A note on LISP universal S-functions

C. R. Jordan

Department of Computer Science, Lanchester Polytechnic, Eastlands, Rugby, Warwickshire

This note describes some inconsistencies discovered in the LISP Universal S-Function defined in a
paper by McCarthy and gives methods of correcting these inconsistencies.

(Received May 1972)

Introduction

This note describes some inconsistencies discovered in the
LISP Universal S-function apply defined in a paper by
McCarthy (1960). The Universal function that is defined in this
paper by McCarthy is not the same as the one defined in the
LISP 1.5 Programmers Manual (McCarthy et al., 1963). Both
these Universal functions refer to functions assoc and pair and
these have different definitions in the two papers. This note
uses the definitions of the 1960 paper throughout.

An attempt was made to code the function apply, given on
page 189 of the CACM containing the McCarthy (1960) paper,
for an Elliott 803 computer. This work was undertaken as a
student project (Baxter, 1971). It was decided that the Universal
function given in McCarthy’s paper, rather than the one in the
LISP 1.5 Manual would be coded as it was felt that this would
provide fewer problems—in particular, there would be no need
to implement dot notation, although, of course, this would put
a restriction on the S-expressions that the system could deal
with.

It was found that the constructed program did not evaluate
recursive functions correctly, except in the trivial case when the
answer could be obtained before recurring.

The Universal function apply, referred to above, calls another
function, eval, defined on the same page of the McCarthy paper.
The three lines of the definition of eval to be discussed are those
corresponding to the expression, e, undergoing evaluation
being atomic
ie.

atom [e] — assoc [e; a] 0))
the head of the expression, e, being a named function, so that
the head is an atom, but not QUOTE, ATOM, EQ, COND,
CAR, CDR or CONS
ie. :
T — eval [cons [assoc [car [e]; a];

evlis [cdr [e]; al]; a]l (2)
and lastly, the head of the expression, e, being a LAMBDA
expression
ie.
eq [caar [e]; LAMBDA] —
eval [caddar [e]; append [pair [cadar [e];
evlis [cdr [e]; al]; all (3)
(In the definition as given in McCarthy’s paper, a bracket is
missing in both the LAMBDA and LABEL lines.)

The notation used in this note is as follows: the version of
evalincorporating the three lines above is called version(1, 2, 3);
if line (2) is replaced by line (4), defined later, the version so
obtained is referred to as version(1, 4, 3). Only these three lines
differ from one version to another.

The fault and its correction

It is now shown, with the help of an example, that line (2)
leads to an erroneous double evaluation of the arguments of
recursive named functions. Eval reaches line (2) only when
evaluating a recursive call of a named function. For example, if

124

0 = (J ABEL FF(LAMBDA(X)(COND((ATOM X)X)
((QUOTE T)(FF(CAR X))))))

then apply [0; ((4))] eventually leads, after entering evcon, to
eval [((FF(CAR X));«] where a = ((X(4))(FF 0)). Eval is
then re-entered from line (2), to give
apply[0; ((4))] = eval [(0 A); «]

eval [((LAMBDA(X)w)A); £]
where o starts

(COND, and g

((FF O)(X (A))(FF 0)); .
eval [w; append [pair [(X);

evlis [(4); B11; 11 .
Clearly evlis [(4); f] is an error that has arisen due to thes
attempted double evaluation of the argument (CAR X) of the\
function FF.

In general, with a recursive named function, eval is re-entered<D
from line (2) at some stage, and then again from line (3). Prior=
to each of these entries evlis is applied to the list of arguments,2
i.e. cdr [e]. This erroneous double evaluation must be avoided?
by changing line (2) as the evaluation is required for non-3
recursive functions at line (3). It can be avoided by either:

(a) quoting the results of the evaluation by evlis at line (2),:,

y woJ} papeojumoq

wooy

8GC/LE/YCLic/9L/ePIMe/|

so that this line is replaced by
T — eval [cons [assoc [car [e]; a];
appq [evlis [cdr [e]; a]]l; a] (4)
or
(b) leaving the evaluations until the LAMBDA line, i.e. line
(3), is reached, in which case line (2) is replaced by
T — eval [cons [assoc [car [e]; a]; cdr [e]]; a] 5)
Alternative versions
On pages 189 and 190 of the paper (McCarthy 1960), there are

189 nﬁAqg

some numbered notes concerning the definition of this Umver-o
sal function. If we construct the function eval from these notes .
we find differences from version(l, 2, 3) at all three of these
lines. Note 3 implies that line (1) should read =)

atom [e] — eval [assoc [e; a]] (6)§
note 4 implies that line (2) should read as line (5); and note 6
implies that line (3) should read
eq [caar [e]; LAMBDA] — eval [caddar [e];
append [pair [cadar [e]; cdr [e]]; a]] (7)
The version(6, 5, 7) supposedly evaluates retrieved pairings at
line (6) that have been placed on the association list, unevalu-
ated, at line (7). In the paper, McCarthy then follows with a
simulation of the evaluation of the function FF. This simu-
lation, however, uses neither version(1, 2, 3) nor version(6, 5, 7).
Instead, it appears to use version(6, 4, 7). This last version
simulates the evaluation of FF correctly, whereas version
(6, 5, 7) goes into a loop. It is shown here, however, that line
(7) is at fault and that when this is corrected it may be combined
with either lines (6) and (4) or with lines (6) and (5).
When version(6, 5, 7) of eval evaluates the form (FF(CAR X)),
line (5) retrieves the definition of FF and line (7) places a new

The Computer Journal

pairing for X on the association list a. Since neither line
evaluates the argument of FF before it is bound to X, the
pairing is (X(CAR X)). This binding is clearly circular and
leads to looping. With this particular example, version(6, 4, 7)
avoids the looping since line (7) is reached only after the
definition of FF has been retrieved, the argument evaluated,
and the result quoted. This somewhat lucky sequence of events
is not always the case as the following example shows.

Let
® = (LABEL FN(LAMBDA(Y)(COND((ATOM Y)X)
((QUOTE T)((LAMBDA (X)X)(FN(CAR Y))))))) .

The value of this function applied to any S-expression is the
value bound to the free variable X. For example,

(LAMBDA(X Z)® Z))

applied to a list of two arguments, gives bindings to X and Z,
applies @ to the value of Z and eventually returns the value
bound to X. Version(6, 4, 7), when evaluating the action part
of the second condition action pair, produces the pairing
(X(FN(CAR Y))) before evaluating X. Evaluation of X then
involves evaluating (FN(CAR Y)), which involves applying 0
to the reduced argument. Eventually the exit clause is taken,
which again attempts to evaluate X and so on. In this example
the pairing that leads to error is not explicitly circular, but the
calculations implicit in it are.

References

BAXTER, E. J. (1971). A project for the degree of B.Sc. in Mathematics, Lanchester Polytechnic.
Recursive Functions of Symbolic Expressions and Their Computation by Machine, Part 1. CACM, Vol. 3, 1960.
MCcCARTHY, J. et al. (1963). Lisp 1.5 Programmers Manual, MIT Press, 1963.

McCARTHY, J. (1960).

The way to prevent new bindings interfering with evaluations
that should be carried out in the context of earlier bindings, is
to perform these evaluations first. The interpreter cannot rely
on line (4) to do this before line (7) is reached, since in some
cases (nested LAMBDA expressions) line (7) is arrived at
independently of line (4). Thus, line (7) should be replaced by
eq [caar [e]; LAMBDA] —»

eval [caddar [e]; append [pair [cadar [e];
appq [evlis [cdr [e]; a]1]; 1] (8)
and can now be combined with either line (4) or line (5) to give
the same effect.

Summary

The three versions of the LISP Universal function, namely
versions(1, 2, 3), (6, 5, 7), (6, 4, 7), that can be obtained from
McCarthy’s paper all have errors in them. Correct Universal
functions are versions(l, 5, 3) and (6, 5, 8). In both of these
correct-versions, it is permissable to substitute line (4) for line

).

|w)
Acknowledgement %
These notes are the results of discussions with Mr. A. A5
Stravrinides of the Department of Cybernetics, Brun

University.

Book review

Computer Hardware Theory, by W. J. Poppelbaum, 1972; 730 pages.
(Collier-Macmillan, £7-65)

Professor Poppelbaum is a very learned man, a physicist and
mathematician of the highest capability and yet he is also a practical
man with an engineer’s interest in the application of science.
Perhaps such men should not write books which claim to be,
quoting from the Preface: ‘as far as possible autonomous, in the
sense of not needing prior acquaintance with other Engineering or
Physic treatises’. When they are modest men, like Poppelbaum, they
tend to imagine their less gifted brethren are cleverer than they are.
This book of seven hundred pages is a veritable encyclopaedia of the
science underlying the whole range of computer hardware; to quote,
once more, from the preface: ‘in spite of this wealth of material to
be presented, every effort has been made to guarantee continuity of
thought and adequate proofs’. Indeed every effort has been made
but it makes for indigestible reading for ordinary men.

These unkind generalities aside, the book has many virtues. It is
comprehensive indeed and does start each section from first prin-
ciples even though it progresses in each topic to advanced study too
quickly. The first three chapters are on basic Physics and Dynamics,
ranging from the rules of simple vector addition through to grad,
div and curl in Chapter 1, in 24 pages, including several simple
illustrative experiments. Chapter 2, of 49 pages, is in the author’s
words ‘a slight tour de force’ on Electricity and Magnetism, rounded
off with Maxwell’s equations. The third chapter covers Waves,
Particles and Quantum Theory and is wide as well as deep enough
for most peoples’ needs.

There are chapters on fundamental theory of semiconductors and
semiconduetor devices which lead into computer logic circuits and

Volume 16 Number 2

/W00 dno oiwapese//:sdpy woly pade

a brief treatment of register and logical operations. Chapter 7 deals
with Analog, Hybrid and Stochastic Circuits, bringing in DDA%
digital filters and considerations of digital simulation of analog
systems.

The chapter on Circuit Analysis is, once more, a tour de force. ThQ
author leaves little out, dealing with graphical methods for treating
non-linear devices, negative resistance, gain and bandwidth i
flip-flops, phase-plane theory, the Laplace Transform, chargg
storage theory of transistors, switching time calculations, poleeo
zero techniques; it is all here. M

There are chapters that deal with semiconductor processing tecl@
nology including computer graphics design aids, memory storey
ranging from hierarchical considerations through to details of
‘Bubbles’, Cryotrons and Surface Wave Devices. ‘Electron Bearg
and Matrlx Devices’ deals with readers and printers (mechamcal);’
computer graphics devices and television.

Finally there are chapters on Light Theory, and Light Beam d1 <
plays, backed up by treatments of Tensor Calculus and Fouriex
Transforms, and a chapter on Statistics, Tolerance and Noise.

It is not normally good reviewing to quote a detailed list of con3 -
tents of a book but in this case it seems proper, for this one covers
so much. Each chapter is adequately backed by reference lists, about
half of which are to text books.

The book aims to be a teaching text and has exercises at the end
of each chapter. It is more truly a handbook or reference book of
more use to teachers and workers in the computer field who will find
it invaluable as a starting point for further reading. It is hard to
imagine any topic in the field in the next year or so to which Pro-
fessor Poppelbaum’s book will not provide a lead-in.

B. S. WALKER (Reading)

125

