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A two-stage method for use in interval arithmetic is given for the solution of algebraic equations.
A particular adaptation for finding bounds on the roots of general polynomials with interval

coefficients is described.
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1. Introduction
In the last few years, several generalised Newton-Raphson
methods have been developed for use in interval arithmetic
(Dargel et al., 1966, Hanson, 1970). These have been imple-
mented to produce algorithms giving information about the
real roots of polynomials with real coefficients. In the following
an account is given of an extension of these algorithms to the
complex plane (though only real interval arithmetic is used),
the aim being to produce regions which do not contain any root
of the given polynomial, regions which may contain at most
one root and regions which may contain more than one root.

The proposed method consists of two stages. In the first, a
simple search is performed to isolate regions which may con-
tain at most one root. During this stage, certain regions which
do not contain roots or which may contain more than one
root will also be isolated. In the second stage, the regions which
may contain a root are examined using a generalisation of the
Newton-Raphson process in an attempt to refine them by
interval contraction. The theory developed below is derived
for any regular function, a polynomial having either real or
complex coefficients being a particular case.

The terminology of the interval analysis and arithmetic is that
of Moore (1966).

2. Theory of the initial search

Let
f(@ =fx + iy) = R(x, y) + iJ(x, ) @

be any regular function. The problem of finding the zeros of
equation (1) can be regarded as the problem of solving the pair
of simultaneous equations

R(x’ y) =0 J(x’ y) =0 (2)

and it is supposed that it is required to find those zeros of
equation (1) lying in a region D of the complex plane. Attention
is restricted to rectangular regions with sides parallel to the
co-ordinate axes when D may be represented by the interval
vector (X, Y). (Upper case characters for variables denote
intervals.) Let R*(X, Y) denote an interval extension of R(x, y)
over D, which is to say that

R¥X, Y) > {R(x,y) | xe X,ye Y}. 3)

Similarly J*(X, Y) is defined to be an interval extension of
J(x, y) over D. Clearly a necessary condition for D to contain
a zero of equation (1) is that

R¥(X, Y)> 0and J*(X, Y) o 0. )

In order to examine whether D may contain more than one
zero, use can be made of the following theorem.

Theorem:

Given a closed convex region D and a regular function
f(2) = R(x,y) + iJ(x, y), if f(z) has two or more zeros in D
then the partial derivatives R,, R, J, and J, all take the value
zero somewhere in D, though not necessarily simultaneously.
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Proof:

Since f(z) is regular, R, =J, and R, = —J, and so it is
sufficient to show that both R, and R, take the value zero
somewhere in D. If f(z) has a repeated zero, say z;, then
f(zy) = f'(z;) = 0. But f'(z) = R, + iJ, = R, — iR, and the
required result is immediate.

Assume then that f(z) has two isolated zeros in D, say z, ana
z,, where z; = x; + iy, and z, = x, +-iy,. Let tan6 ==
(y1 — ¥2)/(x; — x,) be the gradient of the line joining z, an@
z,. Since D is convex, the line segment (1 — f)z; + 1z

0 < t < 1, is contained in D. g
Then s
d . @

- R=R,cos0 + R,sin 6 =

dt 2

d « a
EtJ=chos(9+J,sin6 3

5

= —R,cos 0 + R,sin 6 é

whence g
d . 3

—~ (Rcos + Jsin0) = g

and =Y
d pp p 3

Jt(Rsm —Jcos ) = %

Now Rcos 0 + Jsin § may be considered as a real valueﬂ
function of the variable ¢ and is such that it takes the valid
zero when ¢ = 0 or 1. Thus, by applying Rolle’s Theorerﬂoj

7 (R cos 0 + Jsin ) must take the value zero for sonié

t,0 < t < 1. Hence R,, and similarly R, takes the value zew
at some point on the line (z,, z;). Thus R and R, and henga
J.and J,, both vanish somewhere in D. Thus a necessary com-
dition for D to contain at most one zero of equation (1) is that
RX(X, Y), where R¥(X, Y) is an interval extension of R,(x,
over (X, Y), etc., and R}(X, Y) do not both contain zere_
Using this condition and equation (4) it is possible to examme
D and isolate subregions which contain at most one zero of
equation (1). An account of one possible approach is given in
Section 4.

3. The generalised Newton-Raphson process
Consider a general system of k equations in k£ unknowns
p(x) = 0. ©)
Let X = X)T denote a k-dimensional interval
vector.
Let P represent an interval extension of p over X, which is to

say that P(X) = P(X,, X;, . o X)) 2 {p(xy, - -5 X)) | x5 € X,
i=1,2,...,k}. Let X be an interval vector containing a
solution of equatlon (5), r say, and let t be any other vector
belonging to X. Then, using the mean value theorem
0 = pr) = pt) + Gt + 0,x — 1) . (r —
0<0,<1,i=12..,k (6)
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where G; is the i-th row of G, the matrix of first derivatives of p.
From this it follows immediately that

ret — V(X) p(t) ™

where V(X) is an interval matrix containing the inverses of all
the matrices in G*, the interval extension of G defined over X.
For the interval vector X let

m(X) = (m(X,), m(X2), . . ., m(X))"
where m(X;) denotes the mid-point of X;. We can then define
N(X) = m(X) — V(X) P(m(X)) ®

as the basis for a refinement algorithm in interval arithmetic.
The full algorithm consists of starting from some X, and deter-
mining a sequence of intervals {X;} by the relation
Xi+1 =leN(Xl') i=0, 1,2,... (9)
A necessary condition for the existence of V(X,) is that
G*(X,) does not contain a singular matrix. Assuming that this
is so, then since Y c X implies G*(Y) c G*(X), V(X)) is
defined for all i > 0. Further, if r € X, then r e N(X,) using
equations (7) and (8), and hence to X; from equation (9) and,

by induction,
reX;V,; (10)

Starting from an interval X, which may contain a zero (for
which it is clearly necessary that P(X,) = 0) and assuming that
V(X,) exists, application of the algorithm defined by equations
(8) and (9) leads to two possibilities. Firstly, the sequence may
terminate due to either the intersection of equation (9) becom-
ing empty or P(X;) not containing 0 for some i. Such a termin-
ation, due to either reason, indicates that X, did not contain a
solution. The second possibility is that the interval vectors
given by the algorithm converge to some interval which may
contain one or more zeros of the function.

Few results are known about sufficient conditions for ensuring
the presence of a solution. One, due to Kahan (Hansen, 1969)
is that if for some 7,

NKX) <= X; (11)

then X, definitely contains a solution of equation (5).
Returning to the problem of finding the zeros of a regular

function,
R(x’ y)) (Rx Jx)
= and G = .
P <J () R, J,

Using the Cauchy-Riemann relations, it is readily shown that

1 R, J,
RZ + JE\ —J, R,

and hence the interval matrix V of equation (7) is given by

1 (Rt(x, Y) JHX, Y)),
R*(X, Y) + J*¥(X, Y)\ -J3(X, Y) RYX, Y)

It is thus seen that V is not defined if R*?(X, Y) + J}*(X, Y)
contains zero. This will be the case only if R*(X, Y) and
J*(X, Y) both contain zero, and this is just one of the criteria
used in the initial search in deciding that an interval may
contain at most one zero.

G—l =

4. Computational details
Apolynomial solver has been developed using the above theory
and with the following strategy:

1. Assuming that a complete solution is required, the poly-
nomial is normalised to have all its roots lying in some
rectangular region with sides parallel to the co-ordinate
areas. (The simplest normalisations lead to all the roots
lying in the unit circle which lies within the square with
sides of length 2 units, centre the origin. Note that if the
polynomial has real coefficients, a complete solution can be
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found by considering only the top half of this square.)
Alternatively, it may be required to find only those roots
lying within some given rectangular region.

2. The interval extensions R* and J* are evaluated over the

rectangular region under consideration. If 0 ¢ R* or 0 ¢ J*,
then there is no root in the given region. In general there
will be a list of sub-intervals requiring investigation with

the current interval at the end of the list. If it is found that

there is no root in the interval, the interval is removed from
the list and a return is made to 2 with the new current
interval.

3. The interval extensions R* and J} are evaluated over the
interval under consideration. If 0€ R% and OeJ} the
refinement process cannot be applied. The interval is
divided into four sub-intervals by bisection in both the
x- and y-components and these sub-intervals are added to
the list of intervals requiring investigation and a return is
made to 2. An exit may be forced at this stage if the size
of the intervals falls below a certain tolerance when an
interval which may contain more than one root will have
been isolated.

4. The refinement process is applied to the interval under
consideration leading to one of the following results:

(a) convergence to an interval containing at most one root
and definitely known to contain a root if equation (11}
holds. Convergence here is taken to mean that, for some
i, X;+1 = X;. From the form of equation (9) it is seen
that this situation must arise eventually, but, due to the
possibility of ultimate first order convergence, it has
been tound desirable to use a test for convergence based
on changes in the limits defining the interval. In practice,
it has been found that convergence can be established
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misleadingly at an early stage in the iterations ifS

N(X;) = X; and hence X;,; = X;. Although this has

only been found to happen on the first iteration, it is

perhaps advisable to include a check on this occurrence

for the first few iterations, its detection leading to the

subdivision of the interval followed by a return to 2;
(b) the interval is shown to contain no root.

On a satisfactory conclusion to the refinement stage, the
interval is removed from the list and a return is made to 2, the
whole process being completed when the list of subintervals is
exhausted. In practice, it has been found that about eight
applications of the refinement stage lead to convergence for
polynomials of fairly low order. To safeguard against slow
convergence, it is suggested that for well-conditioned poly-
nomials an upper bound, say 12, should be set on the number
of applications of the refinement stage. If this limit is reached
before convergence occurs, the interval is subdivided and a
return is made to 2.

On completion of the whole search and refinement process,
it is possible that more than n (the degree of the polynomial)
intervals will have been isolated. This could be the case, for
example, if the polynomial has a root close to or on a line of
sub-division, when one could expect to obtain overlapping or
abutting intervals. Should this occur, it is possible to specify
the union of such intervals as the input for the polynomial
solver. In this way, a more detailed examination may indicate
the definite presence of a single root if equation (11) holds;
alternatively, it may not be possible to resolve the uncertainty.

The interval extensions R*, J*, R* and J are evaluated many
times during the execution of the algorithms and efficient
methods for doing this are required. Two criteria are important,
the cost of each evaluation and the width of the extension
produced. In order to decrease the number of interval splittings,
this being the likely limiting factor in any computation, it is
necessary to evaluate the interval extensions with minimum
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width so as to exclude regions not containing a root as rapidly
as possible and this should be the decisive criterion.

Consider the function R(x ). Two methods are available for
its evaluation. Firstly it is readily shown that

(2) (4)
RGx, ) = f(x) — y*L 2'(") s f (x) _

with the series terminating after a finite numbcr of terms since
f(x) is a polynomial. Numerical values for f(x)/r! can be
obtained by a process of repeated synthetic division which can
be re-formulated in interval arithmetic to lead to the interval
extensions

+y

[F(X)/r1]
and hence
R¥*(X, Y) = F(X) — Y’[FP(X)/2!] + Y“[F(“)(X)/4'] -
= F(X) — LIF®(X)[21] + L*[F¥(X)/4] — (12)

where L = Y2, Similarly
J¥X, Y) = Y{FO(X) — LIF®(X)/31]
+ LAFO@X)5T = .. )
R*(X, Y) = FO(X) — 3L[F®(X)/3!]
+ SL[F®(X)/5!] —
and
JEX, Y) = Y2[FP(X)/2!] - 4L[F*(X)/41]

These polynomials in L can be evaluated in interval arithmetic
either by the direct use of nested multiplication or with the
initial re-formulation in centred form (Moore, 1966). In
practice, it seems (Hitchins, 1971) that the centred form does
produce the more satisfactory results, but some advantage may
be gained by performing both evaluations and then taking the
intersection of the two extensions.

An alternative method for evaluating R(x, y) would appear to
be the standard algorithm for division of a polynomial by the
complex number x + iy. Experimental evidence (Hitchins,
1971) indicates that while this is computationally faster, the
interval extensions obtained are wider than those obtained
from equation (12) and the corresponding expressions.

5. Examples
The complete algorithm described above has been used success-
fully to solve many low order interval polynomials with real
coefficients. Each polynomial was normalised so as to have all
its roots lying within the unit circle, centre the origin. The initial
rectangle examined was taken to be ([—1-01, 1-00], [—0-01,
1-00]), the perturbations being introduced to lessen the likelis
hood of a root lying exactly on the boundary of a subrectanglg
when dealing with the test examples.

Some typlcal results for polynomials with well—separated root%

+ 6L [F®(X)/6!] — ...}. are given in Table 1. The degree of the polynomial is denotegz
Table 1 ES
[V
NO n  COEFFICIENTS € A Np Ny NgINITIAL Nc Ng CALCULATED ROOT EXACT ROOT g
(0]
: 3
1 3 (,,1,1) 1074 2-:00 53 15 7 [-0-51, —0-38] 6 [—1-00020043, —0-99979957] 1 g
+i[—0-01, 0-06] 5
[—0-01, 0-25] 8 [—0-00010017, —0-00010066] i 8
+i[0-49, 0-63] +1[0-99989983, 1-:00010017] %
o
2 4 (1,-8,39,—62,1) 1073800 361 8 63 [0-37, 0-44] 9 [2-98563613, 3-01436658] 3+ 4i %
+i[0-49, 0-53] +i[3-98564064, 4-:01431042] =
[0-12, 0-25] 8 [0-99953425, 1-00046575] 1+ o
+i[0-11, 0-18] +i[0-99951429, 1-00048571] >
3 5 (1,—6,14, —16, 107*6:00 549 95 76 [—0-14, —0-06] 8 [—0-49592257, —0-49589203] —0 49590730§
-1, —30) +i[0-14, 0-18] +i[0-90228483, 0-90231578] +i0-90230031=
[0-56, 0-63] 7 [3-68073213, 3-68186044] 3-68129628 &
+i[—0-01, 0-01] <
[0-24, 0-31] 9 [1-65460315, 1:65591516] 1-65525916 %
+i[0-36, 0-41] +i[2-22367129, 2-22498344] +i2: 224327373
4 6 (1,0,0,0,0,0,—1) 107¢2-00 1,021191 161 [0-49, 0-63] 8 [0-99999883, 1-00000117] 1 ~
+i[—0-01, 0-06] =
[0-24, 0-28] 7 [0-49999757, 0-50000243] 0-5 N
+i[0-43, 0-45] +i[0-86602293, 0-86602788]  +i0-86602540<
[—-0-51, —0-44] 6 [—1-00000117, —0-99999883] —1
+i[—0-01, 0-03]
[—0-26, —0-19] 8 [—0-50000243, —0-49999757] —0-5
+i[0-43, 0-47] +i[0-86602293, 0-86602788] +i0-86602540
5 7 (1,487, —067, 107° 587 2,421336 306 [—0-89, —0-82] 5 [ —5-00000610, —4-99999390] —5
—0-15430003, +i[—0-01, 0-01]
—0-4265,—1-02113, [0-07, 0-09] 9 [0-49999936, 0-50000063] 05
—2-48608, +i[0-15, 0-17] +i[0-92195380, 0-92195507]  +i0-92195444
—6-2771496) [—0-10, —0-08] 7 [—0-50000062, —0-49999938] —O0-5
+i[0-14, 0-16] +i[0-87177914, 0-87178041] +i0-87177978
[0-18, 0-22] 8 [1-12999976, 1-13000023] 1-13
+i[—0-01, 0-01]
[—0-20, —0-16] 6 [—1-00000029, —0-99999968] —1
+ i[—0-01,001
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by n and the unperturbed coefficients are given in order of
decreasing powers, the coefficients of the interval polynomials
being obtained by perturbing each exact coefficient by [e, —¢]
before the roots of the polynomial are normalised by the factor
A. Np indicates the number of rectangles examined during the
initial search. For Ny of them, an entry is made into the
Newton refinement stage and in Ny cases the refinement stage
is left after one iteration. The regions of the normalised plane
which converge to roots are given to two decimal places.
N iterations are required before convergence occurs (a toler-
ance of 5,,~!! was used) and after Ny of these iterations,
equation (11) holds indicating the definite presence of a root.
Finally, the calculated interval root is given to eight decimal
places together with the corresponding root of the unperturbed
polynomial. (In these cases where no imaginary part is given, it
was found to be less than the machine tolerance.)

As an example of a problem with equal roots, consider the
polynomial

4623 4+922 +4z-12

which has exact roots —1, 2, 2 and 3. The coefficients were each
perturbed by [—1073, 1073] and a normalisation factor of 3-5
was used. In the initial search, after examining 325 subintervals,
three were isolated as containing at most one root. The first
can be represented by the interval vector ([—0-51, —0-25],
[—0-01,0-12]) and this was refined to the real interval root
[—1-00013912, —0-99986088] after nine applications of the
Newton process, equation (11) being established after five of
them. The other two regions were refined to the real interval
roots [2:96086884, 3-00535157] and [3-00535156, 3-03104179]
in 24 and 15 iterations respectively and for neither interval was
equation (11) established. During the search, the minimum
width of subdivision permitted was taken to be 5,,=> and 56
intervals were then isolated as containing one or more roots.
Their union indicated the possibility of one or more roots of the
original polynomial in the cross-shape region which is the
union of the two intervals ([1-906133, 2-125977], [ —0-000479,
0-006426]) and ([1-988574, 2-016055], [ —0-109990, 0-1099907)
which correspond to perturbations of the double root along
the real axis and off the real axis respectively. Similar behaviour
is noted when the exact polynomial is solved using interval
arithmetic, though, of course, the induced perturbations are
much less.

As a final example of the use of the algorithm, consider the
fifteenth order polynomial first given by Henrici and Watkins
(1965)

z15 4 39:247z1% — 20-573z13 — 8-3243z12 4+ 22834711
— 0-78440z'° — 4-2754z° + 504-15z8 — 21-13427
+ 72:8742% + 2:9240z° — 94-501z* + 5-5945z3
+ 4-0532z2 + 25493z + 21-129.

The implementation of the full algorithm available proves too
slow to permit the complete solution of higher order poly-
nomials. It can, however, be used to obtain interval bounds
from known estimates of the roots. Among the roots of the
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polynomial as given by Henrici and Watkins are —0-0082883
and —0-70578 + 0-96858i. In order to obtain interval bounds
for these roots, the Newton process was started from the
intervals  ([—0-5075, —0-0050], [—0-0100, 0-2425]) and
([—0-710, —0-705], [0-960, 0-970]) respectively, taking the
given coefficients as being exact. The process converged after
four and six iterations to the interval roots [—0-00828827,
—0-00828826] and [—0-70578427, —0-70578426] +
i[0-96858404, 0-96858405] and for both equation (11) held.
The non-feasibility of the complete algorithm is due, generally,
to the large number of interval splittings required to obtain
regions in which the Newton process can be applied. For well-
separated roots, this may not be a problem, and, in fact, the
starting interval used for the real root in this example is
obtained from the standard search routine as used in the
examples of Table 1.

6. Discussion

The main difficulty in the practical implementation of the
algorithm lies in the initial bisection-type search (with its
first-order convergence) for a region in which the Newtono
process can be applied. This renders the solution of even fairly S
low order polynomlals possibly prohibitively time-consuming, 9 8
particularly in regions of close roots. cD

Some overall improvement in efficiency would be possnble—n
through changes in the interval arithmetic package. The current S
implementation, developed for the ICL KDF9 computer at the =
University of Leeds, is written in ALGOL in the form of am
single-address, low-level ]anguage with a pseudo-accumulator.
A full descrlptlon is available in Hitchins (1972).

Improvements in the search routine could be obtained by 3
several means. Firstly, if the interval extensions required could &
be evaluated so as to have narrower widths, the earlier exclusion%
of intervals definitely containing no root would be possible. 8
Secondly, some improvement may result from an extension of %
the algorithm to include additional exclusion criteria. A further§
possibility would be the use of a more refined interval splitting =
algorithm making use of the calculated function and derivative
values.

An alternative approach would be to find initial estimates for 5,
the roots using a polynomial solver in real arithmetic (see, for =
example, Grant and Hitchins, 1971), followed by the deter-
mination of error bounds on these estimates using a method & &
such as that given by Fekete (Hansen, 1969). The resultmgm
intervals could then be used as data for the interval polynomial o
solver
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polynomial equations in the complex plane.
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