UNRAVEL—a programming language to put intelligence

into dumps
P. J. Brown

Computing Laboratory, University of Kent at Canterbury, Cornwallis Building, The University,

Canterbury, Kent

The need to resort to using dumps of core storage when debugging programs has been a continuing
feature of computing. These dumps are like vermin: attempts to eradicate them from some areas
have succeeded but they continually reappear in other areas. Each new machine or operating
system brings new problems. This paper presents a new weapon, which the user can employ to keep

dumps in check.
(Received January 1972)

UNRAVEL is a programming language for printing out in-
formation from core store. There already exist several dumping
programs that do this, so it is best to start by describing
how UNRAVEL differs from them.

There are two main problems with traditional dumping
programs. Firstly information is printed out in a uniform
format, to a uniform base (e.g. octal) and without any inter-
pretation or annotation. The unfortunate reader of the dump
has to go through a mass of information to extract what he
needs. Often he has to perform tortuous conversions, e.g. from
octal to decimal, character, or program address.

The second problem with conventional dumping programs
is that it is often impossible to extract information that is
indirectly addressed, for example: given that a certain address
points at a 40 word table, print the table, or given the start of a
linked list, print all the items on the list.

The purpose of the UNRAVEL system is to surmount these
problems by providing the user with a programming language
to specify how a dump is to be made. In this way UNRAVEL
can be used to put ‘intelligence’ into dumps. When a dump is
required, the UNRAVEL processor is brought into action, and
the UNRAVEL program supplied by the user is executed.

An UNRAVEL program can be made to interpret the material
to be dumped to save the reader the trouble of doing so. For
example assume that a 24-bit word of information in a table
describes the usage of an I/O device in the following way

First two bits : state, e.g. free, busy.
Next seven bits : priority level.
Next fifteen bits : pointer to name of user

-and assume further that the table contains 30 entries, corres-
ponding to devices 0 to 29. An UNRAVEL program could be
made to interpret the table accordingly and print out inform-
ation in a form such as

DEVICE 0 BUSY AT PRIORITY LEVEL 6.

USER IS CU/RO99
DEVICE 1 FREE
DEVICE2...

The object machine
UNRAVEL can be implemented on almost any machine,
whether a byte machine, a character machine or a word
machine. It is also independent of the base to which the contents
of core store are naturally interpreted, for example octal or
hexadecimal. In this paper this base is called the machine base.
At present UNRAVEL has been implemented on two
machines, the ICL 4130 and the PDP-11. In the former case
there are two separate implementations, one for the on-line
system and one for the manufacturer’s batch system.

Typical actions of UNRAVEL programs
The most common use of dumps is in debugging, and this,

10

therefore, is the most popular usage of UNRAVEL. The
program that is being debugged is called the spotlighted
program. At the end of each run of the spotlighted program, the
user calls UNRAVEL to give him a dump, supplying a program
in the UNRAVEL language to specify how the dump is to be
made. Information that might be put into this dump includes
the following

(a) the values of all the variables in the spotlighted program,
with the name of the corresponding variable given against
each value.

(b) information about the operating environment of the spot- :

lighted program, for example the status of I/O devices, the
contents of buffers, the location of workspace areas, the
running time, the reason for failure, etc.

(c) workspace areas, printed in appropriate formats, for
example dictionaries, stacks, lists.

This information might be supplemented by a conventional
dump, which could be used as a last resort. However, the ideal
should be to make the UNRAVEL program print out all the
information that the user would have to extract from a con-
ventional dump.

System variables

There may be some difficulty in finding out all the information
described above. Difficulty varies according to the machine
and, more particularly, the operating system. To help the user,
UNRAVEL provides some fixed variables, called system
variables, which are preset to point at information that may be
of interest to the user. System variables vary between imple-
mentations. The following list, which describes the system
variables for the ICL 4130 implementation, may serve as an
example

(a) pointers to spotlighted program. On the ICL 4130, vari-
ables and constants are separated from code, and system
variables are set to point at the start of each of the two
parts of the program and to show how large each part is. It
is possible for several programs to reside in core simul-
taneously, and if the user wishes to examine a different
program he can use the UNRAVEL statement

PROG program name

This will cause the system variables to be reset to describe
the new program.

(b) location of operating system table giving state of current
program.

(c) important base addresses used by operating system, e.g.
base of current slave.

Assuming that variables in the spotlighted program are in
contiguous storage, or can be made to be so, a system variable
pointing to the first such variable will be enough to let the user

The Computer Journal

202 udy 61 U0 1s8n6 AQ 6Z/¥EH/01L/1/91/01UE/UlWOD/W0d dNo"dlWspeoe)/:SAY WoJ) POPEOjUMOQ

write an UNRAVEL program to give a complete dump of his
variables. In some implementations it may not be so easy to
find the first variable and the user may need to modify the
spotlighted program to provide this information. The spot-
lighted program could, for example, plant in some fixed place
a pointer to the first variable. A solution on the ICL 4130, where
the variables follow the constants but only the start of the
latter is known, is to make the first constant point at the first
variable.

More will be said later about printing variables in the spot-
lighted program, but before this, the UNRAVEL language will
be described.

The UNRAVEL language

The UNRAVEL language is a simple high-level language. The
main features will be outlined here, and the reader who is
interested in further details is referred to the User’s Manual
(Brown, 1971).

Variables are represented by identifiers. Names beginning with
the letter ‘Z’ are reserved for system variables. Variables have
no data type (as in BCPL (Richards, 1969)), but are interpreted
simply as a word of information. (The concept of a word can be
defined for each implementation, though for most implement-
ations there will be an obvious interpretation.) If arithmetic
operations are performed on variables, the variables are
treated as integers.

Constants are specified in decimal or in the machine base. In
the latter case they must start with the digit zero. It is assumed
in examples in this paper that the machine base is octal. Sample
constants are 20 and 0177.

Expressions are written in the way used in most high-level
languages. The available binary operators are add (+),
subtract (—), multiply (*), divide (/), logical ‘and’ (&), logical
shift (T) and ‘field’ (represented by a comma). The field oper-
ator is used to extract a field from a word and is a short way of
masking and shifting. Sample expressions are

(X+3)*Y
(STATUS&(7*8)) 1 — 3

There are two unary operators: unary minus (—) and indirect
addressing (represented by a colon). The indirect addressing
operator is, of course, vital as it is the only way of looking at
the areas of core to be dumped. All indirection is performed
relative to a system variable called ZBASE. The system will

initialise ZBASE to some appropriate value, but the user can

change it. For example if ZBASE points at the first variable in
a program then

112

gives the value of the twelfth variable. (Strictly speaking, the
address taken is twelve storage units beyond where ZBASE
points. On a machine where the storage unit is a byte, a variable
might occupy several storage units, so it might only be, say, the
third variable rather than the twelfth that is at offset 12 from
ZBASE. Indirect addressing always selects a word of inform-
ation, but the user can, of course, eas1ly mask off individual
bytes.)

Statements

Statements in UNRAVEL are terminated by the end of a line
or by a semicolon. There are no special rules about statement
format. Where appropriate, UNRAVEL statements have been
based on the BASIC programming language. The assignment
(LET), comment (REM), GOTO and subroutine calling state-
ments are almost identical to those in BASIC. Statements may
optionally be labelled by numerical labels. Any statement may
be preceded by one or more IF clauses, though the syntax and
semantics of these are not quite the same as in BASIC. In

Volume 16 Number1

particular if an IF clause does not hold, control passes to the
next line of the program.

The only specialised statements are those for printing. Here
the philosophy is that the printing format is entirely under the
control of the user. The system, therefore, never adds any
extra spaces, tabs or newlines unless the user asks for them.
The following are some of the available printing statements

D expression print value of expression in decimal.
M expression print value of expression in the machine base.
C expression printvalueofexpressionasacharacter string.
NL print a newline.
NL expression print a number of newlines.
TAB print a tabulate character.
TAB expression print a number of tabulate characters.
‘string’ print a string.
Thus for example
‘STACK SIZE IS’; D:12 —
might print
STACK SIZE IS 29

:16; NL

Sample programs
Two examples of complete UNRAVEL programs follow.
The first program corresponds to the example mentioned
earlier, concerning the table of uses of I/O devices. It is assumed
that this table is pointed at by location 41 relative to the curren
base. One feature of this example, which has been found to b&
valuable in many UNRAVEL programs, is that the prograng
contains checks for invalid data. In this case it is assumed tha§
the value of the prlorlty of a device should be less than ten; if
it is not, a message is printed. This is an example of second‘”
level’ 1ntelhgence——not only does the program present 1nform3
ation in a readable form but it also tries to suggest where th@
errors are. The program is as follows

LET TABLE = :41
REM LOOP, X GOING FROM 0 TO 29
LETX =0
10 ‘DEVICE*; D X; *°
LET STATE = :(TABLE + X)&060000000
IF STATE = 0 ‘FREE’; GOTO 20
IF STATE = 1 ‘BUSY’
IF STATE = 2 ‘WAITING’
LET PRIORITY = (:(TABLE + X)&017700000) 1 — 1
IF PRIORITY > 10 NL 2; ‘BEWARE: PRIORITY
TOO HIGH’; NL &
‘AT PRIORITY LEVEL’; D PRIORITY
REM ASSUME POINTER TO USER POINTS A*g
NAME PACKED INTO 2 WORD$
LET USER = :(TABLE + X)&077777
‘. USERIS’; C :USER; C :(USER + 1)
20 NL
IF X <29 LET X = X + 1; GOTO 10

The output would consist of thirty lines of a form such as

DEVICE 0 FREE

DEVICE 1 BUSY AT PRIORITY LEVEL 3. USER IS
CU/RO99

DEVICE?2...

The second example shows how a stack might be printed out.
It is assumed that the stack contains decimal numbers and is
pointed at by three variables in the spotlighted program as
follows

STACKPT points at the first item on the stack.

TOPPT points at the top item on the stack.

LASTBL points at some intermediate point.
These variables are at offsets 8, 12 and 16 respectively from the
current base. It is desired to print the stack out in a diagramatic
form, which might look like this

umoQ

Y2 Ly €4¥0L/1/9L/a101E/|ulwod/woo dn

Aq

20z ludy 61 uo

1

STACKPT — 3

LASTBL

A= —=Q

TOPPT

The program to accomplish this is as follows
LET X = :8
‘STACKPT —’

10 D:X; NL

LET X =X +1
IF X = :16 ‘LASTBL —’; GOTO 10
IF X NE: 12 TAB 2; GOTO 10
‘TOPPT —’; D:X:NL

—5 0

Finding variable names

One of the most important uses of UNRAVEL programs is
to print out the names of the variables in the spotlighted
program with their corresponding values. Hence the
UNRAVEL program needs to be told what the names of the
variables are. There are basically three methods of doing this.
In explaining these methods it will be assumed, for the sake of
example, that the spotlighted program is written in assembly
language (or passes through assembly language at some stage
of its compilation process).

The first method is for the assembler to communicate its
symbol table to UNRAVEL. This method is used in the DDT
debugging system (Digital Equipment Corporation, 1969),
available on some PDP computers. If it can be achieved it is the
best solution.

The second method is to write a simple preprocessor that will
scan an assembly language program and calculate the relative
addresses of all the variables. It is best if such a preprocessor
outputs a series of UNRAVEL statements. For example if PIG
is a variable at offset 17 from the first variable then the
UNRAVEL statement

LET PIG = 17

would be generated. UNRAVEL is made to take the preproces-
sor output and compile it with the user’s program. The user
can then write statements such as

D :PIG

to print the value of his variable PIG. Such preprocessors
should be easy to write using a text processing language or a
general-purpose macro processor. A preprocessor for the ICL
4130 assembly language, for example, has been written in about
forty lines using the ML/I macro processor.

The third, and least attractive, method is for the user himself
to have to specify, within his UNRAVEL program, the
relative offsets of the variables he wishes to examine.

Robustness
Any dumping program should be robust. It is possible, of
course, for the user to make logical errors in an UNRAVEL

References

BrownN, P. J. (1971).
Brown, P. J. (1972).

program or for the data being examined to be so corrupt as to
upset the way it is being interpreted. For example a linked list
might link back on itself so that an UNRAVEL program that
was printing the list would get into an endless loop.

Hence UNRAVEL needs to be implemented in such a way
that all errors are detected within the UNRAVEL system
rather than by the operating system under which it is running;
errors can then be made fail-soft. Some ways of achieving this
are to check all indirect addresses before they are accessed and
to detect likely endless loops. The way the latter is done is to
count backward jumps and to check this against a limit which
is set by the system (but can be overridden by the user). This is
not, of course, a perfect method but seems effective.

Uses
Some of the uses of UNRAVEL have already been shown. In
its basic use as a dumping program it is probably at its most
useful in helping to find the types of bugs that arise in estab-
lished software or software that is in the final stages of develop-
ment, as information is then in a fairly stable form and full use
can be made of all the facilities of UNRAVEL for interpreting C
data structures. UNRAVEL should be a useful tool for those
engaged in software maintenance.

When used in an interactive environment UNRAVEL has
further uses. UNRAVEL programs can be written to print out
the current state of the system, for example who the users are

and what they are doing, and these programs can be kept on =
disc to be used when the need arises. Furthermore UNRAVEL &

programs can be written to monitor the system, for example to
print out the contents of a storage location every time it
changes. (In this case, assuming the program is invoked by a
user at a console rather than by the operating system itself, £
scheduling problems may arise. The storage location being
monitored might change more frequently than the monitoring 8
program is scheduled. There are, therefore, limitations in its 5
use.)

Implementation

To make UNRAVEL relatlvely easy to implement, its loglc
has been encoded as a series of macro calls that can be mapped, 5,
using any suitable macro processor, into the assembly language =

o
E

peoju

@
=
o
3
=
°

=
Q)
!D

3

o)
c
.U
o

IJ,JE/|U[UJOO w

@
[<2]

of any desired machine. There are, however, a number of L

implementation-dependent features that need to be coded by ¢

hand.

This general technique is described by Brown (1972). The
language used for encoding the logic is based on the LOWL<
language, which, being set at a low level, is relatively easy to
map.

In the current implementations, UNRAVEL compiles jts —

program to a reverse Polish form and then executes this.

N

6¢.L

U
@
('D

O

N

>

One of the main problems in each implementation of =

UNRAVEL has been to prevent it destroying some of the
information it is supposed to be dumping. One solution has ®
been to load UNRAVEL and compile its program before the
spotlighted program is entered, leaving UNRAVEL set up and
poised to give a dump when next requested.

UNRAVEL user’s manual for the ICL 4130, Computing Laboratory, University of Kent at Canterbury.
Levels of language for portable software, to be published in CACM.

Digital Equipment Corporation. (1969). PDP-10 reference manual, Maynard, Mass., pp. 537-582.
RicHARDS, M. (1969). BCPL: a tool for compiler writing and system programming, Proc. AFIPS Spring Joint Computer Conference, 34,

pp. 557-566.

12

The Computer Journal

S
N

