Simultaneous trigonometric approximation of the
function and its first derivative
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We study simultaneous cosine trigonometric approximations involving the function and its first
derivative over sets of equidistant sampling points. A numerical algorithm is indicated for use in

an automatic computer.

Using an example we compare this method with the classical cosine trigonometric one (where no
derivative information is considered) and outline its flexibility in graphical applications.
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1. Introduction

Trigonometric approximations of observational functions
defined over sets of discrete points have been known for a long
time. From Lipka (1918) we learned that trigonometric
approximations over sets of equidistant sampling points using
the discrete orthonormality properties (2.I) were already known
in 1900. Recently this was also extended to sets of unequally-
spaced sampling points (see Oliveira-Pinto, 1967; Newbery,
1970).

Elsewhere we show that for sets of equidistant sampling points,
the trigonometric polynomials are just one of the infinitely
many sets of generalised polynomials with equidistant zeros
(see Oliveira-Pinto, 1972) that approximate the discrete data
values in an optimal way.

In spite of such optimal approximating properties over sets of
equidistant sampling points these trigonometric polynomials
are known to suffer from the following disadvantage: If we
try to approximate Z(x), defined by Z;, = Z(x,),s - 0, 1,...,q
they tend to oscillate strongly in between data values everytime
that a part of Z(x) which is presumed to be flat is followed by a
section with a sharp bend in it. Let us look at an example:

In Fig. 2 we show the result of a trigonometric interpolation
over the 21 sampled values of the Runge test function

1
Z(x)—1+x2, x = +10, +9, +8,...0.

Around the points corresponding to x = +2:5 where the
sharp bend begins these oscillations are clearly visible. To
control such undesirable oscillations we may decide looking at
this example to prescribe at each sampling point X, 1,...,20
a suitableslope Z{!), ;... ;0. By doing this, we stress the shape
of the approximating curve in between data values if not
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Fig. 1. The system of ‘normal equations’

completely, at least in their neighbourhood. A possible result
of such a strategy is given in Fig. 4. There, to the data of Fig. 2,
another 21 slopes were conveniently added.

It is, then, our intention to explore in this paper the possibilit
of introducing known or fictitious derivative information tog
let us say, ‘correct’ such trigonometric approximations. S

First we introduce a simple method to compute cosing
trigonometric approximations over sets of equidistant samplmg:
points for the function Z,_,q ;... , and first derivative values
ZM oy, - Afterwards, usmg the method, we prescm{
and discuss several numerical examples.

The case of unequally-spaced sampling points is left to a futu
paper.

In the following, to simplify the notation, we presume that
the range of the independent variable x has been scaled to thg
traditional sampling interval [0, 7].
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2. Simultaneous trigonometric approximation %
Let us suppose given the data values Z, ., ;... . 4 On the samé
ling points =
s+ 3 o3
s — ,s—’O,l,..., 2.
oy q ( A%
the slopes Z{), 4, , over the set of possibly different poin ts
N
s+ 3 ]
Xgq =T ,s1-0,1,..., 2.
1 7+l q ( Ig
o
and the positive integer N < ¢ + q, + 2. Weintend to approxé

n

mate bothZ,_,, ,, .. ,and Z{) 4, ., simultaneously usi

the linear approximatmg form
Dn(Ay, x) =3 Ag + Ajcosx + ...

&

.....

uo}

+ Ay cos Nx, x € [0, ©d

[eXe)
in such a way that for the systems of positive weigh@
Hi01,....00 Hsio01,..., . and for a positive weighting
parameter 4 > 0,

JN(Ak) = Z Hs[Zs - ¢N(Ak’ xs)]2

+ AZHSI[ZS) -
s1

is minimum in the 4,5 1, ... -

Usually we expect to have Xy -0.1,...,, a5 a sub-set of
Xs50.1,...,4 DUt this may not be so. The minimisation of (2.D)
leads to the solution of the linear system in the A4;:

2 Ak[<cosk9 COS,.>]H - [(Z’ COS,.)]H =0 k- 0’ L..., N
k

r-01,..,N
(2.E)

oy (4ix,)]* (2.D)

with
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[{cos;. cos,)][...]q4 = X H, cos (kx,) cos (rx,)
+A4Y Hyy cosM (kx,,) cos™® (rx,,) (2.F)
s1

[KZ, cos,X][..In = X HZ cos (rx,) + A Y, HyZP cos™ (rx,,)
s s1

, 2.G)
where the quantities (2.F) and (2.G) can be computed directly
from the available data. The prime in the summation of (2.E)
means that the term for £ = 0 is halved.

The solution of this system is highly simplified due to the
orthogonal properties of the sequence of trigonometric
polynomials cos (rx) and cos® (rx) r - 0, 1, ..., N over the
sets (2.A) and (2.B).

Let us study in detail such properties when ¢,
gy = q is similar).

In the following it will occasionally be simpler to use Q and Q,
to represent

< ¢ (the case

OQ=qg+1land Q, =¢q, + 1 (2.H)
For N < ¢, the discrete orthogonality conditions (see e.g.

Lipka, 1918, p. 176 or. Lanczos, 1938) k- 0,1,..., N
r—0,1,..., N give directly.
Z H; cos (kx,) cos (rx;) = §,, with H, = %
q
(PA))
er Hy, sin (kx,,) sin (rx;,) = kr§,, with H,, = _z-l:—l
9

where §, , is the usual Kronecker symbol § (except 8, o = 2)
and due to (2.F) the system (2.E) reduces to

A_K_ZMf,Ho,l,-.-,N

s 2.9

For N > g, the classical properties (2.I) do not hold anymore.
Nevertheless we still have

Z Hs cos (kxs) - COs (rxs) = 8k,l- - 8k,2q—r+2 T k,2q+r+2
s
+ Siag-reat ...

21 Hyy sin (kxy) . sin (rxg) = 8, + O 24,-r+2

(2.K)

- 8k,2q1-'}-r+2 - 8k,4ql—r+4 + ...

and due to (2.F) and (2.H) the system (2.E) can still be re-

duced to
Ay — 2{42@ + ...
[AI_AZQ—P'— ..]+I'A[rA,+(2Q1—r)A201_,.—...]
= [{Z,co8,)]y r—1,2,.. ,N

Let us now consider the important case where g, = g, i.e.
when at every sampling point X5-0,1 4 We have one functlon

= [XZ, coso>]u @L)

the system (2.L) where the quantities (2 G) are known is just

= [{Z, coso) 1y 2M)
[1+7r2414, — [1 — rQQ — r) A] A5, = [Z, cos,Y]In
Q2.N)

.....

For N=2g + 1, (2.N) is a very 1nterest1ng system of equa-
tions since it is a cross-diagonal one. It can be easily solved
taking two equations at a time, e.g. the first and the last to
obtain 4, and 4,,_, the second and the (2Q — 2)th to obtain
A, and A,,_,; etc.

To obtain in general 4, and 4,,_, with r # Q, we have

[1 + r?A14, — [1 = rQQ — r)A1dzq_, = [{Z, cos,>]y

(2.0)
[1+QQ —r)A14zg-, — [1 — r2Q — r)A14,
=[{Z, COSZQ—r>]H

4

The determination of A is instead given directly by

4. = KZ, cosg)ln
2 20%4

For N < 2g + 1 the system (2.N) becomes a mixture of a
diagonal one plus a cross-diagonal one, and it may look like
the one represented schematically in Fig. 1.

The solution of (2.N) for N < 2qg + 1 is therefore very similar
to the previous case—N = 2g + 1—only the number of systems
(2.0) is reduced, because we have directly A, ,v4; ni2,... = 0.

It is also interesting to note that the value of the determinant
4 of (2.0) is independent of the subscript r. In effect it can be
easily proved that it is always given by:

2.P)

4=4g+ 14 2.Q
Thus, taking
1
A= —ro— 2.R
4(q + 1)? 2-R)

then we simply have 4 = 1.

To conclude we may say that the time needed to compute the
coeflicients 4, of (2.C) for the approximation of data 1nvolv1ng g
function and first derivative values over the same set of equiva- =
lent sampling points, is almost the same if we had used instead 3
the double number of function values and no derivatives. 3

In fact what takes time to compute are the quantities (2.G) 3
and for the double number of function values we will have the =
first sum in (2.G) with the double number of terms instead of S
the second sum. Therefore the number of arithmetic operatlons S
is exactly the same.

0°0IWBPED

3. Numerical examples
It is always a problem of conscience to choose a suitable 2 2
example to illustrate a scheme of numerical approximation. In 5 g
principle the example should be as simple as feasible for easy 3
understanding, as realistic as possible for general acceptance, 3 8
and above all, it should not be an example which shows the—
method to best advantage!

Having this in mind, we have chosen the example originally &
introduced by Runge and afterwards presented with slight %
variations by other mathematicians like Mineur (1952), p. 426,
and Lanczos (1961), p. 12.

It is defined here by

[onte/ul

_ 1
1+ X2
and its first derivative with respect to X — Z(M(X), for the
equidistant sampling points X; - —10, —9, ... +9, +10.
After the normalisation of the X interval [—10, +10] to
[0, ] the function may be written:

1

Z(X) = (3.A)
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Fig. 2. Cosine trigonometric approximation of order N = 20
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for

x,=ns;-1%,s—>0,1,...,20 (.C)

The expression (3.B) has no practical interest because the
corresponding data values are not affected by the scaling of the
independent variable and therefore can be obtained directly
from (3.A). The same is unfortunately not true with the first
derivative data values because

dZ dX dzZ .. dX 21
Ec=d_x.z\’wnh$c=—n-. (3.D)
The 21 function values Z, ., ;... 20 and the already scaled 21
derivative values Z{), ; .. ,o define therefore the basic table

that we are going to use for our numerical experiments.

Experiment 1

For the first trial we have taken only the 21 function values
Zg ,0,1,.. .20, in order to obtain a classical cosine trigonometric
approximation of order N = 20, as shown in Fig. 2. It will be

used as a reference for the following trials.

There, when a flat part of Z(X) is followed by a relatively
sharp bend, the characteristic oscillation between data values is
observed and it often forces the rejection of this type of approxi-
mation. Its maximum error ¢ = 0-04 is obtained around the
points X = +1-5 of (3.A).

Experiment 2

Here we have only about half, i.e. 11 function values over the
same range together with 11 derivative values for the same
sampling points.

With these data values we obtained a simultaneous trigono-
metric approximation of the form (2.C) of order N = 21I.
Fig. 3 shows the plot of the approximation obtained.

The main reason why we have taken 11 + 11 data values is to
allow comparison between this approximation and the approxi-
mation of Experiment 1 based on practically the same number
of data values—21.

In Fig. 3 we notice that the replacement of half of the function
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Fig. 3. Simultaneous cosine trigonometric approximation of order
N=21

10
Fig. 4. Simultaneous cosine trigonometric approximation of order
N=41
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Fig. 5. Simultaneous cosine trigonometric approximation of order
N=41
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Fig. 6. Simultaneous cosine trigonometric fitting of order N = 20

Table 1. Extended cosine trigonometric approximations gf

order N = 41 E
2.
@
A(K) A(K) 2
3
+0-28224625 +0-28224625 3
0-00000000 0-00000000 B
—0-22474225 —0-21436343 >
0-00000000 0-00000000 8
+0-16436098 +0-14935408 ]
0-00000000 0-00000000 5
—0-12274146 —0-10618714 £
0-00000000 0-00000000 g
+0-09053968 +0-07466387 3
0-00000000 0-00000000 °
—0-06740378 —0-05316136 E
0-00000000 0-00000000 )
+0-04978659 +0-03791377 S
0-00000000 0-00000000 =
—0-03703824 —0-02767452 =
0-00000000 0-00000000 o
+0-02736028 +0-02071720 S
0-00000000 0-00000000 >
—0-:02035023 —0-01633101 =
0-00000000 0-00000000 S
+0-01502281 +0-01371964 &
0-00000000 0-00000000 o
—0-01116922 —0-01247240 2
0-00000000 0-00000000 >
- 4+0-00822904 +0-01224825 el
0-00000000 0-00000000 N
—0-00610597 —0-01274905 N
0-00000000 0-00000000
+0-00447353 +0-01383726
0-00000000 0-00000000
—0-00329269 —0-01516551 -
0-00000000 0-00000000
+0-00237051 +0-01661292
0-00000000 0-00000000
—0-00169215 —0-01756797
0-00000000 0-00000000
+0-00114354 +0-01769786
0-00000000 " 0-00000000
—0-00071458 —0-01572148
0-00000000 0-00000000
+0-00033935 +0-01071817
0-00000000 0-00000000
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values by an equivalent number of derivative values has
decreased the oscillation of Fig. 2, improving therefore the
general appearance of the interpolation obtained.

Experiment 3
In this attempt we have used complete information about the
function, i.e. 21 + 21 function and first derivative values.

We have obtained another trigonometric interpolating expres-
sion now of order N =41 presented in Fig. 4. The approxima-
tion in between data values is extremely good with a maximum
error ¢ < 0-006 around X = 405 of (3.A). At least to the
eye the characteristic oscillations are non-existent, which is
remarkable.

The first half of Table 1 gives the coefficients A, of the corre-
sponding approximating function (2.C).

Experiment 4

To show the flexibility of this type of approximation as a
designing tool, when the slopes Z(SL)O_I’“”q are not exactly
known, we prepared Fig. 5.

There we have taken the 21 function values of Experiment 1,
together with another 21 arbitrary derivative values.

At each sampling point we took in fact slopes with zero value
and the step-like function turned up as shown in the picture.
We could, with several trials, bring it to look like the plot of
Fig. 4.
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Table 1 presents in its second half, the coefficients 4, of the
corresponding approximating function.

Experiment 5

To conclude these experiments, we present not a trigonometric
interpolation as we did in the previous tentatives, but a
trigonometric least square fitting.

We have taken exactly the same data as used in Experiment 3
but we have asked for -an approximation of the same order we
did in Experiment 1, i.e. N = 20.

Now it is important to define the weighting parameter A used
in the process. It was defined by relation (2.R) and the result
is plotted in Fig. 6. From this plot we can appreciate how
important can be the introduction of derivative conditions in
trigonometric least square fitting.

In effect, the derivative information of the approximating
function (2.C) is almost entirely preserved, therefore no
unnecessary oscillations are introduced, but the curve does not
get through all function values, that are interpreted as con-
taining an error.

The relative importance of this derivative information can be
stressed or relaxed by increasing or decreasing the correspond-
ing weighting parameter A.
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