by motion of the pen. The drawing then
appears on a display screen that may or may not be located
below the pen. As might be expected these devices are also
expensive and they are still in the experimental stage. However,
their existence acts as a stimulus to system designers who must
endeavour to translate the two-dimensional input produced by
the equipment into an intelligible form in the computer.

Substantial work has been carried out in this area by
Anderson (1968, 1971), Blackwell and Anderson (1969),
Bernstein and Williams (1968), Bernstein and Howell (1968),
Bernstein (1971) and Klerer and Grossman (1967). Apart from
the serious problem of the accurate recognition of a hand drawn
character two classes of difficulties arise in the input of mathe-
matical expressions. First there are the software problems that
arise from ambiguous expressions inherent in the great richness
of mathematical notation and then there are the expressions
that are badly written by the user on the tablet itself. These
problems are difficult but they are by no means technical
impossibilities, and it can be expected that in the next few years
considerable progress will be made towards their solution.
However, we cannot expect to be able to communicate with a
computer freely and easily in a two-dimensional format for
some years yet. For a complete review of the current state of the
art in this area, the reader is referred to Martin (1971).

ANDERSON R H 1971 Proc. 2nd. Symp. on Symbolic and Algebraic Manipulation (ed S R Petrick) (New York: Ass Comput Mach) 100-1
BAJO S, MAIOCCHI M, POZZI G and QUILICI U 1969 Calcolo 6 391-401
BARRON D, BROWN H, HARTLEY D F and SWINNERTON-DYER H P F 1967 TITAN Autocode Programming Manual 3rd. ed.

University Computer Laboratory Cambridge
BARTON D 1966 Astr. J. 71 438-42

BARTON D, BOURNE S R and BURGESS C J 1968 Comput. J. 11 293-8

BARTON D, BOURNE S R and FITCH J P 1970a Comput. J. 13 32-9

BARTON D, BOURNE S R and HORTON J R 1970b Comput. J. 13 243-7

BARTON D and FITCH J P 1971 Communs. Ass. Comput. Mach. 14 542-7

BARTON D and FITCH J P 1972 Reports on Progress in Physics 35 235-314

BERLEKAMP E R 1971 Proc. 2nd. Symp. on Symbolic and Algebraic Manipulation 223

BERNSTEIN M I 1971 Proc. 2nd. Symp. on Symbolic and Algebraic Manipulation 102-3

BERNSTEIN M I and HOWELL H L 1968 Report TM-3937/000/00 Systems Development Corporation Santa Monica
BERNSTEIN M I and WILLIAMS T G 1968, Proc. 68 IFIP Congress (Amsterdam: North-Holland) C84-9
BLACKWELL F W and ANDERSON R H 1969, Proc. 24th. ACM Nat. Conf. (New York: Ass Comput Mach) 551-7
BLAIR F W, GRIESMER J H and JENKS R D 1970 Proc. ACM Int. Comput. Symp. (Berlinghoven : Gesellschaft fur Datenverarbeitung)

2 393-420

BOND E R and CUNDALL P A 1968 Symbol Manipulation Languages and Techniques (Amsterdam: North Holland) pp116-32
BOURNE S R and HORTON J R 1971a CAMAL Manual Cambridge University

Volume 15 Number 4

319

202 udy 61 U0 188n6 AQ Z09LGE/Z9E/7/G L /B101E/|UfL00/W0d"dNO"oILEPEDE//:SARY W) PAPEOUMOQ

BOURNE S R and HORTON J R 1971b Proc. 2nd. Symp. on Symbolic and Algebraic Manipulation 134-43

BROUCKE R A 1970 Celestial Mech. 2 9-20

BROWN W S 1963 Bell Syst. Tech. J. 42 2081-2119

BROWN W S 1969a Bell Telephone Laboratories Inc. Report AL-69-1.10

BROWN W S 1969b Am. math. Mon. 76 28-34

BROWN W S 1971 J. Ass. Comput. Mach. 18 478-504

BROWN W S and GRAHAM R L 1969 Am. math. Mon. 76 795-7

BROWN W S and TRAUB J F 1971 J. Ass. Comput. Mach. 18 505-14

BROWN W S, HYDE J P and TAGUE B A 1964 Bell Syst. Tech. J. 43 785-804

CAVINESS B F 1967 Ph.D. Thesis Carnegie-Mellon University Pittsburg

CAVINESS B F 1970 J. Ass. Comput. Mach. 17 385-96

CHRISTENSEN C and KARR M 1971 Proc. 2nd. Symp. on Symbolic and Algebraic Manipulation 115-27

CLEMENS R and MATZNER 1967 University of Maryland Tech. Report No 635

COLLINS G E 1965 Research Report RC-1436 IBM Watson Research Center

COLLINS G E 1966 Communs. Ass. Mach. 9 578-89

COLLINS G E 1967 J. Ass. Comput. Mach. 14 128-42

COLLINS G E 1971a Proc. 2nd. Symp. on Symbolic and Algebraic Manipulation 144-52

COLLINS G E 1971b J. Ass. Comput. Mach. 18 515-32

COLLINS G E and GRIESMER J H 1966 SICSAM bulletin No: 4 (New York: Ass Comput Mach)

DAVIS M, PUTNAM H and ROBINSON J 1961 Ann. Math. 74 425-36

D’INVERNO R A 1969 Comput. J. 12 124-7

D’INVERNO R A 1970 ALAM Programmer’s Manual

D’INVERNO R A and RUSSELL-CLARK R A 1971 CLAM Programmer’s Manual King’s College London

ENGELMAN C 1971 Proc. 2nd Symp. on Symbolic and Algebraic Manipulation 29-41

FATEMAN R J 1971 Proc. 2nd. Symp. on Symbolic and Algebraic Manipulation 311-23

FENICHEL R 1966 Ph.D. Thesis Harvard University

FITCH J P 1971 Ph.D. Thesis Cambridge University

FITCH J P and GARNETT D J 1972 Proc. ACM Int. Comput. Symp. April Venice.

FLETCHER J G 1965 University of California Lawrence Radiation Lab Report UCRL-14624-T

GOLDBERG S H 1959 M.S. Thesis MIT

GRIESMER J H and JENKS R D 1971 Proc. 2nd. Symp. on Symbolic and Algebraic Manipulation 42-58

HALL A D 1971 Communs. Ass. Comput. Mach. 14 517-21

HARRISON B K 1959 Phys. Rev. 116 1285-96

HART T 1961 Project MAC Artificial Intelligence Group Memo 27, MIT

HEARN A C 1968 Proc. ACM Symposium on Interactive Systems for Expernmental Applied Mathematics (eds. M Klerer and J Reinfel:
(New York: Academic Press) 79-90

HEARN A C 1970 REDUCE Users’ Manual, Stanford Artificial Intelligence Project Memo AIM-133

HEARN A C 1971 Communs. Ass. Comput. Mach. 14 511-6

HOROWITZ E 1971a Proc. 2nd. Symp. on Symbolic and Algebraic Manipulation 188-94

HOROWITZ E 1971b Proc. 2nd.. Symp. on Symbolic and Algebraic Manipulation 411-57

HYDE J P 1964 Bell Syst. Tech. J. 43 1547-62

JEFFERYS W H 1970 Celestial Mech. 2 474-80

JEFFERYS W H 1971a Communs. Ass. Comput. Mach. 14 538-41

JEFFERYS W H 1971b Celestial Mech. 3 390-4

JOHNSON S C 1971 J. Ass. Comput. Mach. 18 559-65

JORDAN D E, KAIN R Y and CLAPP L C 1966 Communs. Ass. Comput. Mach. 9 638-43

KLERER M and GROSSMAN F 1967 Proc. fall jt. Computer Conf. 675-87

KNUTH D E 1969 The Art of Computer Programming Vol 2 (Reading Mass.: Addison-Wesley)

KORSVOLD K 1965 Stanford Artificial Intelligence Project Memo AIM-37

KOVALEVSKY J 1968 Astr. J. 73 203-9

MCCARTHY J, ABRAHAMS P W, EDWARDS D J, HART T P and LEVIN M I 1965 LISP 1.5 Programmer’s Manual 2nd. edmoﬂ@
MIT Press

MANOVE M, BLOOM S and ENGELMAN C 1968 Proc. 1966 IFIPS Conf. on Symbolic Manipulation Languages (ed D G Bobr@v)
(Amsterdam: North-Holland) 86-102

MARKS P 1968 Proc. of Summer Institute on Symbolic Mathematical Computation Cambridge Mass. (ed R. G. Tobey) (Ganthersbung
IBM) 21-38

MARTIN W A 1967 Project MAC Report MAC-TR-36 MIT

MARTIN W A 1971 Proc. 2nd. Symp. on Symbolic and Algebraic Manipulation 78-87

MARTIN W A and FATEMAN R J 1971 Proc. 2nd. Symp. on Symbolic and Algebraic Manipulation 59-75

MATIJASEVIC J V 1970 (trans.) Soviet Math. Dokl. 11 354-7

MESZTENYI C K 1971 FORMAL user’s Manual University of Maryland

MILLEN J K 1968 Proc. ACM Symposium on Interactive Systems for Experimental Applied Mathematics (eds M. Klerer and J. Reinfelds)
(New York: Academic Press) 155-66

MOSES J 1967 Project MAC Report MAC-TR-47

MOSES J 1969 Tutorial Session July 2 Summer Institute in Dynamical Astronomy MIT

MOSES J 1971a Communs. Ass. Comput. Mach. 14 527-37

MOSES J 1971b Communs. Ass. Comput. Mach. 14 548-60

MOSES J, ROTHSCHILD L P and SCHROEPPEL R 1972 in preparation

PERLIS A, ITTURIASA R and STANDISH T A 1966 Communs. Ass. Comput. Mach. 9 p549

RAPHAEL B, BOBROW D G, FEIN L and YOUNG J W 1968 Symbol Manipulation Languages and Techniques (Amsterdam: North-
Holland) p1-54

RICHARDSON D 1966 Ph.D. Thesis University of Bristol

RICHARDSON D 1968 J. Symb. Log. 33 511-20

RICHARDSON D 1971 Z. math. Logik 17 133-6

peoe//:sdny wolj papeojumoq

oIWe

s)

A9 20915€/29€/v/G | /a1o1e/|ulwod/ w0 dn

20z Ilud

- RISCH R H 1968a SDC Report SP-2801-002

380 V The Computer Journal

RISCH R H 1968b Proc. Summer Institute in Symbolic Mathematical Computation Cambridge Mass. 133-48

RISCH R H 1969a Trans. Am. math. Soc. 139 167-89

RISCH R H 1969b IBM Corp. Report RC 2402

RISCH R H 1971 Bull. Am. math. Soc. to be published
ROM A 1969 Celestial Mech. 1 301-19

ROM A 1971 Celestial Mech. 3 331-45

SAMMET J E 1966a Computg. Rev. 7 BIB 11 BI-17
SAMMET J E 1966b Communs. Ass. Comput. Mach. 9 555-69
SAMMET J E 1967 Adv. Comp. 8 47-102

SAMMET J E 1968 Symbol Manipulation Languages and Techniques (Amsterdam: North-Holland) pp55-63
SAMMET J E 1971 Mathematical Software (New York and London: Academic Press) pp295-330

SCONZO P, LE SCHACK A and TOBEY R 1965 Astr. J. 70 269-71

SHAW J C 1964 Proc. AFIPS fall jt. Computer Conf. (Baltimore: Spartan Books Inc) 455-64
SIRET Y 1971 Proc. 2nd. Symp. on Symbolic and Algebraic Manipulation 90-9

SLAGLE J 1961 Ph.D. Thesis MIT

TOBEY R G 1966a Communs. Ass. Comput. Mach. 9 589-97
TOBEY R G 1966b Communs. Ass. Comput. Mach. 9 742-51
TOBEY R G 1967 Ph.D. Thesis Harvard University

TOBEY R G 1971 Proc. 2nd. Symp. on Symbolic and Algebraic Manipulation 1-16
VAN DER WAERDEN B L 1949 Modern Algebra, Vol. 1 (New York: Ungar)
WOOLDRIDGE D 1963 Stanford Artificial Intelligence Project memo AIM-11
XENAKIS J 1971 Proc. 2nd. Symp. on Symbolic and Algebraic Manipulation 105-14

ZIMMER H 1971 Proc. 2nd. Symp. on Symbolic and Algebraic Manipulation 172-9

Correspondence

To the Editor
The Computer Journal

Sir -

The letters by Flavell (1972) and Dewar (1972) commenting on my
earlier note (Chambers, 1971) are encouraging signs of continued
interest in FORTRAN definition, at least on the part of some users.
However, a few of the points of detail raised need further comment,
in order to avoid confusion.

Mr. Flavell’s claim that array assignments as proposed would
require dynamic temporary storage blocks would be true if one were
to add new array operations, such as those in APL. Such a proposal
would be objectionable, since it involves FORTRAN in heap
storage of the ALGOL68 variety. However, using only the existing
operators in an element-by-element manner requires storage only
for the scalar elements of the left-side array involved (plus the
usual requirements for the implied DO-loop); for example, for
A(1, 1) in the example, A = A/A(1, 1). This extension I find fully
compatible with FORTRAN philosophy.

Mr. Dewar is quite correct that copy-in and copy-out as practised
by 0S/360 is allowed by ANSI standard. The question is whether we
can improve on the current standard here. My hope is that either
call-by-address could become the standard or (more realistically,

Volume 15 Number 4

perhaps) that a new standard recognise the two possible methods
explicitly and include a provision for forcing one or the other when
necessary. This is a particularly pernicious ambiguity at present, as
its consequences are subtle, undetectable at compilation, and
occasionally disastrous.

It is to be hoped that further consideration of FORTRAN will
lead to some practical revised standard for a language which seems
to be occupying a growing portion of algorithm sections throughout 3

91G€/Z9€/¥/G | /ao1HEe/|UlWod/Wwod dno-olwapede//:sdly Wwoly papeojumoq

the world. g

Yours faithfully,)

J. M. CHAMBERS§

Bell Laboratories e

600 Mountain Avenue 2

Murray Hill >

New Jersey 07974 5

USA N

25 April 1972 N
References

CHAMBERS, J. M. (1971). Another round of FORTRAN, Tke
Computer Journal, Vol. 14, No. 3, pp. 312-314.

DEwAR, R. B. K. (1972). Ibid. Vol. 15, No. 1, p. 7.

FLAVELL, A. J. (1972). Ibid, Vol. 15, No. 1, p. 92,

