A bit comparison program for algorithm testing

D. W. Lozier, L. C. Maximon and W. L. Sadowski
Institute for Basic Standards, National Bureau of Standards, Washington DC 20234, USA

In view of the increasingly important role of the computer in scientific calculations, the development
of computer algorithms for elementary and special functions has been given a great deal of attention.
The development of algorithms cannot be divorced from their evaluation, for a computer algorithm
is judged solely on the basis of its performance characteristics. These include storage requirements,
speed and accuracy. The present paper will deal only with the accuracy aspect of algorithm testing.
The other two aspects must be evaluated in the context in which the algorithm is used. In this paper
by an algorithm we mean a computer algorithm, i.e. an implementation of a mathematical algorithm
in a specific environment. The environment is taken to include factors that may affect the algorithm,
e.g. the operating system under which the program is run and hardware algorithms for arithmetic
operations. Whereas in some instances mathematical algorithms have been successfully used to
locate hardware malfunctions that were not traceable by normal trouble shooting tests, any mal-
functions of the software or hardware will not be considered here to be part of the environment.

(Received November 1971)

1. Testing requirements

Before a test can be designed one must decide what the test is
expected to accomplish. We have designed our tests to serve
two functions. One is to determine the accuracy of the function
values given by an algorithm; the other is to find and diagnose
possible errors in the algorithm. The accuracy of the algorithm
is tested by supplying argument values and comparing the
function values given by the algorithm with reference values.
While in principle our procedure does not differ from widely
accepted practice (Kuki, 1971), it differs in certain specific
aspects which will be discussed later.

1.1. Decimal vs. machine arguments

Whereas testing an algorithm with decimal arguments makes it

possible to compare the decimal function values returned by it

with tabulated values, thus telling the user how accurate the

result is, this does not test the algorithm alone. Errors in the

function values stem from three different sources, only one of

which is traceable dlrectly to the algorithm (Cody, 1969).

These are:

1. Decimal-to-binary conversion of the argument and binary-

to-decimal conversion of the computed function value via
the machine software.

2. Errors in the function value arising from truncating the
converted argument to a given computer word length.

3. Errors generated by the algorithm itself. (These might
include, for example, either computer round-off errors or
inadequacies of the mathematical algorithm for certain
argument ranges.)

Since the error produced by the algorithm cannot be separated
from the total error in testing with decimal arguments, we test
the algorithm exclusively with exact machine arguments and
we also display the function values in the machine form, thus
avoiding all conversion errors.

1.2. Machine independent vs. machine dependent testing

One might think it would be desirable to generate one set of
arguments with which an algorithm could be tested on any
computer because such a procedure would afford a valid
comparison of the algorithm’s performance on different
machines or because it would provide a guide for evaluating the
performance of the machines themselves in the area of mathe-
matical algorithms. However, the performance of a mathe-
matical algorithm is affected by specific machine features

Volume 16 Number 2

apeojupoq

(Cody, 1967), such as word length, number representation arﬁ
hardware algorithms for arithmetic, and a test procedug
should probe the influence of these machine dependent features
on the performance. For example, a hexadecimal machine m@y
have up to three leading zeros in the fractional part of @
ﬂoatmg point number, thus reducing the number of mgmﬁcagt
bits in the word. A test procedure for a hexadecimal machise
should, consequently, include some test arguments wn‘ih
leading zeros. On the other hand, on a binary machine thege
arguments are of no particular interest. Indeed, the mogt
sensitive tool we have in testing computer algorithms is the
possibility of choosing arguments with special bit confi
ations (i.e. bit patterns). These bit configurations may lie
chosen such that, although they may correspond to numbegs
which present no difficulty for the mathematical algorithm,
they may be difficult for the computer algorithm. Consequently,
in addition to a purely random set of bit configurations covering
the range of the function within the limits of a given machine,
we supply specific bit configurations that may be difficult for th
computer algorithm to handle.

In addition to the specific choice of bit conﬁguratlon dlctat&
by the specific machine characteristics, there is another factér
that makes machine mdependence impractical. Exact machni&
arguments should be given to the full number of bits on‘a
given machine, i.e. if a machine has a certain word length thén
the low-order bits of the word should not be restricted
zeros. Such a restriction, while allowing the same set of argg-
ments to be used on machines of different word length as lorfg
as the non-zero part of the word could be accommodate&;
would eliminate some capabllmes of the testing program that
we consider essential. First, it is through changes in the last
few bits of the argument that one can most accurately check,
for example, for the monotonicity of the function being tested
and for the behaviour of the function in transition through
zeros of the polynomials. in terms of which it may be repre-
sented. Further, the presence of non-zero bits at the end of the
word is a useful diagnostic tool in that any bits that are lost in
a right shift through lack of guard digits or incorrect pro-
gramming will be reflected in the function value returned by the
algorithm.

We consider these points of such importance that we forego
machine independent features in favour of a testing program
that is written to take full advantage of the characteristics
specific to the machine on which the algorithm being tested is
implemented.

1

1.3. Density of arguments

From the previous discussion it is clear that while the numerical
value of the argument is important for testing mathematical
algorithms, it is the specific bit configuration in the close vicinity
of the desired numerical value that provides important infor-
mation on the performance of a computer algorithm. This
implies, of course, that both random and non-random (special)
arguments must be used to test an algorithm.

We believe that every bicade (power of 2) in the characteristic
should be tested over the entire range of arguments on any
given machine. The characteristic is a non-random component
of the bit configuration. This is testing on a logarithmic scale.

The density of arguments is dictated by the following con-
siderations. Since we believe that the majority of arguments
supplied to an algorithm will range over a few bicades around
unity, the density should be the highest there. In addition to this
general consideration, specific functions should be tested with
a large number of arguments in ranges where accuracy is
difficult to achieve. Finally, a given program that uses several
algorithms to span the argument range should be tested with a
large number of arguments straddling the cross-over points.
The logarithmic testing proposed here de-emphasises the
statistical nature of random argument testing which by itself,

as we have discussed, does not provide a complete evaluation of
a computer algorithm.

The importance of displaying information cannot be over-
emphasised. A testing program should be set up in such a way
as to allow for an easy scan for trends that an algorithm may
exhibit. The arguments should be arranged in ascending order
and the information printed out in an easily-readable form.
For example, in testing a particular algorithm for the calcu-
lation of double precision SINH, it became apparent that the
function value was consistently high by one bit for small
arguments. Examination of the algorithm showed that a con-
stant was entered with one bit in the 60th place whereas the
true constant (Hart, 1968) has a bit in the 63rd position, i.e.
the 60th bit should have been zero. Changing the constant
resulted in correct function values to all bits for small argu-
ments. This change, however, adversely affected the important
argument range around 1/2 where it increased the number of
2 bit deviations significantly. Thus the ‘wrong’ constant was
not an error but a design feature of the algorithm. This brings
us to the last consideration we want to mention. An algorithm
should return function values over the entire range that give
the best fit and minimise the errors. In terms of the above
example, many one-bit errors with a small number of two-bit

X SINH (X) IN DECIMAL
2sx(10) +426092 72717 18371 71005 60604
+426092 72717 18371 71005 50604

2¢x(Yy) +.11422 06793 26987 83201 89375
+.11422 06793 26987 83201 B937S

2%s() +.75571 38325 02051 77126 00448
+.75571 38325 02051 77126 po4us

2%x(7) +.19438 54202 99729 75461 11336
+.19438 Su202 99729 75461 11336

2¢s() +¢31175 74540 40580 8441y 54619
+.31175 74540 40580 B4414 54619

2%«(H) +.39481 46009 13403 47580 48901
+.39481 48009 13403 47580 48901

2%x(i) +.44U430 55260 25388 00507 94152
+.44430 55260 25388 00507 94152

23%(3) +.149u4 768825 78955 01861 15876
+.14904 78825 78955 01861 15876

2%x(2) +.27289 91719 71277 52448 90827
+427289 91719 71277 S2448 90827

2*s(1) +.36268 50407 84701 87676 B213
+.36268 L0407 B4701 87670 8213

TO 60 AND 50 PLACES, AND THE DIFFF .ENCE

76684 90084 50586 99396 52155 47629 70533 (4u5)

76684 90084 50586 99396 52155 (4u45)
0

75856 12017 11448 40509 39029 49054 12145 (223)

75856 12017 11448 40509 39029 (223)
0

32853 64325 37531 20449 14356 03581 5R17S (111)

32853 64325 37531 20449 14355 (111)
1

84417 B7390 36364 08753 15414 99uu2 B8R64R (56)

84417 87390 36364 08753 15414 (56)
1

35446 42348 72415 69592 31178 99957 11410 (28)

35446 42348 72415 69592 31178 (28)
1

13112 22029 33543 10096 96115 71324 95575 (14)

13112 22029 33543 10096 96116 (14)
0

24083 34682 37811 82984 73325 00449 49167 (7)

24083 34682 87811 82984 73325 (7)
0

63903 18814 46447 47431 41163 5099 24480 (4)

63903 18814 46447 47431 41164 (4)

15907 93818 58028 94124 85530 29656 55284 (2)

15907 93518 58028 94124 85531) (2)
1

98280 12617 04886 34201 23211 35721 30949 (1)

98280 12617 04886 34201 23212 (1)

1

Table 1 Reference function values for sinh (x) calculated to 60 and 50 decimal places. Numbers in parentheses on the right indicate
powers of ten. Integers 0,0, 1, etc., indicate deviation of the 50-digit number from the 60-digit number.

112

The Computer Journal

20 udy 61 U0 188n6 AQ 0ZGZLE/L 1 L/2/91/B1014e/|uf00/W0d"dNo"oILLEPEDE//:SARY W) PAPEO|UMOQ

errors were deemed preferable to no one-bit errors at the
expense of an increased number of two-bit errors.

2. Reference values and reference tape

The heart of a scheme to test algorithms is a package that
permits the calculation of reference function values to a higher
degree of precision than that of the test algorithm. The higher
precision is usually obtained by computing reference values to a
greater number of figures than are returned by the test
algorithm. Since the reference algorithm, whatever its other
characteristics, is assumed to return function values which have
a greater number of correct significant figures than does the
algorithm to be tested, it is important to make sure that this
assumption is correct. Below we describe a hierarchy of tests
which we have used to check this assumption.

The function values are computed in extended precision
arithmetic, using Maximon’s package (Maximon, 1971).
Two of the features that make the package particularly valuable
in algorithm work are that it will calculate to any desired
number of figures and it will calculate in any desired number
base. This makes it possible to use this package in the base of
the particular computer and allows for the computation of all
function values of exact machine representable arguments.
These two features lead to the following hierarchy of tests:

1. The reference algorithm is run in the decimal mode with
decimal arguments. Reference values are computed to two
different numbers of figures. Usually 50 and 60 decimal
figures are used. Comparison of the shorter with the longer
number gives a check on truncation and roundoff errors.
Table 1 presents a sample of this kind of check, performed
on the hyperbolic sine function. In no case does the shorter
number differ from the longer number by more than nine
units in the last place. The comparison is necessary to
establish a bound on the truncation and roundoff errors
across the entire range of definition of the function, but it
does not establish the correctness of the function values.

x Sinh (x) to 50 places

01 0-10016 67500 19844 02582 37293 83521 90502 35149 20916 87855
0-10016 67500 19844 02582 37293 83521 90502 35149 20916 87855

02 0-20133 60025 41093 98762 55682 43010 31737 29744 94842 62574
0-20133 60025 41093 98762 55682 43010 31737 29744 94842 62574

03 0-30452 02934 47142 61895 84352 67005 09522 90980 24232 68017
0-30452 02934 47142 61895 84352 67005 09522 90980 24232 68018

0-4 041075 23258 02815 50854 02100 13844 69810 43531 50924 36328
0-41075 23258 02815 50854 02100 13844 69810 43531 50924 36330

0-5 0-52109 53054 93747 36162 24256 26411 49155 91059 28982 61145
0-52109 53054 93747 36162 24256 26411 49155 91059 28982 61148

06 063665 35821 48241 27112 34543 75465 14831 90249 63425 92786
0-63665 35821 48241 27112 34543 75465 14831 90249 63425 92790

07 0-75858 37018 39533 50345 98746 47592 76815 41549 37614 21696
0-75858 37018 39533 50345 98746 47592 76815 41549 37614 21702

0-8 0-83810 59821 87623 00657 47175 73189 75698 05597 09596 88808
0-88810 59821 87623 00657 47175 73189 75698 05597 09596 88815

09 1-02651 67257 08175 27595 83361 61978 42235 37940 34465 51347
1-02651 67257 08175 27595 83361 61978 42235 37940 34465 51348

Table 2 Sinh (x) calculated to 50 places by Maximon’sextended
precision routine working in the decimal mode (upper
lines) and sinh (x) calculated by hand (lower lines) on
the basis of 62 place values of exp (x) and exp (—x).
The tabular values have been truncated to 50 places.

Volume 16 Number 2

2. The correctness of the decimal values is established by
comparison with tabulated values. See Table 2, in which
decimal function values for the hyperbolic sine are com-
pared with the hand calculated values of the same function,
based on Van Orstrand’s tables of the exponential function
(Van Orstrand, 1921).

3. The same algorithm is then run in the octal mode with octal
arguments and the truncation and roundoff errors are
checked by comparing values with two different numbers of
octal figures. Table 3 shows this comparison where the
number of octal figures corresponds to the number of
decimal figures in 1.

4. Decimal function values obtained for exactly machine
representable decimal arguments are compared with the
function values for the same arguments in the octal mode.
For example, if 50 or 60 decimal figures are used when
running in the decimal mode, 55 and 65 figures are used
when running in the octal mode. A conversion routine was
used to express the values in the same number base. (See
Table 4). o

If the reference algorithm passes all of the above four tests it % :
considered to be correct and is used to generate reference valueg
in the number base of the machine.

The reference function values, together with the exact machmg
representable arguments, are put on tape. The tape is then used
as reference for the bit comparison package. The tape is &
desirable feature for the following reasons. It allows a furthez
degree of independence from the testing environment as Et
eliminates compilation of the arbitrary precision arlthmet&
routines, the arbitrary precision function routines and th&
actual calculation by these (compiled) routines of the functiofi
values. A tape also constitutes a convenient and relatively safe
medium for the distribution of large numbers of referenc@
values.

/lufwoo/w

3. The driver program
The use of reference tapes separates the job of algorithm testing
into two parts. The first is the selection of a set of argument§
generation of the reference function values and writing th§
tape. The second part consists of reading arguments from th&i
tape, obtammg function values from the algorithm to be testeQ
and comparing them with reference values read from tape;
We call the program to accomplish this second part the bﬁi
comparison, or driver, program.

We have written a driver program to help us clarify our 1deas
on algorithm testing. It has been used to test the single an
double precision exponential, hyperbolic and trigonometrié
functions in the NBS FORTRAN Library. We have also usea
it as a tool to help design Bessel function sub-routines. The
driver program consists of two types of subrout1neq—tho§
written in FORTRAN and those that deal with bit manipu_a'
lation and hence lend themselves naturally to assembly lar§
guage. Each of the assembly language subroutines consists of
a few simple instructions that perform operations such as
double precision fixed point add and subtract and left and right
shifts. The driver program described below was used to test
the Univac 1108 library and consequently contains assembly
language subroutines pertaining to that computer. When the
driver program is used on a different computer these assembly
language subroutines, and certain other references to binary
operation and octal display, must be modified appropriately.
We have done this for the IBM System 360 series, a hexadecimal
computer.

3.1. Reference tape

The reference tape is written in a form most convenient for use
with the Univac 1108. The data is written in blocks of 50 argu-
ments and 50 extended precision function values, together with

113

X SINH (X) IN OCTAL TO 65 AND 55 PLACESs, AND THE DIFFERENCE

2%l 10) +.11770 13220 3472% 32064 23103
+.11770 13220 34724 32064 23103
2%s(9) +.62435 45011 35205 13466 01162
+.62435 45011 35205 13466 01162
252 3) +.50161 72420 12276 56407 06214
+.50161 72420 12276 56407 p6214
2%s(7) +014536 25142 73520 41357 72477
+.14536 25142 73520 41357 72477
2%s(o) +.24113 14054 75313 71510 05634
+.24113 14054 75313 71510 05634
2sx(5) +410764 17746 11331 42617 54107
+.10764 17746 11331 42617 54107
2x(y) +.20745 65720 S1777 74367 u6531
+420745 65720 S1777 74367 46531
2¢xt 3) +.27223 65121 23545 14564 n6724
+.27223 65121 23545 14564 06724
2%x(2) +.33224 34003 34033 06062 17716
+.33224 34003 34033 06062 17716
2%x(1) ++35007 47543 55560 63733 3231

++35007 47543 55560 63733 63231

41566 55320 63305 51010 03130 46233 25424 12343 (493)

41566 55320 63305 51010 03130 46232 (493)
1

05317 40034 26463 11021 55155 03243 67234 21650 (2u6)

05317 40034 26463 11021 55155 03240 (246)
4

60036 73575 51454 1444 33036 36511 25655 22554 (123)

60036 73575 51454 12444 33036 36510 (123)
1

23251 03167 61071 21671 43334 55161 31067 74672 (62)

23251 03167 61071 21671 43334 55161 (62)
0

36533 23555 40305 65300 52275 12737 06452 62715 (31)

36533 23555 40305 65300 52275 12737 (31)
]

42040 01177 76230 46074 15534 33707 60026 00132 (16)

42040 01177 76230 4074 15534 33707 (16)
' 1

11637 63550 02211 60376 52226 32767 7u713 46037 (8)

11637 63550 02211 60376 52226 32770 (a8)
0

73210 53772 15477 40460 03542 73176 72272 37456 (4)

73210 53772 15477 uoub0 03542 73177 (4)
0

01141 66227 12616 50420 32755 71066 60075 73340 (2)

01141 66227 12616 50420 32755 71067 (2)
0

00054 45420 01134 16751 33561 25567 14775 55220 (1)

00054 45420 01134 16751 33561 25567 (1)

. 0
Table 3 Reference function values for sinh (x) calculated to 65 and 55 octal places. Numbers in parentheses on the right indicate
powers of eight. Integers 1, 4, 1, etc. indicate deviation of the 55-digit number from the 65-digit number.

an identifying block number. The arguments are in double
precision 1108 format and the extended precision values are in
double precision 1108 format plus an additional 36 bit word of
extended precision. Thus the block length is 251 words. This is
an efficient blocking because the 1108 Exec II operating system
writes output on tape in blocks of 256 words.

We hasten to add that, although the driver program has been
written as an implementation of our philosophy of testing with
a reference tape, it is not restricted to using a tape to store the
reference table. Essentially, what we do is generate a table of
reference values which conceptually is stored on magnetic tape
in an appropriate format, but it may in fact be stored on any
auxiliary storage device, such as disc or drum.

For single precision testing we simply use the corresponding
double precision subroutines, when available, to generate the
reference table in the format described above, assuming they
have been previously checked out. The third word of extended
precision is simply carried as zero. In this case we do not
actually mount a tape that has been prepared in advance, but
simply generate the reference table internally and store it on
drum. This work is done in an initialisation subroutine, called
INIT, where other critical parameters for the driver program
are also stored.

3.2. The initialisation subroutine
We have designed the bit-comparison program to be useful in

114

testing whatever function subroutines the user desires, provi-
ding he has either a reference tape supplied by us or a way of
generating his own. Certain critical parameters concerning the
tape are set up in the initialisation subroutine INIT. These
parameters (all of which are of integer type) are passed via the
labelled COMMON block

/INITBK/ITN, NPRE, NFN, NCODE(50), NLAST(50),
NLOC(50)

ITN is the FORTRAN reference number of whatever auxiliary
storage unit the reference table is stored on, be it tape, disc or
drum. NPRE is the precision indicator; it is stored in Hollerith
(left adjusted) as ‘SNGL’ for single-precision testing or
‘DBLE’ for double-precision testing. NFN is the number of
functions that are stored on the reference tape, presently
limited to 50. NCODE is a table of Hollerith codes of up to
four characters which are set by the user to identify the functions
on the reference tape. There must be one entry in the NCODE
table for each function on the tape, i.e., NFN entries. For
example, if the exponential and sine functions are on the tape,
the user may wish to have the codes ‘EXP’ and ‘SIN’. NLAST
is a table giving the number of reference values stored for each
function on the tape. Finally NLOC is a table giving the starting
block number on tape of each function.

All these parameters except ITN will be specified for reference
tapes supplied by us. But if the user writes his own reference

The Computer Journal

20 udy 61 U0 188n6 AQ 0ZGZLE/L L L/2/91/B1014e/|uf0o/W0d"dNo"oILLSPEDE//:SARY W) PAPEOUMOQ

X SINH (X) TO S0 DECIMAL AND 55 OCTAL PLACESs OCTAL CONVERTED TO DECIMALs AND THE DIFFERENCE

2%s(10) +.26092 72717 18371 71005 40604 76684 90084 50586 99396 52155 4y5)
+426092 72717 18371 71005 0604 76684 90084 50586 99396 52150 445)

]
2¢s(9) +411422 06793 26987 53201 89375 75856 12017 11448 40509 39029 223)
+e11422 06793 26987 83201 R9375 75856 12017 11448 40509 39028 223)

1
2%+ 4d) +.75571 38325 02051 77126 (0448 32853 64325 37531 20449 14355 111)
+.75571 38325 02051 77126 0448 32853 64325 37531 20449 14352 11)

3
2esl 7 +.19438 54202 99729 75461 11336 84417 87390 36364 08753 15414 56)
+.19438 54202 99729 75461 11336 84417 87390 36364 08753 15414 56)

0
2ex(o) +e31175 74540 40580 84414 Su619 35446 42348 72415 69592 31178 28)
++31175 74540 40580 84414 54619 35uu6 42348 72415 69592 31178 28)

0
)
s
2%s(5) +.39481 48009 13403 47580 48901 13112 22029 33543 10096 96116 19
+.39481 48009 13403 47580 48901 13112 22029 33543 10096 96111 19
: :
3
205() +.44430 55260 25388 00507 94152 24083 34682 A7811 82984 73325. B
+.44430 55260 25388 00507 94152 24083 34682 87811 82984 73325 B
0 k7
§
2%s(3) +.14904 78825 78955 01861 15876 63903 18814 464YT 47431 41164 ©
+.14904 78825 78955 01861 15876 63903 18814 46447 47431 41163]
1 2
o
S
252l 2) +.27289 91719 71277 52448 90827 15907 93818 58028 94124 85531 (2)
+.27289 91719 71277 52448 90827 15907 93818 5R028 94124 85530 (A
t 3
3
2¢s(1) +.36268 60407 84701 87676 £B213 98280 12617 048Be 34201 23212 (5
- +.36268 60407 84701 87676 68213 98280 12617 04886 3u201 23211 { n
1 &
Table 4 Reference function values for sinh (x) calculated to 50 decimal places (upper lines) and 55 octal places converted to SQE

decimal places (lower lines). Numbers in parentheses indicate powers of ten. Integers 5, 1, 3, etc. indicate differences.=

tape, he must supply his own parameters. Note that the refer-
ence table can actually be prepared as part of the INIT
subroutine. This is the procedure we use for testing single-
precision library functions against double-precision library
values.

3.3. Input and output

The user controls the driver program by supplying input data
on cards that cause the program to perform various functions.
They start with two header cards. These supply a heading of
131 symbols (80 from the first card, 51 from the second) which
is printed at the top of every page. Following these is a control
card that is punched, starting in column 1, with one of the
control words CHECK, LIST or TEST. The effect of these
options is described below. Next a function card is punched,
starting in column 1, with a valid function code. Valid function
codes of from one to four alphanumeric characters are stored
in the NCODE table of the previously described INIT sub-
routine. Following the function card is an argument card which
must have ARG punched in the first three columns. It is used
to specify the sequence numbers of the arguments one wishes to
test, for example,

ARG N1 TO N2 IN STEPS OF N3

Here N1, N2 and N3 are read as free format decimal integers
and need only be separated by either non-numeric characters

Volume 16 Number 2

Rozszhel

or blanks. The program has default options in case N1, N2,
N3 are not supplied. Specifically, if N3 is missing, it is set-equal
to 1. If N2 is missing, it is set equal to the highest sequenoic
number for that function. If N1 is missing, it is set equal to |
Hence, if one wants all arguments on the tape only ARG need
be punched. The user can supply as many ARG cards as hﬁ
wants, one after another. In this way he can sample selected.
arguments or argument ranges. Following all the ARG cards
there must be an END card, again punched in the first thre¥
columns. This denotes the end of that particular data set.
Subsequent data sets having the same form may follow the
END card, viz. Header, Control, Function, Argument and
END. After the last data set one may supply a card punched
ENDRUN (starting in column 1) which denotes the end of all
data sets and causes the program to exit.

The control card CHECK causes the program to read selected
data from the tape and compare it with stored data in the
program for the purpose of verifying the tape reading and
program operation. We include this program check so that a
user who receives a deck and tape may assure himself that it
runs properly on his computer. Since the CHECK subroutine
verifies internal consistency of the tape and program, no func-
tion or ARG cards need follow the CHECK control card. It
supplies its own sequence of arguments. The CHECK control
card should be followed directly by an END card.

115

ARGUMENT STANDARD VALUE OF SINH
5220 L77777777T7T TTNTITITNTINNY 200081263200 376307345585
5221 2000%0000000 000000000000 200041253200 376307345545
5222 200090000000 000000000001 200081243200 376307345546
5223 2000%0001763 171524647100 200081265364 636776727720
5224 200040316010 221087455526 200041633714 277328016315
5225 200040482044 355522340007 200081773010 200676335235
5226 200040761546 212777731465 2000423463508 1868122262012
5227 200041107167 067680877872 200082507521 214756357724
5228 200041235145 687538046750 200082651360 654456163047
5229 200091832805 761353152001 200043070212 265031171551
5230 2000%1561830 611673322707 200043233866 725014404703
5231 200041711015 262533706055 20P0N3377846 753310613175
5232 2000%2281067 660013241317 200083747088 161166515767
5233 200042372077 710011650575 2000081352048 481281804301
5238 200082726003 930124221065 200084532210 345556481061
5235 200093060458 720037263706 200084702572 127338381063
5236 200043213501 173812513636 200085053705 2600%507152%
5237 200043820253 731185467530 200085305327 215638305271
5238 200083558808 536257626081 200045860176 616167571130
5239 200043711118 832221180420 200045633605 754153176716
5240 200084255770 2710556248204 200046286006 060663557537
5281 2000%4419202 126676766575 200046823761 375267200271
5282 200044553000 %13030172632 200086602516 3107784666876
5243 200044765071 7840664216550 200087068224 616657255543
Sau4 2000495125028 263431307671 200047228610 051124066163
5245 200045265347 8466000316174 2000874905770 060633623422
5286 200095501774 230224236230 200087653254 535015306360
5247 200045643866 166753403175 200050036317 101205570230
5248 200046005555 3035346738723 200050222171 757871287424
5249 200046370033 664056376261 200050661121 855631535751
5250 200046533706 123277461228 200051047580 477536741063
5251 200046700163 396264662551 200051237007 663124735687
5252 2000%7122372 122271827613 200051515280 200036654104
5253 200047270047 120433263065 200051706476 460407630146
5254 200047436133 535561042766 200052100601 761272453564
5255 200050032306 418666374476 200052557254 504467175705
5256 200050202222 127060002743 200052754271 52455236257y
5257 200050602733 277521267471 200053442112 030456431016
5258 200050754516 23063342055% 200053642120 157031370530
5259 200051126723 367026272302 200054043032 728174627312
5260 200051361635 620324640541 200054337275 024166224433
5261 200051535310 333614737460 200054542355 662520041336
5262 200051711412 121061057675 200054746361 767552652412
5263 200052324871 724225154645 200055455502 200762012157
5264 200052502511 003336340577 200055664664 130625125011
5265 200053122335 072724207403 200056404004 644661020407
5266 200053302312 536007403625 200056616433 163137173107
5267 200053462732 545341525430 200057032051 220624672331
5268 200053726755 325440322131 200057345765 120754445041
5269 200054110712 700636512623 200057563751 143001751347

LIBRARY VALUE OF SINH

BIT DEVIATION

200041263200 376307345523 000000000000 000000000022
200041263200 376307345523 000000000000 000000000022
200081263200 376307385506 000000000000 00000000000
200041265364 636776727716 000000000000 000000000002
200041633714 277324016312 000000000000 00000000000~
200041773010 200676335232 000000000000 000000000003
200042346358 144122262001 000000000000 000000n00011
200042507521 214756357711 000000000000 00000000001 %
200042651360 654856163036 000000000000 000000000011
200043070212 265031171534 000000000000 000000000015
200083233466 725014404670 000000000000 00000000N01
200043377446 753310613170 000000000000 000000000005
200043767044 161166515762 000000000000 00000000000=
200044135208 4481241804277 000000000000 000000N000N2>
200044532210 345556481050 000000000000 000000000011
200084702572 127334341053 000000000000 00000000001
200045053705 260045071512 000000000000 000000000012
200045305327 215634305254 000000000000 000000000015
200045460178 616167571110 000000000000 000000000020
200085633605 754153176707 000000000000 000000000007
200046286006 060663557525 000000000000 000000000012
200046823761 375267200263 000000000000 000000000006
200086602516 310774666471 000000000000 000000000005
200087048228 616657255532 000000000000 000000000011
200047228610 051124066152 000000000000 000000000011
200047405770 060633623411 000000000000 000000000011
200047653254 535015306343 000000000000 000000000015
200050036317 101205570220 000000000000 000000000010
200050222171 757871247420 000000000000 000000000000
200050661121 455631535743 000000000000 000000000005
200051047540 477536741056 000000000000 000000000005
200051237007 663124735631 000000000000 000000000016
200051515240 200036654073 000000000000 000000000011
200051706476 4608076301 3% 000000000000 000000000012
200052100601 761272u53543 000000000000 000000000021
200052557254 Souk67175701 000000000000 0000000000ny
200052754271 524552362567 000000000000 000000000005
200053842112 030456431005 000000000000 000000000011
200053642120 147031370515 000000000000 000000000013
200054043032 724174627301 000000000000 000000000011
200054337275 024166224422 000000000000 000000000011
200054542355 662520041313 000000000000 000000000023
200054746361 767552652403 000000000000 000000000007
200055455502 200762012147 000000000000 000000000010
200055664664 130625125000 000000000000 000000000011
200056404004 644661020373 000000000000 00000000001u
200056616433 163137173072 000000000000 000000000015
200057032051 220624672304 000000000000 000000000025
200057345765 120754445026 000000000000 00000000001 %
200057563751 143001751337 000000000000 00000000001

Table 5

Sample page of output from the bit comparison program showing comparison of NBS Univac 1108 FORTRAN

“library values of DSINH (X) with reference values for a selection of arguments in the range from 0-5 to 0-7. The
output is in Univac 1108 machine format (octal). The bit deviation is in units of the 20th octal position of the ‘standard’

value.

The control card LIST causes the program to read arguments
and function values from the tape and print them according to
the function and argument cards that follow it. The program
prints the specified sequence numbers in decimal and the argu-
ments and function values in octal. The arguments are dis-
played in double-precision machine format and the function
values in double-precision machine format plus an additional
word of extended precision. For single-precision function
testing, where the reference table is merely double-precision,
the double-precision arguments are zero past the single-
precision length and the third word of extended-precision in the
function value, being superfluous, is not printed.

The third control card, TEST, causes the program to perform
the bit comparison between the reference values from the tape,
properly rounded to 1108 double-precision format, with the
function values from the algorithm being tested. The algorithm
to be tested must be accessible in FORTRAN from a sub-
routine named TSTVAL(DX, DY). Here DX is the double-
precision argument read from tape and DY is the double-
precision test function value. Since the program is designed
primarily to do bit-comparison testing, it being anticipated that
listing or checking will be done only occasionally, the control
card designating TEST may be omitted, in which case the
program will automatically do the testing as indicated on the
Function and ARG cards which directly follow the Header
cards.

The testing part of the program takes arguments and function

116

values from the tape in accordance with the Function and
ARG cards. It then rounds each extended precision function
value to double precision 1108 format. Next it obtains the
double-precision value of the function from the test algorithm.
The bit deviation of the test value from the reference value is
now obtained by the following procedure. The test value is
normalised to the reference value by right or left shifting the
mantissa until the characteristics of the test value and the
reference value are the same. The difference of the mantissas is
then obtained by a fixed-point subtraction. This difference is
the deviation of the approximate number from the true number
expressed in units of the 60th bit position of the true number.
It therefore is closely related to the relative error in the approxi-
mate number. For example, if the true number is @.2° and the
approximate number is «.2f = 4.2°, where } <a <1,
1 < a < 1, then the bit deviation is @ — a, which is equal to
the relative error times a. Note that the bit deviation is not
more than a factor of two different from the relative error.
If the bit deviation is more than 60 places, only the difference
of the characteristics is printed, since in this case the numbers
are far apart. If the test value is more than 60 powers of two
below the true value, the bit difference is the reference value,
by definition.

The output format for the TEST option consists of printing
the sequence number in decimal and the argument, reference
value, test value and bit deviation in octal. The output is
displayed in a highly readable form allowing for rapid visual

The Computer Journal

202 11dy 6 U 1s9NB Aq 0ZSZ.LE/L L 1/Z/91/I0IE/|Ulti00/Ww0o"dNoo1WapED.//:Sd)Y WOl PaPEojuMOd

inspection for trends. (See Table 5). After each data set a page
of statistics is printed, giving the number of test function values
with bit deviations of 0, 1, . . . 7 units in the 60th bit position.
(Thus for example, a three bit deviation in the 60th place would
actually affect the 60th and 59th bit positions, since it has the
binary representation 11.) The number of function values with
more than 7 bits deviation from that data set is also printed.
Finally, the number of function values tested is printed.

Acknowledgements
We would like to express our gratitude to the following people.

To R. J. Arms, Computer Services Division, NBS, and I. A.
Stegun, Applied Mathematics Division, NBS, for numerous
helpful discussions in the course of the development of the
program; to John Milazzo, Instruction and Research Support

- Group of the Computing Center at the State University of

New York, Stony Brook and H. J. Oser, Applied Mathematics
Division, NBS, for a critical reading of the manuscript resulting
in valuable suggestions; to.D. J. Sookne, for supplying certain
assembly language subroutines; and to L. E. Sutton, Computer
Services Division, NBS, for assistance in debugging parts of the
program. ’

References

" Copy, W. J. (1967). The Influence of Machine Design on Numerical Algorithms, Proc. Spring Joint Computer Conference, AFIPS Press,
Montvale, N.J., pp. 305-309.

Copby, W. J. (1969). Performance Testing of Function Subroutines, Proc Spring Joint Computer Conference, AFIPS Press, Montvale, N.J.,
pp. 759-763.

HART, J. F., et al. (1968). Computer Approximations, John Wiley and Sons, New York.

Kuxki, H. (1971) Mathematical Function Subprograms for Basic System Libraries-Objectives, Constraints and Trade-Off, Mathematical
Software, Academic Press, New York and London, pp. 187-199.

MaximoN, L. C. (1971). FORTRAN Program for Arbitrary Precision Arithmetic, NBS Technical Report 10563, April 1, 1971.

VAN ORSTRAND, C. E. (1921). Tables of the Exponential Function and of the Circular Sine and Cosine to Radian Arguments, Memoirs o
the National Academy of Sciences, 14, Fifth Memoir, U.S. Government Printing Office, Washington, D.C.

Book review

Computers and Automata, edited by Jerome Fox, 1971; 653 pages.
(Polytechnic Press of the Polytechnic Institute of Brooklyn,
£9-85)

apeoe//:sdny wouy pepeojuMdq

Scott and Strachey is one of the most interesting papers in Com-a
puters and Automata to aim at a general theory. Ultimately the3
authors’ approach should enable us to define the semantics otg
computer languages without ambiguity and without having to statec
how particular features should be implemented. The paper byo
Dennis, ‘On the design and specification of a common base]an-3
guage’, is an example of an alternative approach that regards theS
base language as a specification of the functional operation of as.

. o . =}
computer system and so as a suitable vehicle for the definitiong
of computer languages. Many papers describe algorithms for the=:
solution of computing problems, a few discuss computing systemso
based upon theoretical work.

In the section on Programming Languages, Lewis and Rosenkrantz
describe a 2-pass ALGOL 60 compiler that uses a finite-state machine-
for lexical analysis and a deterministic pushdown machine forg
syntactical analysis. Other topics covered are machine language)y
design, a theory to help in program design and fuzzy programs that,>
in difficult situations, ‘do the best that they can’. The section ono
Operating Systems mainly consists of papers giving new or 1mproved:
methods for solving system design problems. Computation Com-‘D
plexity covers a variety of subjects, from measures for computatxonO
complexity to problems in artificial intelligence. The section on”,
Logical Design consists mainly of extensions to the theory tha
already exists. Computer Models includes a discussion by ZeiglerS
on criteria for determining when one system simulates another,
and theoretical work on cellular computers that is claimed to be3
applicable to parallel computers. =

Altogether, this is a valuable collection that should help us to focus
our attention on an important area.

This book contains 28 papers presented at a Microwave Research
Institute Symposium held at the Polytechnic Institute of Brooklyn
in April 1971. Two introductory papers have been added. The main
aim of the symposium was to promote stronger links between
practical computing and automata theory. As well as a table of
contents the book includes the programme of the symposium, which
divides the papers into the main areas of Programming Languages,
Operating Systems, Computation Complexity, Logical Design and
Computer Models. The titles of some papers in the contents are
different to the corresponding ones in the programme and the latter
lists a paper by Somalvico under Computation Complexity and a
paper by Lazarev under Logical Design which have not been
included.

It is with considerable pleasure that one picks up a book with the
title Computers and Automata, because the relationships between
the two have not been given nearly enough attention in the past.
Computing is now complex enough to need a coherent way of stating
and investigating the principles being used and it is unfortunate,
as A. E. Laemmel says in his introduction, that ‘Automata theory . . .
has grown into an independent discipline whose connections with
practical problems is at times quite tenuous’. The situation being
what it is this book is inevitably something of a disappointment in
that the problems have not been solved. Signs of promise however
can be seen.

‘Toward a mathematical semantics for computer languages’ by

/91

E. A. EpMonDs (Leicester)

Volume 16 Number 2 ‘ "7

