Some techniques for structuring chained hash tables

C. Bays

Department of Computer Science, University of South Carolina, Columbia,

South Carolina 29208, USA

Existing techniques for structuring chained hash tables are mentioned and several new techniques are
described. A comprehensive set of algorithms is given for effecting the new techniques and some

applications are mentioned.
(Received April 1972)

1. Introduction and review of existing chaining techniques
Hash techniques fall roughly into two classes: open techniques
(Bell and Kaman, 1970; Maurer, 1968) and chaining tech-
niques. The purpose of this paper will be to discuss both new
and existing chaining techniques, all of which involve the
chaining together of entries which hash to the same location.
One of the most commonly used techniques to accomplish the
chaining process is to create a hashed index table (Morris,
1968). This is usually done by computing a hash address for the
key of a given entry and storing at this address a pointer to a
chain of all entries whose keys hash to this same address. These
pointers actually constitute the hash table, which thus contains
no information other than where to find the starting entry for
each chain. An actual entry is stored within an individual chain
and contains, in addition to the key that was hashed, a link to
the next entry in the chain. Frequently the only other inform-
ation present in a chain entry is another pointer which gives
the location of the rest of the information associated with that
entry. This information, as well as the entries in the chains,
may be stored anywhere in memory, with space being provided
by any memory allocator. Thus, in addition to the hashed index
table, the chained hash table will contain entries which are
usually composed of

1. a key which is the value being searched for;
2. a pointer to the next entry in the chain;
3. a pointer to all other information associated with the entry.

It is possible to store the starting entry of each chain at the
actual hash address for the entry, thereby eliminating the need
for a separate index table. Moreover, additional entries in a
given chain may also be stored within the table boundaries,
thereby utilising memory which does not contain starting entries
for chains and which would otherwise be unused. Unfortu-
nately, this usually involves moving existing entries around as
new entries are made, for if a new entry collides with an existing
entry which is not at the head of its chain, the stored entry must
be moved to make room for the new chain head and the chain
associated with the stored entry must therefore be fixed up.

One way to avoid the necessity of moving existing entries
around is to allocate space outside the table for any new entries
that collide with existing ones. Hence, a new entry can either
be stored within the original table area as the head of a new
chain, or outside the table area as a part of an existing chain.
When all entries have been made, those entries outside the
table area may, if desired, be moved to empty locations within
the table (Hopgood, 1969). The average space required outside
the table area, assuming random distribution of entries, is
shown by Morris (1968) to be N — M(1 — exp (—N/M))
where M is the original table length and N is the total number
of entries made.

At the expense of an additional pointer field and an additional
look-up, all entries can be stored initially within the existing
table boundaries without ever having to be moved. The second
pointer field of a given entry stored at, say location X, gives

126

the actual starting location for the chain of entries whose hash
address is X. These entries can be stored in any location in the
table (including location X). After the starting location for a
chain is found, a search down the chain is accomplished by
using the first pointer field. This method is a variant of the
technique described by Johnson (1961) and is really just a type
of scatter index table.

The remainder of this paper will dea! with methods which
have not been previously described, and will include a com-
prehensive set of algorithms for implementing the methods.

2. Definition of terms

For most of the discussion, we will use the following terms. Let
K be a key that we are hashing, let HASH be the hashing
function used to create an initial probe into the table. Let M
be the capacity of the table, and let i and j represent variables
which will be used as pointers to individual entries. For
example, we may write i « HASH(K) and i will point to the
initial hash address (hereafter called simply the hash address)
of the entry associated with K and will be within the range
1 < i< M. Let the entries themselves be broken into two
parts. L will represent the link field which will give the address
of the next entry in a chain, assuming there is one. Let INFO
be all the rest of the entry, including the key. If the entry is
structured into (1), (2), and (3), as described above, then INFO
will represent parts (1) and (3), and L will be part (2). If all other
information associated with the entry is to be stored with the
entry thereby eliminating the necessity for part (3), then it can
all be lumped together under the INFO field. Thus, for this
discussion, an entry at location i will be composed entirely of
fields INFO; and L;. (Later, in the discussion involving doubly
linked lists, we will refer to the link fields LLINK(i) and
RLINK(i) instead of the link field L,).

3. Chaining a table by rehashing

During the creation of a table, if a point in time is reached after
which we can say with certainty that no new chains will be
created, then we can conveniently delay all chaining until this
time. We can, with a slight modification to standard hashing
techniques, treat the table as an open (non-chained) hash table,
which eases greatly the chore of making new entries. After the
aforementioned point is reached, the entries may be rehashed
to form the required chained structure without having to
break into and fix up chains.

Before describing the algorithms involved, some fairly obvious
and very useful facts should be noted. If the hashing function
does not change, then any space which is empty after the
initial hash will be available for storing entries which are not at
the heads of chains. No additional movement of these entries
will be necessary, for nothing ever hashes directly to their
locations. Moreover, if during the initial hash we could keep
track of all locations which will never contain heads of chains,
then these spaces become available for entries other than chain

The Computer Journal

202 udy 61 U0 188n6 AQ $09ZLE/92 1/2/91/B1014e/|ufL00/W0d"dNO"oILLSPEDE//:SARY W) PAPEOUMOQ

heads. Of course, if such a location contains an entry then it
must either be linked up properly or moved into a position as
a chain head.

To indicate these special properties of locations, we can con-
veniently use the link field, since it will not be permanently
filled until after the rehash. Moreover, since the link field will
only contain values between 1 and M, then any other values
we might assign can take on special meanings. This turns out
to be a natural way of doing things. If n represents the number
of bits required for the link field, then obviously the table size,
M, must be less than or equal to 2". For the algorithms below,
all that will be required is that M + 3 < 2" If standard hashing
techniques are used (Maurer, 1968; Bell and Kaman, 1970),
whereby a prime number is chosen for M, then the above
relation will almost automatically follow. (Note that M is not
absolutely required to be prime but that this need be done only
if the particular hashing technique used required it.)

Thus, the following special value of the L field (Fig. 1) will be
assigned during the initial hash, to be used later during the
chaining process. Of course, after chaining is complete, only
the proper values will be stored in the L fields—the temporary
values will have been erased.

Value of link field Meaning

0 this entry is stored at its proper hash
address

M+ 1 this location is empty

M+ 2 this entry is not at its hash address, and
some other entry has this location as a
hash address

M+ 3 this entry is not at its hash address, and
no entry has this location as its hash
address

Fig. 1. Possible values of the link field after the initial hash

Note that whether or not an entry is empty can be checked

merely by seeing if the L field contains the value M + 1.

Hence, a special value for the key does not need to be reserved
to indicate an empty entry.

With the above values of L in mind, let us now list the steps of
the initial hashing algorithm.

Algorithm A Initial hash

(Previously, all L; have been set to M + 1)

1. i « HASH(K)

2.if L; = M + 1 (if this location is empty) set L; « 0 go to
step 7

3.ile=M+ 3,SetL,-4—M+ 2

4. use any collision function to get a new value for i

5.if L; # M + 1 go to step 4

6.L;— M+ 3

7. make a new entry at i, exit the algorithm

The only steps in the algorithm that are not required by standard

Table position Value of key Value of link
1 201 0

2 233 12 (M +2)
3 203 0

4 211 13 (M +3)
5 202 13 (M + 3)
6 213 13 (M + 3)
7 11 M+1)
8 212 13 (M +3)
9 223 13 (M +3)
10 11 M+

Fig. 2

Volume 16 Number 2

hashing techniques are steps 6, 3, and the second part of step 2.
Moreover, each of these steps, when executed for a given entry,
is done only once.

An example of the application of algorithm A is given below.
The overall length of the table, M, is 10. For the hashing
function, the last digit of the key gives the hash address. For
the collision function, add 3 to the current address (Mod M).
The INFO field will consist only of keys, which are entered in
the following order.

203
213
223
233
201
211
202
212

When all items have been entered using algorithm A, the table
will appear as shown in Fig. 2.

After the initial hash, algonthm B, which requires only one
pass through the table, is used to complete the chaining &
operation.

Algorithm B Link up entries

l.i«<0

2.i« i+ 1IFi> M exit the algorithm

3.if L; < M + 2 go to step 2

4. j « HASH(K;) (This must be the same hashing function used
in step 1 of algorithm 4.)

S.fL; < M,L; « L, L; « i, go to step 2

6. swap INFO,;, INFO; set L; « 0, go to step 4

A study of algorithm B reveals that if an entry was stored at its 5
hash address by the initial hash, it will be left alone during the 8
rehash. Similarly any entry whose link field was M + 3 will, if %
possible, be left at its same location and will be linked up S
directly behind the head of the proper chain. The exception is=
if no chain head exists for a particular A + 3 entry when it is &
encountered. Then the M + 3 entry is moved into its rightful &
place as chain head, and the M + 2 entry, which must have 2
been there and had to be removed, is now treated asan M + 3
entry. Notice that the algorithm doesn’t really get into oper-
ation until it finds the first M + 3 entry. There must be at <
least one such entry; if not, then everything hashed initially to 3 S
its proper hash address and no further action need be taken. A
Note further that all empty spaces will be left intact. In general,<
the algorithm will move an entry only if there is no alternatwe,‘Q
and will do so only once.

When a]gorlthm B is apphed to the example in Fig. 2, thes
chaining is completed as is shown in Fig. 3. Notice that allco
non-empty locations have link fields less than or equal to M,%

no"olWapeoe;/:sdny WoJj papeojumoq

as is expected. ;

N

Table position Value of key Value of link .
1 201 4
2 202 8
3 203 9
4 211 0
5 233 0
6 213 5
7 11
8 212 0
9 223 6
10 11

Fig. 3

3.1 Retrieval i
With the table now properly chained, algorithm C may be used

127

MEMORY VACANT
POOL ENTRY
LIST
HEAD

VACANT
ENTRY

VACANT
ENTRY

VACANT
ENTRY

Fig. 4. A Doubly Linked Memory Pool

to search for a given key. This key is referred to in algorithm C
as NEWKEY.

Algorithm C Find a key

1. i « HASH(NEWKEY)

2.if L; = M + 1, NEWKEY is not in the table
3.if K; = NEWKEY, we found it

4.if L; = 0, NEWKEY is not in the table

S5.i« L;gotostep3

4. Hash tables embedded in a linked environment
We have seen how to change an open hash table into a chained
hash table. It is possible to embed any hash table, whether

chained or unchained, into an area ordinarily reserved for -

linked structures. The only requirement is that the linked
structures, or at least their memory pool, be doubly linked.
Consider a memory pool structured as in Knuth (1968 page
253), except that it is doubly linked and contains a list head
(page 278) which is not part of the pool. Such a pool is illus-
trated in Fig. 4, where arrows indicate links.

This can be more conveniently drawn without the arrows, if
desired. Let each entry have the structure shown in Fig. 5.

INFO Field
(rest of entry)

LLINK Field
(left link)

RLINK Field
(right 1link)

Fig. 5. A Memory Pool Entry

Then a memory pool consisting of locations 4, B, C, and D is
represented as illustrated in Fig. 6. (Of course, things do not

need to be linked in the order shown.) Initially, before any -

memory from the pool is utilised, all entries will be empty ex-
cept the link fields, LLINK and RLINK.

MEMORY POOL
D A LIST HEAD
LOCATION Hd
Hd B A c B D IC Hd
LOCATION A B Cc D

Fig. 6. Representation of a Doubly Linked Memory Pool

128

4.1 Open (non-chained) hash tables
If M sequential empty entries are set aside from the pool, then
we can treat this area of M entries as the basis for a hash table.
This area of the pool, however, is dedicated to the purpose of
building the table only as long as the table is being built. After
the hash table has been completed, the unused entries are
returned to the memory pool.

When we make an entry into an open hash table, that is, one
in which a searching method is used for resolving collisions,
then as we store the entry we remove it from the memory pool

by linking around it. Hence if a location, i, has just been 9

allocated to an entry in an open hash table, we now remove
entry i from the pool by the brief algorithm given below.

Algorithm D
RLINK(LLINK(i)) « RLINK()
LLINK(RLINK(i)) « LLINK()

Some important implications are apparent. An open hash
table is thought of as having a ‘load factor’, &, which is given by

o= number of entries entered so far
total number of spaces allocated for the table

As o approaches 1, the difficulty of finding empty spaces
increases tremendously, as is shown in Fig. 7.

a(load factor) E (average number of searches required to find
a vacant location)

01 1-11
02 1-25
03 1-43
04 1-67
05 2-00
06 2-50
0-7 333
0-8 5-00
09 10-00
where E = l_l_oc (Bell and Kaman, 1970)
Fig. 7

Since the space remaining, (1 —), represents wasted space,
then it is usually desirable to have as high a value of a as
possible without wasting too much time searching for entries.
In fact, values of « near 0-8 usually indicate a ‘full’ hash table
of the open type.

Notice, however, that if we are hashing onto a doubly linked
memory pool as described above, and the actual proportion
of the M spaces used (hence the load factor) is small, then no
harm is done, for all unused space is returned to the pool. We
have, in effect, created a hash table whose load factor is
precisely 1 and whose value for E is as low as we wish, de-
pending on how large we are able to make M. Moreover, since
the table is an ‘open’ hash table, no space is wasted for the
storage of link fields.

The Computer Journal

20z udy 61 U0 1s8n6 AQ $09Z/E/92 1/2/91/B1014e/uftiod/wod dno

O
<]
=

D
Q.
(0]
[}

wapeoe//:sdny woJj

5.

4.1.1 Reallocation of non-related entries
With a small additional step, we can allow M to cover the
entire original storage pool area, even though the storage pool
may be currently in use by other linked structures. This can be
done by making the additional provision that any linked
structure using the storage pool be a doubly-linked structure.
Then, if when building a conventional hash table, an entry
hashes (whether directly or after a number of collisions with
prior entries) to a space already allocated to some entry in a
linked structure other than the memory pool, the interfering
linked entry can easily be moved to a vacant space in the
memory pool. This is accomplished by moving the entry to the
location currently at the right (or left) of the pool list head.
Let i be the location of the entry being moved. Then the
algorithm to move the linked entry to the right of the pool list
head and preserve its connection with the interfering structure
is given by algorithm E

Algorithm E Move an entry
(Hd is the location of the list head)

1. if RLINK(Hd) = Hd then the memory pool is empty, we
cannot proceed

2.j « RLINK(Hd)

3. RLINK(LLINK()) « j

4. LLINK(RLINK()) « j

5. INFO(j) « INFO()

6. LLINK(RLINK())) « Hd

7. RLINK(Hd) <« RLINK(})

8. RLINK(j) « RLINK()

9. LLINK(j) « LLINK()

now, we simply insert the hash table entry at location #, which
has been released from the interfering structure.

Thus, open hashing operations and linked allocation oper-
ations may commence simultaneously. Of course, a special tag
must be present to indicate whether a given entry belongs to the
hash table, since to move such an entry would be fatal to the
structure of the hash table.

4.2 Chained hash tables in a storage pool environment

Clearly, the interfering doubly-linked entries mentioned in
section 4.1.1. may be part of any doubly-linked structure. There
is no reason why one of the doubly-linked structures cannot be
composed of entries in the chained hash table itself. If this is the
case, then the only entries in the hash table which are tagged
(and thus are not movable) are those actually stored at their
hash addresses, i.e. chain heads. A new entry colliding with an
existing entry stored at its hash address is linked up with it and
stored in the location to the right (or left) of the head of the
storage pool and removed from the pool. If a new entry
collides with an entry that is not at its hash address, or with an
entry not part of the hash table at all, then the existing entry is
moved by algorithm E to the location that is currently at the
right of the pool list head, and the new entry is inserted in its
place.

Linking up new entries in the hash table is accomplished by
the two algorithms given below. Of course, each hash table
entry is equipped with LLINK and RLINK fields.

To initialise the link fields of a newly created chain head
stored at location i, we use algorithm F.

Algorithm F
. LLINK() « i

RLINK() « i

Then later, to link up a new entry at location j to the right of

the chain head already stored in location i, use algorithm G.

Algorithm G
LLINK(j) « i

Volume 16 Number 2

2

RLINK(j) « RLINK()

LLINK(RLINK(i)) « j

RLINK(i) « j
Searching for a key can be accomplished by algorithm H,
which is very similar to algorithm C. Again, let NEWKEY be
the key being searched for.

Algorithm H Search to the right

1. i « HASH(NEWKEY)

2. If the entry at location i is not a chain head, NEWKEY is
not in the table.

3.j«i

4. if the key at location i = NEWKEY, we found it

5.if RLINK(i) = j, NEWKEY is not in the table

6. i « RLINK(i) go to step 4

To delete a hash table entry stored at location i, we must first
make certain that it is not at the head of a chain. If it is not, we
simply use algorithm D. If location i has been tagged as a
chain head, algorithm I must be used.

Algorithm I Delete a chain head

1.if RLINK() = i (if this is the only entry in the chain)g
remove the chain head tag from the entry at i, exit theg
a]gorlthm

2.j « i, i « RLINK(/) (i now points to the entry at the right of3
the chain head. This entry will become the new chain headD
at j, leaving i pointing to a vacated entry.)

3. INFO(j) « INFO(i) (move the entry) retain the chain hea
tag at j

4. RLINK(j) « RLINK()

5. LLINK(RLINK()) « j

Whether or not the entry was at the head of a chain, it hass
now been removed from the hash table and may be returned2
to the memory pool by algorithm J, which will insert it to thed
right of the pool list head. (Note that algorithms G and J areg
actually identical.)

0.} PaPEOJUMOQ]

No-oIWepEL//:s

09'd

Algorithm J Return vacated entry to memory pool
LLINK() « Hd
RLINK(i) < RLINK(Hd)
LLINK(RLINK(Hd)) « i
RLINK(Hd) « i

Notice that if we change LLINK to RLINK and RLINK to
LLINK in algorithms D through J, then the algorithms still;
work—except they are ‘left handed’. Thus, doubly linked hstﬁ
are virtually ‘ambidextrous’.

An example of a chained hash table competing for space in a3
storage pool is given in Figs. 8 and 9. Entries 3, 8, and 9 ar
already allocated to a nonrelated structure, with a separal&
list head at location X before the hashing commences (Fig. 8)w
If a chained hash table is interleaved over the storage poo]§
area, the result would be as shown in Fig. 9. Again, the hash
address is given by the last digit of the key. The keys read in
were (in this order) 106, 108, and 208. The algorithms used to
make the entries are given in Fig. 9 next to the appropriate key.

In Figs. 8 and 9 an indicator, ‘P, is used to differentiate
between memory pool entries and other linked entries. Entries
not tagged with a P have been removed from the memory pool
and are either part of the hash table or part of the structure
whose list head is at X. Of course, heads of chains in the hash
table are always differentiated from other entries, as they must
be; in this case, by the presence of a ‘C’.

09¢.€/9¢L/c/9L/Re/|

5. Further considerations

Before deciding whether to use a chained or open hash table,
one must consider the tradeoff due to the storage of links.
The advantage of a chained technique over an open technique

129

10 1

Hd

Hd 2 1 4 X

1 2 3 4 5

6 7 8 9 10

Fig. 8. A doubly linked structure. Hd is the list head of the memory pool. ‘P’ indicates an entry that is still in the pool and hence is available.
Entries 3, 8, 9 belong to a list whose head is at X and have been removed from the pool.

10 4 9 3
Hd X
106 (D,F)
108 (E,F)
208 (D,G)
P P c P c P
3 9 8 8 X 1 Hd 5 4 7 6 5 10 2 2 1 X 7 H
(208) (106) (108)
1 2 3 4 5 6 7 8 9 10

Fig. 9. Entries whose keys are 106, 108, and 208 have been entered into the structure. The algorithms used have been bracketed next to the
keys. Heads of chains within the hash table are-indicated by a ‘C’.

in terms of the average number of searches, 4, required to
retrieve an entry, is given by
g (1 — a1 _£’_>
&S—@ - 1= (ey
2
(Bays, 1973) where o is the load factor if the table were
‘open’, p is the number of bits devoted to links and g is the
total number of bits in the entry. By plotting 4 against a,

» it is seen that whenever the

for various values of

number of bits used for links is greater than 2/3 times the
number used for other purposes, the open hash is preferable.
A reasonable and effective ratio to justify the use of a
chained hash table over an open one would be when 8-9
bits (1-14 bytes on many computers) are used for linking, for
every 5-6 bytes of information. Of course, this is of importance
only when there is a choice between whether a single table
should be open or chained. Note that on a word structured
computer, we must consider word boundaries. If a 48-bit
word will contain only 36 bits of information, then the remain-
ing 12-bits may be used for linking purposes at no cost, i.e.

_”;’ = 0. If, on the other hand, a 36-bit word used all 36-bits
q —
for information, then to add a link field, we most likely have to

p

waste another word, and = 1. This is, of course, greater

P —
than the critical value of 2/3.

When interfering chained structures are present, the problem
becomes more coraplex. If a hash table is being created over a
linked area and there is a choice, the open hash should
probably be used. This is due to the extreme efficiency of the
open table that is attainable, as explained in 4.1. In most cases,
the average number of searches would approach 1, hence the
storage of link fields would simply waste space without increas-
ing efficiency.

130

Note furthermore that algorithms such as D and E involve
mainly the alteration of addresses, which on many computers
can be accomplished more efficiently than the movement of
stored information, particularly when the address fields involved
are significantly shorter than the information fields.

5.1 Some applications

The technique described in 3 lends itself well to use within
compilers or assemblers which reside in core and where
translation speed is of prime concern. Thus, symbol tables may
be built as open hash tables, and later utilised as chained hash
tables. Of course, the tradeoff between chained and open
methods must be kept in mind. In fact, for a given compilation,
one can easily determine whether or not to apply algorithm B.
To do this, we must take into account the time required by
algorithm B in addition to the advantage of chained versus
open methods. In terms of the number of searches per entry,
algorithm B requires roughly 1/a accesses, since it makes essen-
tially a linear sweep through the table. One must also realise
that during the subsequent phases of compilation, each symbol
can be referred to an average number of f times. (Unfortunately
B will vary from programmer to programmer and from lan-
guage to language. Nevertheless, an estimate may be made by
looking at past assemblies or compilations. A reasonable value
for IBM 360 assemblies appears to be about 2.) Thus, the

1 . .
overall advantage becomes f4 — — or, we decide to switch to
o

a chained table if

_ﬁlog(l —a)
o

_ﬂ—"‘_ﬁ(1+_”)—1>0
2 q-—7r o

we must also make sure that chaining does not cause the bound-

L)> 1,

aries of the table to be exceeded, hence, if o (1 + 7
iy 4

we cannot chain.

The Computer Journal

202 udy 61 U0 188n6 AQ $09ZLE/92 1/2/91/B1014e/|ufL00/W0d"dNO"oILLSPEDE//:SARY W) PAPEOUMOQ

p

Since we know and can estimate f, a decision may be
made that is based entirely on the value of «, the load factor of
the open table. Thus, each assembler or compiler may have
critical load factors, o; and «,, which may be computed and
stored as constants, and the decision to chain may be made
when o; < « < a,. (Note that it is possible to find that
o > o, in which case chaining would never be profitable.)
For most practical cases, we would consider utilising this
technique when we had free bits available for the link field
within each symbol table entry, that is,

P

9-p
Here we would chain whenever «y becomes greater than the
critical value shown in Fig. 10 («, is, of course, 1-0).

B ar
1-0 ‘90
1-5 -85
20 -80
2:5 77
30 ‘74
4-0 -70
Fig. 10
References

Bays, C. (1973). A Note on When to Chain Overflow Items within a Direct-access Table. CACM, Vol. 16, No. 1, p. 47.
BELL, J. R. and KamaN, C. H. (1970). The Linear Quotient Hash Code. CACM, Vol. 13, No. 11, pp. 675-677.
BLACKE, L. F., LAwWsoN, R. E., YUILLE, I. M. (1970). A Ring Processing Package for use with FORTRAN or a Similar High-Level Language.

The Computer Journal, Vol. 13, No. 1, pp. 40-47.

Dopp, G. G. (1969). Elements of Data Management Systems. Computing Surveys, Vol. 1, No. 2.

HiGaIns, L. D. and Smits, F. J. (1971). Disc Access Algorithms. The Computer Journal, Vol. 14, No. 3, pp. 249-253.

HorcGoop, F. R. A. (1969). Compiling Techniques. American Elsevier Publishing Company, New York.

JoHnsoN, L. R. (1961). An Indirect Chaining Method for Addressing on Secondary Keys. CACM, Vol. 5, No. 8, pp. 218-222.

KnNuTtH, D. E. (1968). The Art of Computer Programming (Volume 1 Fundamental Algorithms). Addison-Wesley, Reading, Massachusetts.
MAURER, W. D. (1968). An Improved Hash Code for Scatter Storage. CACM, Vol. 11, No. 1, pp. 35-36.

MclLroy, M. D. (1963). A Variant Method of File Searching. CACM, Vol. 6, No. 1, p. 101.

Moregsis, R. (1968). Scatter Storage Techniques. CACM, Vol. 11, No. 1, pp. 38-42.

Any applications which require the use of both open hash
tables and list structures can be optimally structured using the
techniques described in 4.1. Such applications include string
processors and multilist or ring-structured information retrieval
systems. Similar applications are suggested which employ the
techniques described in 4.2. In fact, the author is aware of an
efficient sorting algorithm that utilises both calculated address
tables and tree structures, which are embedded directly onto
each other in the sort area. In this technique the tree roots form
the head nodes in a chained hash table, and the other entries
in the trees are considered as further entries within the hash
table. Thus, all entries hashing to the same location are grouped
together in a sorted tree whose non-root entries may be moved
around to make room for newly created roots. Insertion is
somewhat more complicated than algorithm G, since it
involves searching down a tree, but otherwise, the techniques
given in 4.2 are employed. The utility of this sort is that for n
random entries, the sort time is linearly proportional to n, even
when the entries (and their links) completely fill storage.

Only a few applications have been mentioned here, but it is
obvious that useful and innovative processes can be developedg
by carefully utilising the techniques described within this paper.%

Book review

Introduction to Computers and Computer Programming, by Samuel
Bergman and Steven Bruckner, 1972; 433 pages. (Addison-Wesley,
£4-90)

This book was developed from the notes for a series of introductory
programming courses given at the University of Pennsylvania and
Temple University. It is unlikely that this book will be of great
interest to British universities as it is too long for an introductory
text and has insufficient depth for a computer science course.

The first eight chapters, about 230 pages, are devoted to teaching
the basic principles of machine code and assembly language by
using an imaginary computer FACET (FAcility for Computer
Education and Training). This is a small (1K) simulated decimal
machine with a single accumulator and index register and instruc-
tions for handling integers, characters and floating point numbers.
The instruction set is well constructed and a variety of basic con-
cepts are skilfully illustrated within the limited framework chosen.

A chapter entitled ‘A Look at Other Computers’ links the FACET
part of the book to the section dealing with FORTRAN. This deals
with the representation of numbers (particularly binary), multiple
register machines, paging and peripherals.

Volume 16 Number 2

[} 3

¥0922€/921/2/91/9101e/|ulwoo/woo"dnoolwspedey/:sdiy Wolj papeo

-
=
(¢
o
c
-
=
[}
=
w
g
Q
£
=}
=
(=N
»
-
©
=S
a
»
-
=
()
-

=3
(4]
s
o
=
-
=
>
Z
el
g
[¢]
=2
2
9]
=
@

more thorough than the standard approach because students...Z
can already program’. I found their ‘thorough’ approach unpalatable<
and lacking a sense of purpose. Instructions were introduced in quick 3
succession without any thought to orderly development and illus-o
trated by quoting comparable sequences of FACET assembly3
language instructions. >

The general presentation of the book is good, each chapterS
containing a review section emphasising the main points of the
chapter. A large number of problems are provided ranging from well §
disguised trivia to several problems which could (and did!) prove
difficult to an experienced programmer. Appendices cover the
FACET assembly language and control cards, FORTRAN syntax
and FORMAT examples and debugging, which draws together
ideas from various chapters.

The FACET simulator (written in FORTRAN) and an instruc-
tors’ manual are available from the authors. However, I was unable
to obtain these in time to include comments on them in this
review.

N
[¢e]

R. C. WELLAND (Reading)

131

