The dynamics of paging

M. V. Wilkes

Computer Laboratory, University of Cambridge, Corn Exchange Street, Cambridge CB2 3QG

A general model of a paging system is given that can be used to describe a wide variety of particular
systems referred to in the literature. This model is discussed from the point of view of control
engineering, with particular reference to the avoidance of instability (thrashing). A distinction is
drawn between different levels of control and between systems that are funed and those that are
under control. The relationship of the approach made in the paper and that via queuing theory is

discussed.
(Received September 1972)

The kinetics of operating systems has received much attention
in the literature. Kinetics is the study of how a system can move
without violating its constraints, and it is relevant to the prob-
lem of designing a system that is adequately, but not over,
constrained. The proper interlocking of processes, so that
deadly embraces cannot occur, comes under this heading; the
constraints can be applied through the use of nested process
calls, flags, semaphores, and other devices. There is no discus-
sion, however, in kinematics of how the system will actually
move in response to applied forces. That discussion belongs to
dynamics.

The last 20 years have seen the systematic development of
control engineering which aims, in the various fields in which it
is practiced, at understanding the dynamics of systems and
how they can be controlled. The control engineer is concerned
with such things as maximising throughput, minimising cost,
and safeguarding the quality of the product; in general terms,
with the achieving of maximum efficiency, however that
efficiency may be defined. Typically, if one attempts to push
efficiency too far, one runs the risk of instability or of sudden

-loss of performance. To the extent that a computer system
handling a stream of jobs can be regarded as analogous to a
mechanical system or process plant, then the approach of the
control engineer is relevant.

We are not yet in a position, and perhaps never will be, to
write down equations of motion for a computer operating
system. However, this does not exclude the design of a control
system. Indeed, it is just in circumstances where the dynamical
equations are not fully understood, or when the system must
operate in an environment that can vary over a wide range, that
control engineering comes into its own.

Some general remarks are made below about the principles on
which control systems are designed. These lead to a discussion
of how the same principles may be applied to the control
problem associated with computer operating systems intended
to process a stream of users’ jobs.

Control fundamentals

The degree of complexity, or otherwise, that is necessary in a
control system will depend on the degree of stability implicit in
the basic design of the system to be controlled. If this is such
that there is inherent negative feedback, then smooth operation
may be possible without any super-imposed control system. An
example is an electric motor which, if properly designed, will
maintain a speed sufficiently constant for many applications
without any form of control, drawing from the supply the
amount of power required to meet the varying demands of a
changing load. The simplest form of super-imposed control is
that summed up by the words steam engine governor. This type
of control acts retrospectively on the occurrence of an error; it
is, in fact, error driven, and even in the steady state the error is

4

never completely annihilated. A control system as simple as the
steam engine governor will only work satisfactorily in an
extremely small number of cases, another of which is the control
of temperature by means of a thermostat. Watt, who is credited 2
with the invention of the steam engine governor, was evidently=
lucky in that he had no problem over stability, and it was:l
perhaps because this luck was not repeated that there was such aa
long interval before the modern subject of control engineerings
began to develop. As soon as control is applied to anything but=.
the first derivative, or any delay is introduced, the problem ofﬁ
instability arises; one has only to imagine a steam engmeE
governor that controlled the rate of flow of fuel to the boiler,3
or one in which a deliberate delay in the actuating of the steam®
valve were introduced, to apprec1ate this point. The theory of3-
error-driven control systems in which the variables are con-
tinuous is now well understood.

In the case of systems in which a delay necessarily occurs be—3
tween an action becoming necessary and the decision to take 1to
becoming effective, a control system that can look ahead 1s—
required. If the delay is small the look ahead can be based ongs
the current rate of change; the widely used p.i.d. (proport10nal,o
integral, derivative) controllers work on this principle. If,;
however, the delay is more serious, such methods are not suffic-=
ient to achieve stability and some knowledge of plant dynamlcsJe
must be built into the control system. This is where a model ofw
plant operation or of product behaviour comes in. The control\‘
system consults the model before deciding on the action to bec
taken in the plant. An essential feature is that the model shouldc
operate more quickly than the plant In some cases, hlll‘D
climbing techniques can be used, that is, alternative courses oF
action can be tried on the model and the best one selected..
Models typically contain parameters whose values must beﬁ
continuously estimated with the aid of data obtained from the=.
plant; a case in point is a parameter describing the efficiency ofN
a catalyst in a reaction vessel. If, however, one does not wish tox
be concerned with the details of a model, one can think of it as
a black box into which a number of inputs are fed and from
which come one or more outputs that are used by the control
system to decide on action. The fact that the model has to -
determine its own parameters means that the outputs are
functions of past values of the inputs as well as of current
values and may, therefore, be biased towards the past.

In some cases, open loop control, based on a model, may be
entirely satisfactory in itself. An example is a simple autopilot
that automatically determines from a model the degree of
banking necessary to execute a prescribed turn. On the other
hand, it may be necessary to supplement open loop control by
an additional super-imposed control loop of the steam engine
governor type

Often it is necessary to add safety devices that come into action
when the control system fails. These may be divided into two

The Computer Journal

classes: those which enable operations to continue and those
which shut the plant down altogether. An example of the first
class is the safety valve on a boiler and of the second the
emergency control rods in a nuclear reactor. In many cases, the
former class are not correctly to be regarded as safety devices
at all, but as an additional level to the control system. Their
presence may enable the next lowest level of control to be
simplified and designed in a less conservative manner, with a
resulting improvement in average efficiency. Although blowing
off steam is inefficient, the presence of the safety valve enables a
boiler to be run nearer to its maximum safe working pressure
than would otherwise be the case.

Application to computer operating systems
An example of the direct application of control engineering
principles to the control of a computer operating system will be
found in Wilkes (1971). This concerns the automatic control
of the number of users allowed to log-in to a time-sharing
system. The object is to allow this number to be as great as
possible without the degradation of response that comes from
allowing it to be too large. The controlled variable is the total
number of tasks awaiting attention within the system. If the
average activity of the users were constant then, of course, it
would simply be necessary to choose the right number of users
to produce tasks at the required rate. In practice, the average
activity varies over wide limits and it is the function of the
control system to compensate for this. A system, known as the
load leveller, that performed these functions, was designed by
R. Mills for the CTSS at MIT. The load leveller was a good
example of a super-imposed control system. It ran as though it
were a user’s program—although one having special privileges
—and it could be used or not used according to requirements.
The aspect of operating system design that will be discussed
in this paper is paging. It is notorious that the use of apparently
innocuous scheduling and paging algorithms can give rise to
the type of unstable behaviour known as thrashing. The achieve-
ment of optimum use of core memory and processor time, while
avoiding the occurrence of thrashing, may be regarded as
posing a problem in control engineering. The literature con-
tains descriptions of a number of systems based on differing
policies for scheduling and paging. These systems are usually
described by their authors in isolation and it is not easy to see
how they are related to one another. An attempt will be made
here to provide a general description, or model, of a paging
system that is applicable to a wide range of particular systems.
This model will be discussed from the control engineering point
of view. Later it will be shown how some of the paging systems
referred to in the literature can be described in terms of the
model.

Queuing theory

The approach made in this paper is complementary to the more
usual statistical approach by way of queuing theory. Statistics,
being concerned with an average over all possible situations,
can throw no light on the way a system will behave in particular
circumstances; that is, it can throw no light on dynamics. On
the other hand, statistical considerations are highly relevant
to the discussion of certain matters not treated in the present
paper; for example, how much channel capacity, buffer space,
etc. must be provided in order to secure efficient operation
without congestion.

Process administration

An operating system must maintain lists of processes that are in
various stages of passage through the system. Three such lists
may be identified as being essential; in practice these lists may
be subdivided, but we need not here be concerned with the
subdivisions. The waiting process list contains processes that
have been presented to the system, but have not yet been

Volume 16 Number1

accepted by the supervisor for the allocation of a share of
processor time. The accepted process list contains processes
that have been so accepted, while the active process list, or
loaded process list, contains processes that are actually loaded,
which in a paging system is taken to mean that they are entitled
to have pages in core. The number of processes on the active
list is called the level of multiprogramming and it is denoted by
L. L may have a constant value or it may vary dynamically.

The distribution of the available memory space between
processes may be regarded as a problem in resource allocation.
Since, however, core space is limited and must be re-used, there
is a corresponding problem in resource de-allocation. These
two aspects, those of allocation and de-allocation, may be
divorced from one another by maintaining a reserve of free
page-frames which are not allocated to any process and are,
therefore, available for allocation when required. The reserve
of free page-frames is replenished by a routine—the de-allocation
routine—that withdraws page-frames from processes, while the
allocation routine is responsible for issuing page-frames to
processes that require them. The special case in which the
reserve is maintained at zero level is mentioned below. -

Given the above framework of definitions, a system may the
be defined by specifying the following policies:

1} papeojumoq

Scheduling policy
This is the policy according to which processes are transferre@
from the accepted list to the active list and vice-versa. It als
covers the transfer of processes from the waiting list to the
accepted list to make up for processes that have run to comw
pletion. The scheduling policy can be implemented by threéi_
separate routines, one for each of the three types of transfeg
just mentioned.

dnoo

Processor allocation policy g
This governs the allocation of processor time to the processes

on the active list, and is implemented by one routine.

[onJe/julwo!

Page allocation policy
This is implemented by the two routines that have already beex?i
mentioned, namely the allocation routine and the de- allocatxo@
routine. To complete the specification of the paging policy, it is
necessary to specify the circumstances in which the two routine
are called in.

6 Aq vLLv®Y

Choice of policies
It is now possible to list the various factors which may bé
taken into account in specifying the three policies, and to make
some general remarks about the design of the policies them~
selves and the influence that they have on the characteristics
the system. Clearly, it is not possible to make an exhaustive.
listing of all factors that might be taken into account in thB
definition of a policy. N

From the present point of view, the important decisions to be
taken under the heading of scheduling policy concern the
transfer of processes between the accepted list and the active
list. In a time-sharing system, it is to be expected that a process
that has failed to run to completion, after being on the active
list long enough to receive a certain quantum of processor time,
will be transferred back to the accepted list to wait its turn for
another period on the active list later. In a non-time-sharing
system a process, once transferred to the active list, would stay
there until it had run to completion.

Some of the factors that may be taken into account in deciding
whether to transfer a process from the active list back to the
accepted list are as follows:

1. The amount of processor time that it has received while on
the active list. Usually, on being transferred to the active
list, a process is given an allocation of time that may depend,

for example, on the total amount of processor time that it
has received and on the number of times that it has had a
spell on the active list.

2. Whether the process has reached an input/output, as distinct
from a page, wait, or is waiting for a semaphore.

3. The current observed requirement of the process for page-
frames (considered in relation to any estimate made when
the process was transferred to the active list or to the
aggregate requirements of other processes).

A process is removed from the system altogether when it runs
to completion.

The decision to transfer a process from the waiting list to the
accepted list may depend on the following factors:

1. Whether the process is free to run; for example, whether any
magnetic tapes needed have been mounted.

2. The number of processes on the accepted list.

3. The number of processes on the active list.

4. The number of processes that have run to completion in the
recent past.

5. The priority (externally determined) attaching to the
process.

A processor may become free as a result of the process on
which it is working running to completion, being arbitrarily
removed from the active list, or reaching a page wait. Depend-
ing on the policy adopted, it may also become free if the run-
ning process has exhausted a slice of time allocated to it,
without necessarily having consumed all its allocation of time
for its current period of residence on the active list. When a pro-
cessor becomes free, the following factors may be taken into ac-
count when deciding which process is to be given the use of the
processor next:

1. An arbitrary ordering of processes, for example their

positions on a round-robin.

2. The relative seniority of the processes as determined by the

order in which they entered the active list.

3. The relative priorities of the processes.

Alternatively, the choice may be made on a random basis.

In the case of the allocation and de-allocation routines we
have to consider when they are triggered, what action they
take when triggered, and the criteria on which that action is
based. The allocation routine can be triggered:

1. When a new process enters the active list.

2. When a process demands a page.

The action taken can be:
1. To allocate a single page.
2. To allocate a specified number of pages.

Factors taken into account in deciding whether the allocation
can be met may be:

1. Whether the process already has in core as many pages as it
is allowed.

2. The seniority of the process.

3. The priority of the process.

The de-allocation routine can be triggered:

1. When a process leaves the active list.

2. When the reserve of free page-frames becomes zero or falls
below a specified limit.

3. At regular or quasi-regular intervals.

The action taken can be:

1. To add a single page-frame to the reserve of free page-
frames.

2. To add a specified number of page-frames.

3. To add to the reserve all page-frames satisfying certain
criteria.

Factors taken into account in deciding whether a given page
may be removed from core, and in which order pages shall be
so removed, may be as follows:

1. Time, either real time or process time, that has elapsed
since the page was last accessed.

2. Whether the owning process is on the active list or not.

3. Total number of pages already owned by the process.

4. Seniority of owning process (absolute or in relation to those
of other processes waiting for pages).

5. Whether the page is owned by a single process or shared by
several processes.

Nothing has been said about the policy in relation to the
reserve of free page-frames, since this follows naturally from the
policies that have been discussed above. If, for example, the
de-allocation routine is triggered only when the reserve is
exhausted, and if that routine delivers a single page, then in
effect the reserve is maintained at zero level. Naturally, certain
short cuts in implementation would be adopted if this were the
case. One would probably have a single placement routine
instead of separate allocation and de-allocation routines. The

placement routine would have the responsibility both of

deciding what page-frame to declare free and of issuing it to the
demanding process.

A distinction may be drawn between policies in which a limit
is set on the number of pages a process may own (not necessarily
the same for all processes) and those in which no such limit is
placed. This corresponds to the distinction made by Denning
(1970) between local and global placement policies.

reserve of

20z Iudy 61 U0 188nB AQ ¥1.L¥Eb/b/1/9L/2191E/|UlW00/ W00 dNodlWapEdE//:SRY WOl PSPEOjUMOQ

Iv \ page-frames
E A4
L waiting accepted acti ‘ pages A
list list list
processor @ |-
- L d
P d
NP g e
-~
R .;_‘l’...-[]:[J ‘,’——---..____(::)____J
\\
101 -0
*' lv'\ l\[\
\) \3/ completed
Fig. 1 processes

The Computer Journal

The above listings of factors to be taken into account are not
intended to be by any means exhaustive. For example, in addit-
ion to the externally determined priority of a process, account
may be taken of whether it belongs to a foreground or a
background job and of its need for peripherals, such as mag-
netic tape drives.

Flow of processes

Fig. 1 shows in diagrammatic form the way in which processes
flow through the system, or rather through the part of it with
which I am concerned in this paper. The flow of processes
between the accepted list and the active list is controlled by two
‘valves’, V,, V3, and the flow of processes from the waiting list
to the accepted list is controlled by the ‘valve’ ¥,. A number of
processes of varying shapes and sizes are shown as being
currently on the accepted list with pages attached to them.
Pages are withdrawn to the reserve through the ‘valve’ V5 and
supplied to the processes as required through the ‘valve’ V.
The processor—only one is shown in the diagram for simplicity
—can be associated with any process on the active list through
the ‘switch’ S;. It is to be emphasised that the figure is entirely
diagrammatic and that the analogy with a process plant is not
to be taken too seriously. V', V,, ..., Vs and S,, may be refer-
red to as control points.

Control of V3 by one of the algorithms implementing the
scheduling policy, of S; by the processor time allocation rou-
tine, and of ¥, and ¥V by the allocation and de-allocation
routines is straightforward, since the necessary decisions can be
taken on the basis of information available at the time without
any need to look into the future. The information taken into
account can vary greatly from one system to another and the
routines are not necessarily simple. The three policies on which
the routines are based should be chosen with two objects in
view. One is that together they should give the system the
maximum degree of intrinsic stability in the sense that an
electric motor has intrinsic stability. Some policies would
obviously do just the contrary, for example one that caused the
most recently used page-frame, rather than the least recently
used one, to be declared free. It is not, however, always easy to
see what the effect of a particular policy will be as regards
intrinsic stability, and the matter is referred to again when
examples are given. The second object in choosing policies is
that they should maximise the proportion of time the processor
spends in doing useful work and hence maximise the through-
put of the system.*

In a process plant, a control engineer would perhaps install at
points such as V3, V,, Vs, Sy, simple controllers taking account
of present values and possibly also of present rates of change.
Control of V,, however, is not such a simple matter. If too few
processes are allowed to enter the active list, there will be pro-
cessor idle time and consequent inefficiency. On the other hand,
if the number of processes on the active list is allowed to
increase beyond a certain point, there will be insufficient pages
to satisfy their needs and thrashing will occur. If processes were
uniform in their paging requirements, the routine for control-
ling V, could be designed to keep the number of processes on
the active list to a predetermined number. Indeed, some systems
do work in this way. The number is chosen conservatively, in
the hope that, with the work load actually encountered, the
efficiency will be acceptable and thrashing will occur only rarely.

On the other hand, it is possible to devise methods of control
of ¥, which make use of recorded knowledge of the past
behaviour of a process to predict its future behaviour. This, in
effect, is to use a model, and all such methods stem from the

original concept of the working set introduced by Denning
(1970). Although the working set is the main ingredient in such
models of process behaviour, hypotheses about the circum-
stances in which a process changes course and starts building
up a fresh working set may be incorporated, as may also means
of estimating the working set of a process which has not yet
run. It would be nice to have a model that was capable of more
accurate prediction and relied less heavily on observations from
the past. It is difficult, however, to discern any principles on
which such a model could be constructed.

Control of V, involves a different set of considerations. If
too many processes are allowed to pass on to the accepted list,
the penalty will be, not instability, but a poor response. Control
of ¥, is thus bound up with the problem of keeping the total
load of the system within its capabilities, rather than with the
problems of paging with which this paper is primarily con-
cerned. The control of ¥, will not, therefore, be discussed
further.

It has been remarked that there may be, in any control system,
a number of levels of control. In the present context, an ad-
ditional level of control may be superimposed on a system
designed along the lines that have been described. One could,
for example, arrange to detect the onset of thrashing—by #h
increase in processor idle time, or in the rate of paging—a
to take suitable action to restore stability. For example, t
number of processes on the active list could be temporar%
reduced. This action could be taken either automatically _§r
through operator intervention. 2

Attempts have been made to design systems which alwa
tend to move towards a condition of thrashing and, as thas
condition becomes detected, to back off. Such a system of
control, if effective, would be error-driven along the lines of
the stem engine governor. There are two reasons why I woufd
not expect such an approach to be very successful. In the ﬁx§t
place, one normally thinks of error-driven control systems as
applied to continuous variables and there are difficulties m
adapting them to the discontinuous case. This is particularly ge
in the present instance, since the number of jobs on the active
list is quite small. The other reason is that a paging system
should, for efficiency, operate so that it is well away from the
thrashing point, and not at the point at which thrashing s
incipient or about to become serious. A system that was com-
tinually going into thrashing and backing off would tend ﬁzb
spend far too much of its time in a state of mild, or worse thaga
mild, thrashing, or in recovering from the disruptive effects of
the drastic action necessary to bring the thrashing undgr
control.

S

6l UO]S

Overall view ©
The overall view that emerges from the above discussion is af
two levels of control. On the main level there are a number of
independent butco-operatingroutines, usingas input the curreii
state of the system; however, one control point, namely V,, is
singled out as needing special attention. Since time must elapse
between the taking of a decision to transfer an additional pro-
cess to the active list and the becoming evident of the conse-
quences, in terms of system behaviour, of that decision, it
would appear to me that the total system can be described as
being under control only if a policy based on prediction is
adopted for the control of V,. I do not deny that systems based
on other policies may give satisfactory results in practice, but I
would regard such systems as being essentially funed to their
work load and would expect retuning—to the extent even of
drastic modification of the algorithms—to be necessary to

*From the point of view of the overall design of the system there are many considerations other than the avoidance of processor idle time.
Processor efficiency must not, for example, be secured at the cost of excessive investment in core memory or channel capacity. However, once
the other parameters are determined—that is, once the configuration has been fixed—it remains to choose the policies under discussion so

that the maximum amount of work is done in a given time.

Volume 16 Number1

make them work equally well in differing circumstances. I
would also expect occasional trouble when the work load
happened to contain a mix of jobs having unusual space
requirements. Even with predictive control, there will neces-
sarily be an element of tuning on account of the basic limitat-
ions of the working set model on which the prediction must be
based.

The superior level of control is of the safety valve type, and
must include some provision for human decision, if only to
purge from the system jobs whose working sets are too large
for them to be effectively run.

Particular systems

An attempt will now be made to show, with the aid of the
table, how a number of the paging policies that have been
implemented or suggested may be described in the foregoing

terms. Naturally, in such a table, only an outline can be given.
Each row of the table refers to a particular combination of
policies and the last column indicates, where appropriate, a
system that has been implemented or discussed in the liter-
ature that comes near to the one of which an outline is given in
the preceding columns.

A few comments are made on each system, but it is not part
of the plan of this paper to survey, or discuss in detail, the
various systems that are possible.

The system outlined in the first line of the table uses simple
demand paging with a global placement algorithm according
to which the page longest in core is always over-written irres-
pective of the process to which it belongs. There is no time-
sharing and a process reaching an I/O wait is not removed from
the active list, although it may in the course of time lose most or
all of its pages. The second line shows a similar system with

Table Examples of particular paging policies

v, S V, Vs, Vs
LOADING OF A ALLOCATION OF UNLOADING OF PAGE FRAME PAGE FRAME NOTES!
NEW PROCESS PROCESSOR A PROCESS ALLOCATION DE-ALLOCATION
1 keep L constant round-robin; a never on demand ZETrO IeServe; c.f. Atlas®
process loses pro- take LRU?
cessor on reaching
an I/O wait
2 ditto round-robin; on reaching an ditto ditto time sharing
a process loses I/O wait; with demand
processor on on exhausting time paging
reaching a page allocation
wait
3 keep sum of Senior process free on reaching an by pre-paging: on completion; c.f. MULTICS*
working sets less to run pre-empts I/O wait; on demand on unloading;
than core capacity processor on exhausting time if reserve
allocation empty take LRU?
4 keep L constant highest priority never on demand on completion; c.f. Wharton®
process free to run if reserve
pre-empts processor empty take LRU?
from process of
lowest priority
that owns pages
5 ditto ditto ditto ditto ditto, but also: c.f. Lynch®
at regular
intervals take
pages from
processes not
waiting for pages
6 load if space round-robin; on reaching an I/O by pre-paging; on completion; c.f. EMAS
allocation (based a process loses wait; on demand on unloading; (Whitfield)
on working set) is processor on on exhausting time at intervals take
less than reserve reaching a page allocation; on pages not in current
wait exceeding space working set of any
allocation process.
1. Systems mentioned in this column resemble in some, if not all, of their features the one outlined in the earlier columns.
2. Least recently used page irrespective of owning process.
3. See Kilburn et al. (1962).
4. See Organick (1972).
5. See Alderson et al. (1971).
6. Private communication.
8 The Computer Journal

20z Iudy 61 U0 189nB AQ ¥1.L¥Eb/F/1/9L/9101E/|UlW00/ W00 dNodlWapEsE//:SARY WOl PSPEOjUMOQ

time-sharing. In both these systems, the processes on the active
list are arranged in a round-robin and whenever a process
reaches a page wait the processor is offered to the process next
in cyclic order. The disadvantage of this strategy is that control
tends to pass to the process that has been waiting longest and
hence is most likely to have lost some of its pages. It would be
better to offer the processor, whenever the current process
reaches a page wait, to one of the other processes chosen at
random. This is, in fact, what the system dégenerates into under
conditions of heavy paging when any process to which the
processor is offered will most likely not be free to run. A dis-
advantage of these types of strategy is that the processes
compete with each other for pages on equal terms and the
consequence can easily be a disorderly scramble.

This defect is corrected in the system used in MULTICS
which is essentially that outlined in line 3 of the table. The
processes on the active list are arranged in an order of seniority
which is, in fact, their order of loading. When a process leaves
the active list, then the process below it moves up in seniority
and a new process may be loaded to become the junior process.
The processor is always allocated to the senior process that is
free to run. Any process emerging from a page wait preempts
the processor from the running process if that process is lower
in seniority. In this way, some order is introduced into the
competition for pages. The junior process perhaps obtains the
use of the processor only for brief intervals of time; these,
however, may be sufficient to enable it to load the pages that it
will require for continuous running when it has risen in seni-
ority. A form of prediction based on the working set model is
used to control V,. The actual algorithms used in MULTICS
are complex and information about them will be found in
Organick (1972).

Line 4 shows a non-time-sharing system of interest in that it
provides implicit control of the level of multiprogramming.
Processes are again arranged in an order, although the order is
determined by an externally assigned priority rather than by
seniority of loading. In Wharton’s system (Alderson, et al.,
1971), on which this line of the table is based, the priority
applies, not only to the allocation of the processor, but also to
the delivery of pages from the drum. If, when a processor
demands a page, the reserve is empty, a page-frame is comman-

deered from a process junior to the demanding process, the °

process chosen for raiding being the most junior one that has
pages in core. If the demanding process is itself the most junior
process, or if all the processes junior to it have no pages in core,
then the demanding process is halted. There may thus be a
number of processes on the active list that have no pages in
core. The effective level of multiprogramming is given by the
number of processes that have pages in core, rather than by the
number on the active list, and varies dynamically. The system
has the property that the highest priority process runs in effect
as though it were alone in the computer. There is no reason why
it should not go on demanding pages until it occupies all the
page-frames in core and no other process is able to run. In some
situations this may be just what is desired; in others, it is to be
regarded as a disadvantage that the senior process never loses
pages, even those that it has not touched for some time.

The system shown in line 5 resembles that in line 4, modified,

References

however, by the introduction of a ‘drain’ designed to bring
pages back into circulation (Alderson, et al., 1971). Refine-
ments in strategy of this type can be most valuable in increasing
the efficiency of the system. Similar refinements are often made
with a view to increasing its intrinsic stability. However, they
do not always have the effect desired, since it is extremely
difficult to visualise what the consequences of any particular
change will be in practice and even more difficult to make a
theoretical analysis. In another modification to line 4 that was
tried by Alderson et al., arrangements were made to drain
pages from processes at a rate proportional to the number of
pages that they had in core. Since the higher priority processes
were given priority in access to the drum, it was thought that,
under conditions of heavy paging, the algorithm would then
establish a bias in their favour as regards the acquisition of
pages. Experience showed, however, and further reasoning
confirmed, that this is not always sufficient to prevent the
onset of thrashing, and that the algorithm is helpless in sup-
pressing thrashing once it has started.

Line 6 refers to a paging system based on a thorough-going
use of the working set model that has been implemented for
EMAS, a system developed on an ICL (English Electric) 4-7§
computer by a team led by H. Whitfield at Edinburgh Umver—
sity. It is of interest in that it uses a local, as distinct from g}
global, pagmg policy. A process, on being transferred to th€
active list, is given a core allocation and a time allocation. In thg
case of a process that has not yet run, these are determined by
arbitrary rules. Periodically the working set of each process ot
the active list is re-computed and page-frames containing
pages no longer in the working set are added to the reserve. I
in spite of this, the process tries to exceed its core allocation, i
is immediately returned to the accepted list. It is similarly
returned if it exhausts its time allocation or if it reaches &
console wait. When a process is so removed, its working set i§
re-computed and both its core allocation and its time allocatiof
are re-assessed. The re-assessment is based on the origin
assessment and on the reason for removal. A process that has
run out of time, but whose working set is within its core
allocation, will perhaps next time be allowed more time bu%
less core. When it is returned to the active list, its working seg
will be pre-paged. Similarly, a process that has run out of space:
will have its core allocation increased. However, the fact thai
it has run out of core is taken as an indication that qultg
possibly it has moved to another part of its virtual memory, sq
that its former working set is no guide to the number of page§
that it will require in future. No pre-paging is done, thereforé@
when such a process is re-activated, and it must load its page$
one by one on a demand basis. The core allocation, rather thafy
the size of the working set itself, is used to control V,; ng
process is transferred to the active list unless there is enough
space in the reserve to meet its maximum authorised require=
ment as specified by its core space allocation. The level
multiprogramming is thus determined dynamxcally A con®
sequence of the use of a local paging policy is that each process
is able to operate within the number of page-frames allocated
to it, and the misbehaving of one process cannot affect other
processes.

ALDERSON, A., LyNcH, W. C., and RANDELL, B. (1971). Thrashing in a multiprogrammed paging system, International Seminar on Operating

System Techniques, Belfast. Academic Press, 1973.
DENNING, P. J. (1970).

Virtual memory, Computing Surveys, Vol. 2, No. 3, p. 153.

KILBURN, T., EDWARDs, D. B. G., LANIGAN, M. J., and SUMNER, F. H. (1962). One-level storage system, IRE Transactions, Vol. EC-11,

p. 223.
ORGANICK, E. 1. (1972).
WILKES, M. V. (1971).
Harvard, p. 308.
WILKES, M. V. (1972).

MULTICS system, MIT Press.

Volume 16 Number 1

Automatic load adjustment in time-sharing systems, ACM Sigops Workshop on System Performance Evaluation,

Time-sharing computer systems, 2nd edition, MacDonald, London; American Elsevier, New York.

