A simple analysis of the n*" order polyphase sort
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Several descriptions of the polyphase sort have been published but with one exception the literature
appears to be silent regarding its analysis. This note attempts to restrict the discussion to a simple
notation and therefore hopefully find a wider readership. It concludes with a comparison between

the polyphase and balanced merge sorts.
(Received July 1972)

Whereas the polyphase sort has been well-described in the
literature (Manker, 1963; Malcolm, 1963; Gilstad, 1963;
Flores, 1969; Martin, 1971; etc.) there appears to be little
analysis of the method. Flores (1969) sets out in 32 pages a
description and analysis of the polyphase sort which might
deter a fair number of those most likely to use it. This note
attempts to contain the discussion within fairly elementary
mathematics and without too much reference to external
sources. It might, therefore, be found useful for any course on
Data Processing which emphasises the principles behind the
practice.

Let the sort use n + 1 tape drives named ¢,, t,, ..., t,, t,41.
Table 1 shows the number of unit strings on each tape following
the final passes of the sort. It is later found to be convenient to
extend the table by a further » — 1 imaginary passes according
to the rules of the polyphase sort.

In each row of the table the zero corresponding to the tape
which has to be rewound is in bold type. This zero is referred to
as the ‘pivotal’ zero, to distinguish it from the other n — 1
zeros in the first » lines of the table.

Let u; ; be the jth element to the right of the ‘pivotal’ zero in
the ith row, which is considered circular, e.g. ; ,., = 0 for all
i.

The polyphase sort may now be defined by the recurrence
relations

U,y =1 1

Unj=0 forj=2,3,....,n+1 @
Uij=uU_1,3+ U_qj4; fori>landj=1,2,...,

n—1 3

Uiy = Uy, fori>1 @

Uine1 =0 fori> 1. 5)

The principal interest is in the row-sums g; = > u; ; for it is

J
these that represent the total number of strings on hand at each
pass.
The first step is to show that the sequence g; satisfies the
recurrence relation

g,-=g,»_1+g,'_2+...+gi-,, fori>n
and
&1 =8 =...=8=1.
Writing k; for u; 4, it follows from (3), (4), and (5) that
giv1 =&+ (@m—1Dk,. 6
It therefore remains to be shown that k; satisfies
ki=k,'_1 +ki—2 + "'+ki—n fori>n.
From the recurrence relation (3),
Upg = Ui—q1,0 + Ui—q,2
Ui1,2 = Uj—2,1 + Ui_2 3
Ui—23 = Ui_3,1 + Ui_34 fori>n @)
Uirps2,-1 = Uicpi1,0 + Uicpsqp
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and from recurrence relation (4) the last term in the last
equation above is given by

®)

Ui—p+1,n = Ui—p,1 -
Relations (7) and (8) now give

Upg = Uiy T Ui—p g T U310+ o0 Ui
+ Uin,1
which is
ki=ki_+ki,+...+ki_, fori>n. )
The proof of
g =8i-1+8_.+...+g_, fori>n

follows by induction since, from (6)
gi+1=8 + (1 —1)k;
=8i-1 + &i—2+ ...+ 8ip
+ -y +kicg + ...+ ki)
=g+ -1k,
+ 82+ (n—1Dk;_,
+ ...
+ 8i-n + (ﬂ - 1) ki—-n
=8+ 8-1+ ...+ &i—ns+1-
From Table 1 it is clear that
g1 =8 =...=g, =1

and that g,,, = n. Thus the recurrence relation is satisfied for
its initial set of subscripts, namely

ni1 =81 T 8& t+ ...+ &
The general solution of the recurrence relation

8 =8i-1+8-2+...+ 8

Table 1 Number of strings per tape following final passes of an
n-tape polyphase sort

oty ty ty s . t, tya12.t; PASS

1 0 0 0 O 0 0 g

1 0 0 0 O 0 0 g

1 0 0 0 O 0 0 g,

1.0 0 0 0 0 0 s imaginary passes.
1 0 0 0 O .0 0 g4

1 0 0 0 O .0 0 g, last

0 1 1 1 1 .1 1 g, lastbutl
1 0 2 2 2 .2 2 g, lastbut2
3 2 0 4 4 .4 4 g,.; lastbut3
7 6 4 0 8 .8 8 g4 lastbut4
15 14 12 8 0 .16 16 g,.s lastbut5
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is
=3 4,4 (10)
r=1
where o, a,, . . ., «, are the roots of
pX)=x"—x"1—-x"2—- .  —x—-1=0
and 4,, 4,, ..., A, are arbitrary constants determined by the
values of g1, 25, ..., &,

The polynomial p(x) has one real root in the interval (1, 2)
and n — 1 roots of modulus less than one. The proof of this
important statement is given in Appendix 1. This is crucial to
the analysis since it allows the solution ( 10) to be approximated
to by Ao’ where o is the dominant root, i.e. that in the interval
1, 2).

We now show, by expanding p(x) in a Taylor series around the
point 2, that a, the dominant root of p(x) is given by

1

e
PR)=x"—-x"1—-x"2-,. . —x-1
X"t 2t 41
=—~T forx;él.

Expanding p(x) in a Taylor series around the point x = 2,
p(x) = p(2) + (x = 2) p'(2) + O(x — 2)*.
The root « is therefore given by
0=p2)+ (@—2)p'Q) + O — 2)*.

Hence
(2)
=2 - + O(a
2n+1_2 i 1
—2- ZX 2t O — 2
2" -1
I S
= _2n_1+ ( )'
Th =2 ! Val f d 2 !
us o = —2"_1. alues o1 a, an -—mare

tabulated forn=2,3,...,12in Table 2.

Hence
g; = Ao’ for some constant A ,
and the number of passes required to sort S strings is approxi-
mately [log, S].
To compare the polyphase sort with, say, the balanced merge
sort, it is necessary to know what fraction of the file is processed

Table 2 Comparison between dominant root of p(x) and
approximation given by Taylor expansion

|
2 1-61803399 1-66666667
3 1-83928676 1-85714286
4 1-92756198 1-93333333
5 1-96594824 1:96774194
6 1-98358284 1-98412698
7 1:99196420 1-99212598
8 1-99603118 1-99607843
9 1-99802947 1-99804305
10 1-99901863 1:99902248
11 1-99951040 1-99951148
12 1:99975550 1:99975580
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Table 3 Number of strings per tape, and length of strings in
terms of unit records, for the case of n = 4

ty t, 3 ts ts i g

85(1) 56(1) 0 108 (1) 100(1) 12 349
29(1) 0 56 (4) 52(1) 44(1) 11 181
0 29(7) 27(4) 23(1) 15(1) 10 94

15(13) 14(7) 12¢4 8() 0O 9 49
703) 6(7) 4@ 0 8(25) 8 25
3(13) 2(7) 0 4(49) 4(25 7 13
1(13) 0 204 249 2025 6 7
0 1(181) 1(94) 1(49) 1(25 5 4
1(349) 0 0 0 0 4 1

at each stage of the sort.

Using the notation of (6), the number of strings produced by
the pass corresponding to a progression from row i + 1 to
row i is k;. To calculate how many records are processed wcs
need to know the length of each string in terms of the lengthg
of the strings at the start of the sort which we define as unig
strings. If, to Table 1, we add the lengths of each string in term§.
of unit strmgs (shown in parenthe51s in Table 3 where fog
simplicity » is taken to be 4), it is readily seen that the stringz
length satisfies the same recurrence relation as does the total
number of strings on hand at any stage. If the sort reqmres Ig
passes then the string length corresponding to row i in thg_
table is g_; 4, -

The number of records processed at each pass is thereforé’
ki.8s—i+n- But k;has already been shown to have satisfied thg
recurrence relatlon ).

Thus ki g —itn = B.a' Aas™*"
—_ .B A (Xs+"
which is a constant. Thus the number of unit strings processe
at each pass is approximately the same.
In particular, on the first pass, the number is
&8s — 8s-1
(n—1)

and the fraction processed, ¢, is given by

o n (g —gy
¢_n—1< g )

_nle—-1)

T an—1)
(For the final pass, of course, ¢ = 1). Thus the amount o

processing is equivalent to processing the entire file about

n(oe — 1)
on — 1)
Finally we ask whether, given n (even) tapes, the polyphase
sort is faster or slower than an n/2-way balanced merge sort.

Consider first large n. Then « — 2 and the equivalent power
of the polyphase sort is approximately

ﬁ‘renu[wo:)/woo

n.ks_l = n.
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log, S times .

n—
0 2) log, S.

For the balanced sort, the number of passes is approximately

log, S

log,, S = I\

Now the balanced sort is preferred to the polyphase sort if
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log, S n—1

logz( ) 2(n — 2)

-
g>22(1_n—11)

10g2 S s

NS

NS

i.e.
n > 6-09

Thus for six tapes or less, the polyphase sort is faster than the
balanced merge sort.
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Appendix 1
To show that p(z) = 2" —z""1 —2z""2 — .. —z—1 has
one real root in (1, 2) and (n — 1) roots of modulus less than
one.
p(z) is continuous, and since p(1) =
p(2) = 1 > 0 there is a real root in (1, 2).
Since p(z) may be expressed as

—(n—1)<0 and
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"z — 2) + lf
D=4 G=D orz #1
—(n-1 forz=1,

it follows that the zeroes of p(z) coincide with the zeroes of
f(2) = 2"(z — 2) + 1 with the exception of the root at z = 1
which is clearly not a root of p(z). It is required, therefore, to
show that f(z) has precisely n zeroes in |z| < 1.

One proof of this employs a well-known theorem of complex
analysis, a preamble to Rouché’s theorem sometimes called the
principle of the argument, which is used here in a form possibly
most familiar as Nyquist analysis among electronic engineers.

Set g(z) = z"(z — 2). The image of the unit circle |z| =
described anticlockwise, is a curve that spirals out from |g| =
to |g| = 3 and back again, making n revolutions in all. This
analysis is straightforward; a direct intuitive route is to
see the image as the path of a moon that makes one orbit of its
planet while the planet completes n around the sun. It crosses
the negative real axis n times, at g = —1, —(1 + &)).
—(1 + J,)etc., where 6, is a finite positive quantity, calculable
for a given n.

Now consider #(z) = g(z) + 1 + ¢,0 < &¢ < ;. The image oé
the unit circle C under the mapping A(z) is the curve we haves
just described, dlsplaced 1 + & units to the right. It thus crosse%
the negative real axis n — 1 times (the 1ntercept formerly at — 1,
now having moved across to +¢). Since the image of C no“g
loops the origin n — 1 times there are, by the theorem, n — 1=
zeroes of A(z) inside C. S

Finally, we note that with ¢ — 0, A(z) becomes f(z) with
prescription that the zero of fat z = 1 is to be counted

is taken).

Correspondence

To the Editor
The Computer Journal

Sir,

Two impressions following the BCS conference on Computer
Performance just completed are, first, that debugging and perform-
ance measurement are very much the same thing and require similar
techniques; and, second, that hardware designers have so far done
precious little to help. I would like to suggest a facility which promises
to help a great deal.

A common bug which can be difficult to find is the sudden appear-
ance of a nonsensical value somewhere in the data space. With
current hardware one must normally resort to intellectual exercise
or executing the entire program interpretively. What I would like to
suggest is hardware address traps which can be set by program. For
example one might provide a set of program accessible registers,
each containing two addresses, which would cause the hardware to
interrupt to one address each time a reference to the other address
was encountered. Such a facility would, I suggest, greatly facilitate
the provision of decent debugging and monitoring facilities without
large run-time or software implementation overheads.

Yours faithfully,
R. J. DAKIN
UKAEA Culham Laboratory
Abingdon
Berkshire
18 September 1972
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To the Editor
The Computer Journal

Sir,
Words like ‘compactifying’ and ‘digressionally’ ought,
opinion, to be thoroughly editorised.

in our
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Yours faithfully,
D. WHEELER and R. NEEDHAM;,
University of Cambridge Computer Laboratory
Corn Exchange Street
Cambridge CB2 3QG
12 October 1972

¥20c M

Editor’s comment :

Whilst agreeing with the sentiments expressed by the writers of this
letter, I wonder if they really feel that the editor has the right to
change words which already have been author-ised.
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