p

Since we know and can estimate f, a decision may be
made that is based entirely on the value of «, the load factor of
the open table. Thus, each assembler or compiler may have
critical load factors, o; and «,, which may be computed and
stored as constants, and the decision to chain may be made
when o; < « < a,. (Note that it is possible to find that
o > o, in which case chaining would never be profitable.)
For most practical cases, we would consider utilising this
technique when we had free bits available for the link field
within each symbol table entry, that is,

P

9-p
Here we would chain whenever «y becomes greater than the
critical value shown in Fig. 10 («, is, of course, 1-0).

B ar
1-0 ‘90
1-5 -85
20 -80
2:5 77
30 ‘74
4-0 -70
Fig. 10
References

Bays, C. (1973). A Note on When to Chain Overflow Items within a Direct-access Table. CACM, Vol. 16, No. 1, p. 47.
BELL, J. R. and KamaN, C. H. (1970). The Linear Quotient Hash Code. CACM, Vol. 13, No. 11, pp. 675-677.
BLACKE, L. F., LAwWsoN, R. E., YUILLE, I. M. (1970). A Ring Processing Package for use with FORTRAN or a Similar High-Level Language.

The Computer Journal, Vol. 13, No. 1, pp. 40-47.

Dopp, G. G. (1969). Elements of Data Management Systems. Computing Surveys, Vol. 1, No. 2.

HiGaIns, L. D. and Smits, F. J. (1971). Disc Access Algorithms. The Computer Journal, Vol. 14, No. 3, pp. 249-253.

HorcGoop, F. R. A. (1969). Compiling Techniques. American Elsevier Publishing Company, New York.

JoHnsoN, L. R. (1961). An Indirect Chaining Method for Addressing on Secondary Keys. CACM, Vol. 5, No. 8, pp. 218-222.

KnNuTtH, D. E. (1968). The Art of Computer Programming (Volume 1 Fundamental Algorithms). Addison-Wesley, Reading, Massachusetts.
MAURER, W. D. (1968). An Improved Hash Code for Scatter Storage. CACM, Vol. 11, No. 1, pp. 35-36.

MclLroy, M. D. (1963). A Variant Method of File Searching. CACM, Vol. 6, No. 1, p. 101.

Moregsis, R. (1968). Scatter Storage Techniques. CACM, Vol. 11, No. 1, pp. 38-42.

Any applications which require the use of both open hash
tables and list structures can be optimally structured using the
techniques described in 4.1. Such applications include string
processors and multilist or ring-structured information retrieval
systems. Similar applications are suggested which employ the
techniques described in 4.2. In fact, the author is aware of an
efficient sorting algorithm that utilises both calculated address
tables and tree structures, which are embedded directly onto
each other in the sort area. In this technique the tree roots form
the head nodes in a chained hash table, and the other entries
in the trees are considered as further entries within the hash
table. Thus, all entries hashing to the same location are grouped
together in a sorted tree whose non-root entries may be moved
around to make room for newly created roots. Insertion is
somewhat more complicated than algorithm G, since it
involves searching down a tree, but otherwise, the techniques
given in 4.2 are employed. The utility of this sort is that for n
random entries, the sort time is linearly proportional to n, even
when the entries (and their links) completely fill storage.

Only a few applications have been mentioned here, but it is
obvious that useful and innovative processes can be developedg
by carefully utilising the techniques described within this paper.%

Book review

Introduction to Computers and Computer Programming, by Samuel
Bergman and Steven Bruckner, 1972; 433 pages. (Addison-Wesley,
£4-90)

This book was developed from the notes for a series of introductory
programming courses given at the University of Pennsylvania and
Temple University. It is unlikely that this book will be of great
interest to British universities as it is too long for an introductory
text and has insufficient depth for a computer science course.

The first eight chapters, about 230 pages, are devoted to teaching
the basic principles of machine code and assembly language by
using an imaginary computer FACET (FAcility for Computer
Education and Training). This is a small (1K) simulated decimal
machine with a single accumulator and index register and instruc-
tions for handling integers, characters and floating point numbers.
The instruction set is well constructed and a variety of basic con-
cepts are skilfully illustrated within the limited framework chosen.

A chapter entitled ‘A Look at Other Computers’ links the FACET
part of the book to the section dealing with FORTRAN. This deals
with the representation of numbers (particularly binary), multiple
register machines, paging and peripherals.

Volume 16 Number 2

[} 3

GLOZLE/LEL/Z/9L/a101ME/|UlWO0/W0D" dNO"OjWapEOE//:SANY WO} PapEo

-
=
(¢
o
c
-
=
[}
=
w
g
Q
£
=}
=
(=N
»
-
©
=S
a
»
-
=
()
-

=3
(4]
s
o
=
-
=
>
Z
el
g
[¢]
=2
2
9]
=
@

more thorough than the standard approach because students...Z
can already program’. I found their ‘thorough’ approach unpalatable<
and lacking a sense of purpose. Instructions were introduced in quick 3
succession without any thought to orderly development and illus-o
trated by quoting comparable sequences of FACET assembly3
language instructions. >

The general presentation of the book is good, each chapterS
containing a review section emphasising the main points of the
chapter. A large number of problems are provided ranging from well §
disguised trivia to several problems which could (and did!) prove
difficult to an experienced programmer. Appendices cover the
FACET assembly language and control cards, FORTRAN syntax
and FORMAT examples and debugging, which draws together
ideas from various chapters.

The FACET simulator (written in FORTRAN) and an instruc-
tors’ manual are available from the authors. However, I was unable
to obtain these in time to include comments on them in this
review.

N
[¢e]

R. C. WELLAND (Reading)

131





