On the computation of cyclic redundancy checks

by program

P. L. Higginson and P. T. Kirstein

University of London, Institute of Computer Science, 44 Gordon Square, London WC1H OPD

A method of computing cyclic redundancy checks by program is described which is substantially
quicker than methods published previously. The method is particularly convenient for the genera-
ting polynomial appropriate to Binary Synchronous Communication in the form used with IBM 360/
370 computers. The method is described in detail, and a comparison of program times is given

by different methods.
(Received March 1972)

1. Introduction

Cyclic Redundancy Checks (CRC) have been used to provide
error detection on blocks of data for many years. The theory
of the codes used has been developed in many papers (e.g.
Peterson (1961)). Many of the publications describe hardware
for generating and decoding the CRC sum bytes on a serial bit
by bit basis. The advent of low cost computers as part of
remote entry stations and as intelligent terminals make it
important to provide minimum cost data transmission facilities.
In these systems it is often necessary to generate the CRC bytes
by software.

For software generation of CRC bytes, the algorithms which
operate on a bit at a time are very inefficient. For this reason,
there has been a recent development of algorithms which work
on a byte by byte basis (Boudreau and Steen, 1971). These
algorithms are a considerable improvement on those which
work on a bit by bit basis, but either require substantial amounts
of core, or are still somewhat slow. A typical calculation based
on two bytes at a time for the PDP-9 with the specific CRC
bytes required in binary synchronous communication with an
IBM computer takes 55 us per pair of 8 bit bytes. The main
reason for this long time is the need to ascertain the parity of
the pair of bytes. It is shown in this paper that it is possible to

split up the computation into two parts. One part must be done -

with each byte pair, but does not require computation of
parity. The second part operates on the parity of the whole
message. This form of computation is much faster in any
machine which does not have hardware for generating the
parity of a byte or word.

In Section 2 the binary and polynomial notation is described
briefly. A fuller description is given by Peterson (1961). The
general formulae for generating the cyclic redundancy check
bytes are given in Section 3. There it is shown how the check
sum changes from one bit to the next. This form of the formulae
is rather slow, and in practice the data has a certain number of
8 bit bytes. Since for IBM BSC purposes the residue is based
on a 16 bit counter, and most machines at the moment have
16 bits or more, we present relations in Section 4 based on
accumulating pairs of 8 bit bytes or units of 16 bits of data. The
formulae derived would be fairly fast to evaluate if the parity
of the message was known or a single instruction existed to
obtain it; if this quantity is not fast to obtain, an alternate way
of expressing the formulae is developed in Section 5 which is
much faster. Finally, in Section 6, we extend the method of
Section 5 for the case when the computer used has an 8 bit
word length. In this case formulae based on accumulating
single bytes are required.

2. Binary arithmetic and our notation
In all our arithmetic with binary numbers for the cyclic
redundancy check we use a polynomial notation

F)=fu+ for X o X")

Volume 16 Number 1

where the coefficients f; can be only 0 or 1. The polynomial F
will be represented in a computer by a bit stream in which the
ith bit is f;. Thus multiplying by x’ is shifting to the left by j
bits. Addition of two polynomials is the Exclusive Or of the
corresponding coefficients. In this paper all variables i§
capitals denote polynomials, while lower case letters denote
scalars or coefficients of polynomials. 2

In the cyclic redundancy check we will operate on an accumulz
ator with n positions (in practice n = 16). In addition wg
assume a link bit for convenience; this is the most significang
bit or coefficient of x". Any operation leading to a polynomial
greater than of order » can be ignored; it is shifted beyond ou§
counter and lost. It is the aim of this paper to find the n bit
redundancy check sum in the most expeditious way.

dnoolwe

3. Single bit cyclic redundancy check _
The method of generating a cyclic redundancy check sum is tg
commence with a generating polynomial

o
Gx)=x"+g X" ... +g_1x+g, 2

and to take a Message polynomial M; of the form, after i bits
have been sent &

MX)=m,x"" ' +m x""2... + m_)x" @3
The extra multiplication by x" denotes an initial shift of n bits=

/9¥7310

Then if Qi(x) and R/(x) are the quotient and remainder og
dividing M; by G(x), then &
M(x) + Ry(x) = G(x) Q) “4

R,(x) is denoted as the Residue of M; with respect to G. é

We will now relate M(x) and R(x) to M, ,(x) and R,, 1(x)

First from the definition of M, 9
My (x) = x M{(x) + m; X" Sk -

Let us define %:?_

Rix) = riox" '+ ...+ ripey (6)

N

~

Then comparing Equations (4) and (5) we see that

G(x) Qip1(x) = M1 (%) + Ry (%)
= x Qi(x) G(x) + x R(x) + m; X" + Ry (x)

Remembering that R,(x) is of degree (n — 1) or less, we see that

Rii1(x) = x R(x) + (rip + m) G(x) + m; x")
In Equation (7) the coefficient of x" vanishes, so that the R;, ,
is the correct one. Thus to get R;, ; from R; in a machine with
a link L and accumulator of » bits containing R; we do as
follows
(a) Rotate left one bit
(b) XOR m; in to Link
(c) Add L.G
This procedure is simple but has to be done each bit. In the
PDP-9 this takes about 6 us/bit. For this reason a faster method
is desirable.

19

4. Binary synchronous redundancy check on a two byte basis
Equation (7) is as far as we can go in general. It is instructive
to consider the particular CRC used in IBM binary syn-
chronous communications. Here G(x) has the form
Gx)=x1% 4+ x° + x> +1 ®)

Moreover the number of bits used is a/ways a multiple of 8.
We will assume, in the rest of the next two sections, that the
number of bytes sent is 2, and always consider pairs of bytes.
This will require an extra operation at the end if an odd number
of bytes is sent.

Because we are using pairs of bytes, a new notation will be
used. Instead of the message polynomial of Equation (3), we
will assume the ith byte pair has the form

Mx) = m o x*> + my X" + . omy s ©)
and the Residue after the ith byte pair is R; where
R(X) =r, x>+ ...r; s (10)

From repeated application of Equation (7), it is found that if

we denote R;,; as the polynomial resulting from sixteen)

applications of the formula, then
Riy =(M;+ R)D + (r;y + mi)4 + (riy + m;;)B
+p;C (11)
where R; is the residue before adding the ith byte pair, M; is
the contents of the ith byte pair, and the coefficients are given
by the expressions
15

Mi=m,-’ax +...+m,-’15
A =x>+x
B =x +x*+1 (12)
C =x¥ +x+1
D =x*+x
15
pi = (ri,; + m; ;)

o

j=
Equations (11) and (12) are much faster already to program
than repeated application of Equation (7). It can be shown that
usually by far the longest part of a program to compute R, ,
from R, is the computation of the parity p;. If p; is given by
hardware, or if a simple parity was provided with each byte,
then the computation is greatly speeded up. A more elegant
and general version of Equation (11) is given in Boudreau and
Steen (1971). The present form is more convenient, however,
for our purposes.

S. Computation of CRC by separating off parity calculation
It.can be shown that the first three terms of Equation (11) can
be performed fairly quickly. The last term is usually slow,
because p; requires an operation to be done on every bit—
taking 25 us on a PDP-9 for 16 bits. We therefore will try to
rewrite Equation (11) in terms of another variable W, where
W, is related to R,, but its recurrence relation does not contain
p;.

First, we will relate p; to the sum of all previous message bits,
i.e. the total parity of the message. We can show from the

definition of p;, and from summing all the terms of R,,, in
Equation (11), that

15 15
Pi+1 = .Zo(ri+1,j+mi+l,j)=1’i+'z(‘.) miyy; (13)
i= j=

But p, = 0, hence p; is the parity of the first / byte pairs of the
message.
Next let us define W, by the relation

Wi=R;+ Cp;_, (14)
Then substituting Equation (14) into Equation (11) we see that
Wivi=Rix1 + Cp;
=DW;+ M;+ Cp;_) + Wiy +m,+pi_y) A
+ Wiy +m)B+p;C+ Cp;

=(M;+ W)D + (m;, + w; o)A + (m;; + w; ;)B
+ (1% + X)p;_y (15)
Now if W,,, is computed from W; by truncating coefficients
of x'® or greater, Equation (15) can be written
Wiii® (M + W)D + (m;, + w;)4 + (m; y + w; ,)B
(16),,
where = is written because the terms in x'® and higher are2
truncated. Because the recurrence relation Equation (16) does§
not contain p,, it is much faster to calculate on most computers2
than that of Equation (11).
Now p,, is, from the discussion after Equation (13), the total
parity of the message. Hence to evaluate p, after i byte pairs
i 15
pi= 2 X my ;
k=1 j=0
15 i

=2 Xm, N5

j=0k=1

To get p; we may do > M; on a word basis and then do
i

wiapeoe//:sdny woJj pa

ol

dno

00/W0d

15
2 (2 M));. This is much faster than any other way of doing it.

3

=0i =
! Thus to determine R, for a set of data, we first determine W,,;%
by repeated application of Equation (16); then p, is found froms
Equation (17); finally R, is found from Equation (14). Timing®
figures for the PDP-9 of the three algorithms by bit, by character 2
pair and by message as developed in Sections 3, 4 and 5 are g
given in Table 1. In the same table are shown for comparison &
purposes the first two methods of CRC generation of cyclic®
redundancy checking by program (Boudreau and Steen, 1971).83
The third method of that reference is not considered, because2
we do not have hardware for generating the parity of a byte%
or word. The figures in the third column of Table 1 give the2
words of core required to generate the CRC for an even number S
of bytes. The second and third methods deal with byte pairs, ©
and have additional core requirements to deal with an oddZ
number of bytes; these requirements are indicated in the last%
column. The time given for the third method excludes an3
overhead of 37 us/block, which is negligible for the block ™~
lengths usually transmitted (> 100 bytes).

Table 1 Performance of different methods of CRC generation on the PDP 9

METHOD

MESSAGE TIME WORDS OF EXTRA WORDS OF
PER BYTE CORE USED CORE USED FOR
(us) ODD NO. OF
BYTES

Hardware Simulation (Equation 7) 55 18 4

Byte Pair Equations (Equation 13) 24 34 14

Message Equations (Section 5) 13 43 14

Method by 256 word Look-Up Table of Boudreau and Steen (1971) 22 269 —

Method by double 32 word Look-Up Table of Boudreau and Steen (1971) 36 51 —

20

The Computer Journal

Table 1 shows that the core requirements of the method of
this section are not large; and the time taken is only 60 per cent
of the fastest method of Boudreau and Steen (1971), and four
times faster than simple simulation of the BSC hardware.
Programs of the different methods are given in the Appendix
for comparison purposes.

To compute the CRC for an odd number of characters
requires a special operation on the last byte; the core require-
ments for this are shown in the last column of Table 1. In the
second and third methods only this operation takes double the
time of other bytes; this time penalty is negligible for blocks of
> 100 bytes.

6. Extensions of method to single bytes

The reason for the great difference in speed between the second
and the third algorithm is that one application of Equation (16)
requires only 13 us, while the parity of a pair of bytes takes
25 ps. The speed of application of Equation (16) is due to the
specific generating polynomial used, and would not apply in
general.

A similar, but less impressive gain in speed would arise by
deriving a version of Equation (11) based on eight applications
of Equation (7). The appropriate equations are best expressed
in terms of half words or bytes.

If

R, = x® Ry + R etc. (18)
and Ry, R;;, the Message M, etc. are bytes, then the equivalent
of Equation (11) is

Ry Hx + Riy1,L = R:Lx +
{6+ x)(Riy + M)1 +pC} (19)
where again
C=x"+x+1 (20)
and

= 'éo (ri,jll + mi,j) (21

The portion of Equation (19) inside { } depends only on
(R; g + M)). This is the reason that that part of the equation
can be obtained from a 256 word table look up, and is the
basis of the first method of Boudreau and Steen (1971).

The p; of Equation (21) is not the parity of the message, and
relations separating out the parity term can be derived only by
considering pairs of bytes. In this way the method becomes
identical to that of Section 5. Equations (19)-(21) are useful,
however, to deal with the extra byte if the message contains an
odd number, and the method of Section 5 is used.

Appendix
CRC generation routines for the PDP-9

In the main text algorithms for five methods of CRC generation
have been mentioned. Three are hardware simulation (Section
3), generation by character pair (Section 4) and generation by
message (Section 5). The other two are methods using Look-Up
tables derived in Boudreau and Steen (1971). For comparison
purposes, we present here the PDP-9 programs for the basic
routines for each of these methods. The instruction code of the
PDP-9 is given in the PDP-9 users Handbook (1970), and will
not be discussed here. It is an 18 bit machine with a one us
cycle time; thus the time it uses in ps also gives the number of
core cycle times. It is assumed in each case that the byte pairs
are packed into bits 2-10 and 11-17 of the PDP word, bit 17
is sent first, bit 2 last and the numbers in the routines are all
octal.

Volume 16 Number 1

Incidentally the first three methods gain slightly from having
the data packed into buffers or available in byte pairs, while it
is preferable for the last two methods to have the individual
bytes available.

1. Hardware simulation
Subroutine for one byte

CRC 9 /Enter with byte in ACC
XOR CRCA
DAC CRCA
LAW —10
DAC COUNT
LAC CRCA

RCR

SZL!CLL

XOR (120001
1SZ COUNT
JMP .—4
DAC CRCA
JMP* CRC

core used = 16 words (13 program, 2 temp, 1 constant)
time taken = 60 us per byte
To compute the CRC for a pair of bytes the count is set to —20;2
in this way the time taken can be reduced to 55 us/byte at thea
expense of 6 more words.

2. Byte pair equation
Subroutine for a byte pair
CRC 9
XOR CRCA
DAC CRCA

woo/woo dno olwapeoe//:sdny wouy

RCR
XOR CRCA

RCR!SZL JACC = (M, + R)D

XOR (170001 | + (r;, + my) (A + B)
SZL

XOR (120001 | + (i + My + Ty

+ mll)
DAC TEMP
LAC CRCA /Now parity
LRS 10)
XOR CRCA
DAC CRCA
RTR
RTR
XOR CRCA Generate Parity of ACC wit
DAC CRCA answer in LINK
RTR
XOR CRCA
DAC CRCA
RAR
XOR CRCA
RAR
SZL!CLA
LAC (140001 /P; C
XOR TEMP
DAC CRCA
JMP* CRC

core used = 34 words

time taken = 48 us per byte pair.
Note that a Parity Generation Instruction (of the ACC) would
replace the 13 words of code indicated (taking 25 us) and reduce
the CRC of a message to 14 us per byte.

20z ludy 61 uo 1551‘5 Aq z8LvevI6 L/L/9L/9I3'U?/IU[

3. Message equation

Assuming T'1 is set up to the buffer address 72 = —number of
complete words, and given T4 = T'1, T5 = T2 for the second
loop.

21

Note that the ‘once-only’ parts take about 37 us but as most
blocks are at least 100 bytes long this is not important.

CLA

LOOP1 XOR* T1
DAC T7
RCR
XOR T7
RCRI!SZL [(M; + R)D
XOR (170001 /Bit 17 into places 2, 3,4, 5, 17
SZL
XOR (120001 /Bits 16.17 into places 2, 4, 17
ISZ T1
1SZ T2
JMP LOOP1
DAC T1 [save
CLA

LOOP2 XOR* T4 /Work out word parity
I1SZ T4
ISZ T5
JMP LOOP2
DAC T2
ALS 19
XOR T2 /Then 8 bit parity byte
DAC T2
RTL
RTL
XOR T2 /Reduce 8 bits to 4
DAC T2
RTL
XOR T2 [To 2
DAC T2
RAL
XOR T2 /To 1
RTL
SPA!CLA
LAC (140001
XOR T1
DAC Tl

core used = 43 words
main loop time = 25 us per byte pair.

References

4. Single 256 word look-up
Subroutine for one byte

CRC O
XOR CRCA
AND (377
TAD (XOR TABLE
DAC +3
LAC CRCA
LRSS 10
XX
DAC CRCA
JMP* CRC

core used = 269 words
time taken = 22 us per byte.

5. Double 32 word look-up

This is similar to 4 but uses two 16 word tables. Subroutine for

one byte
CRC O,

XOR CRCA
LRS 4
AND 17
TAD (XOR TABLE 1
DAC .+6
LLS!CLEA 4
TAD (XOR TABLE 2
DAC .+4
LAC CRCA
LRSS 19
XX
XX
DAC CRCA
JMP* CRC

core used = 51 words
time taken = 36 us per byte.

PETERSON, W. W. (1961). Error Correcting Codes. The MIT Press, Cambridge, Mass.

BouDREAU, P. E. and STEEN, R. F. (1971). Cyclic Redundancy Checking by Program, AFIPS Conference Proceedings, Vol. 39, pp. 11-1

PDP 9 User’s Handbook, Digital Equipment Corporation, Maynard, Mass., 1970.

J/CLEA = 1000

20z udy 61 U0 1sanb Aq Z8/¥E¥I61/1/91/a01E/UlWOd/ W00 dNo dlWspeoe)/:SAY WOI) POPEOUMOQ

The Computer Journal

