An evolutionary approach to the concept of randomness
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The Von Mises and Kolmogorov definitions of randomness are discussed in terms of the complexity
of binary sequences. An evolutionary approach is then described and some results presented.
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Problems of feature extraction in pattern recognition can
sometimes be related to the problem of defining a measure of
structure or lack of structure in a body of data (Jermann, 1970).
Although it is intuitively clear what is meant by ‘lack of
structure’ or randomness, it is difficult to set down a precise
definition. In this paper two already existing approaches to this
problem (1, 2) are described and finally the complexity of a
binary sequence is discussed using the concept of an evolution-
ary procedure.

1. Von Mises’s Definition (Von Mises, 1957)
‘An infinite binary sequence possesses the property of random-
ness if the relative frequency of 1’s (to 0’s) tends to a certain

limiting value which remains unchanged by the omission of a.

certain number of the elements and the construction of a new
sequence from those which are left. The formula for omission
must leave an infinite number of retained elements and it must
not use the attributes of the selected elements.’

This definition of randomness is very close to what is intuitiv-
ely meant by the word; if it is at all possible to detect structure
in a binary sequence then it should also be possible to construct
a selection procedure which changes the relative frequencies of
the zeros and ones. In other words, if a sequence can be seen
to be non-random, then it is certainly non-random according
to the definition.

Although the general intent of Von Mises’s definition con-
forms with what is meant by randomness, the lack of a precise
formulation has led to severe criticism (Church, 1940; Wald,
1937; Martin-Lof, 1966; Loveland, 1966).

2. Kolmogorov definition
Kolmogorov (1965) and Chaitin (1966, 1970) have indepen-
dently suggested that computing machines be applied to the
problem of defining what is meant by a random or patternless
finite sequence .

The length n of a binary string @ = a, a,...a, will be
denoted by /(a).

Let 4 be an algorithm transforming a pair of binary strings
D, X into a binary string a = A(p, x).

The conditional complexity of a for given x with respect to A

iS deﬁned as
K (alx) = { min (p)|A(p, x) = a},
4 | + oo if there does not exist p such that A(p, x)=a

p can be thought of as a program which when fed into a
machine 4 causes it to compute a by means of the given data x
(Fig. 1.).

Inserting the empty string for x in K, (a|x) gives K (a), the
complexity of a with respect to 4.

The random or patternless sequences are those having the
greatest complexity, or alternatively, those which necessarily
require the longest programs when produced by a computing
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Fig. 1. A computing machine

machine. Those sequences that can be obtained by putting into
a computer a small program are those that possess a pattern
and follow a law. It can be shown that ‘most’ finite binary
sequences of length » require minimal programs of about length
n to generate them. These sequences are considered to be the
random sequences (Chaitin, 1970; Solomonoff, 1964).

The Kolmogorov definition provides a conceptually satis-
factory solution to the problem. Patterned finite sequences are
just those sequences which follow a simple law; unstructured
finite sequences follow a complex law, which could possibly
incorporate the sequence itself in a ‘table-look up’ scheme.

Kolmogorov has pointed out a disadvantage in his concept of
randomness; it does not allow for the “difficulty’ of preparing
a program which generates the sequence a. Indeed, the theory
gives no indication of how the minimal program p is obtained.

Effective definitions

The definitions discussed above provide concepts which con-
form with what is intuitively meant by the word ‘randomness’.
However, both definitions are not effectively computable} in
that they appeal to an external human informer; in the first
instance Von Mises requires ‘formulae for omission’, and in the
second instance, Kolmogorov requires ‘minimal length
programs’.

Effective definitions of an arbitrarily long random sequence
are not possible because it has been shown that there will
always exist a computable (and therefore non-random) sequence
which is labelled as random by the definition (Levin, Minsky
and Silver, 1962).

An evolutionary estimate of relative complexity

Structure is detected in a sequence when it becomes possible to
predict terms in the sequence according to some rule. It might
seem safe to say that, in general, a sequence is more complex
than another if it is more difficult to think up a prediction rule.
Although this has the right spirit, it is far too vague to be
useful in a rigorous definition.

*The Plessey Company Limited, Plessey Radar Research Centre, West Leigh, Havant, Hampshire.
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For a discussion on effective computability see Minsky (1967), Rogers (1967).
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Nevertheless, suppose an evolutionary type of process was
conceived which had as its goal the correct prediction of binary
sequences. It would be possible to get an idea of the complexity
of the current binary sequence by monitoring the error rate.
It would not be acceptable to use these ideas in an absolute
definition of randomness because an evolutionary process itself
requires a source of random changes. However, it is possible
to give an estimate of the complexity of one sequence relative
to another.

These concepts can now be expressed more formally

Definition

Suppose s,,s,,..., 5y is a finite binary sequence then a
1 2 N . .

predictive evolutionary procedure ® is a sequence of functions

1, b2 .. ., ¢y (M < N) which generates a finite binary
prediction sequence si, 3, . . ., Sy Where
S,’.=¢,—{S1,S2,.,_, r—l} r>1,i> 1

and s§; = ¢,

with ¢, = 1, say.
If 5] # s, then ¢, is produced from ¢; by a random change
with the constraint that

S = Pip1{51, 82 .. 851}

Definition
The finite binary sequence ay, a,, . . ., ay is more complex (in
terms of this definition) with respect to ¢ than the finite binary
sequence by, b,, ..., by if the following condition can be
satisfied :

Let a', a}, . .., ay and b}, b, . . ., b}, be prediction sequences
generated by a predictive evolutionary procedure

? = {¢ls ¢2’ v ey ¢M}
where

a:‘ = ¢i{a17 Ay o ey ar—l}

bl,' = ¢j{b1’ b2, v v ey br—l}

Then there exists a positive integer R < N such that
gr,d,ay,a,,...,ay) < g(r,d, by, by, ..., by for all
R <r< N where g(r,?,s,,s,,...,5y), the predictability
score, is the number of correct predictions minus the number
of incorrect predictions in the first r terms of the prediction
sequence 57, 85, . . ., Sy.*

It must be emphasised that the value of N is crucial to this
definition. N is the length of the binary sequence under investi-
gation and must be sufficiently large to see a stable trend in
glr, d,5,,5,,...,8y) as r > N. N should certainly be much
greater than the length of any periodicity that is known to be
present in the binary sequences. In general it is felt that values
of N should be determined empirically, some experimental
results are given in the next section which give some indication
of the relationship between N and g(N, @, s, s, . . ., Sy).

The definition enables finite binary sequences to be ordered
in terms of their predictability scores. This ordering is by no
means an absolute indication of the randomness of a sequence
because other attempts at the same ordering would not neces-
sarily give identical results.

We observe that @ is not an effective procedure in the accepted
sense (Minsky, 1967; Rogers, 1967). This is because the process
employs random changes and the computation is not there-
fore carried forward deterministically; there is no guarantee
that an evolutionary experiment would give the same results
if it was carried out at two different timest. This means that it
would not be possible to design a computable sequence which
would be guaranteed to baffle an estimate of complexity based
on an evolutionary procedure.

The definition of ‘more complex’ is not mathematically

satisfactory to a formalist because it relies heavily on the way
& is specified. However, it does provide a practical technique
for the investigation of redundancy in binary sequences. In the
next section a particular @ is defined and it is shown how the
predictability scores relate to certain simple sequences.

Experimental results
The particular @ chosen for the experiment was a 32-state
Moore machine which was continuously evolved to predict
binary input sequences. Thirty-two states were chosen only for
programming convenience. Sixteen of the states were associ-
ated with the output of a 1 and the remaining sixteen with 0.
Initially the interconnections between states were random and
an arbitrary start state was chosen. This meant that an arbit-
rary binary output was given as the first prediction. If the next
binary input agreed with this output, no change was made to
the machine. On the other hand, if the input disagreed with the
prediction, then the last state was changed (randomly) to one
which would have given a correct output had the process been
repeated.

start

input J1]1]o]---
output[1]0]0]---
Part of finite-state machine model

Fig. 2.
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For example, consider the input 11 0 ... to the Moore maching
a part of which is illustrated by a state diagram in Fig. 2. In thi%
diagram each machine state is represented by a circle and thé3
output associated with that state is given within the circle. The
input associated with a transition from one state to another is
given alongside a directed line (edge) joining those two states.
The first output 1 is a correct prediction and control is passed
to state B which gives a 0 output. The second input is a 1 and
this means that the output by state B was in fact wrong. The
edge connecting states A and B is then randomly altered so that
the edge now connects 4 to some state C which would have
given the correct output of a 1. The current input 1 is then
applied to C and the next prediction 0 is output by state D.

In the experiment this process was continued and small blocks
of the input sequence which occurred frequently were found to
correspond to one or more connected groups of states in the
evolved machine. If the sequence pattern was very common

*This measure of prediction ability was used by Levin, Minsky and Silver (1962).
tOf course, if evolution is simulated on a computer and a pseudo-random number generator is used, then results can be repeated.
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Table 1
PREDICTABILITY
SCORES
SEQUENCE 100 1000 10000
66 842 8680
1010101010101010101010101010101 68 840 8678
66 840 8662
56 706 7306
000000000000000111111111111111 56 702 7302
66 702 7306
68 690 - 6998
1001001001001001001001001001001 48 676 7006
50 654 6770
56 548 6372
1011010110101101011010110101101 42 542 6316
52 570 5934
44 472 5712
10011001100110011001100110011 50 538 5452
42 558 5694
48 328 3952
1011001011001011001011001011001 -2 396 3786
34 322 3772
10 274 3176
101101110111101111101111110 20 302 3284
12 388 3294
46 206 2402
101100011011000110110001101100011 16 190 2570
18 326 2616
4 48 1148
1001110100100111010010011101001 4 100 1052
18 134 1080
12 32 768
010011000111000011110000011111 20 60 566
14 64 566
2 —104 —626
1110100010010101100001110011011 —4 — 88 —618
2 — 84 -—564

there were several groups of states describing the structure of
the pattern. In effect this meant that the sequences which
occurred frequently were easily predicted by &. In this simu-
lation the predictability score was taken over 100, 1,000, and
10,000 inputs.

Discussion of results

Several binary sequences were presented to the system and are
illustrated in Table 1. Each of these sequences was cycled as
many times as were necessary to supply 100, 1,000 and 10,000
inputs to the machine. Each predictability score was obtained
from a different random start machine and three sets of such
scores were obtained for each sequence.

References

It was seen that in most cases the percentage variation in
scores decreased as the length of input sequence was increased.

Table 1 is arranged with the most predictable sequences at the
top. It is felt that this ordering is to a certain extent consistent
with subjective estimates of the relative complexities of the
sequences. "

One sequence gave a significantly negative predictability. This
might be considered surprising in view of the fact that a purely
random sequence would be expected to have a zero predict-
ability score. However, this sequence is a form of pseudo-noise
sequence (Golomb, 1967) which has minimal correlation with
shifted versions of itself. This means that this type of sequence
is the ‘theoretical worst’ in terms of predictions which are
based on short patterns discovered earlier in the process. In fact
the pseudo-noise sequence displayed a distinctive structure by
its inability to be predicted by this evolutionary procedure. It is
also significant to point out that pseudo-noise binary sequences
satisfy the following three intuitively acceptable criteria for
randomness

(a) A balance of 0 and 1 terms
(b) Two runs of length n for each run of length n + 1
(¢) A two-level auto-correlation function.
Simple sequences composed of cycles which were short

N . . . .
( < 5) compared with the size of the machine, sometimes gave

quite variable scores. This was because on occasion the machine :

was able to lock precisely into the correct cycle and thereby
achieve a considerably higher score than the average. The
sequences in Table 1 were chosen to be of length ~ 30 although
their internal structure was often quite simple.

Conclusions

This paper has highlighted some of the difficulties to be
encountered when accepted definitions of randomness are
applied to real binary sequence. It was observed that these
definitions were not constructible in the practical sense and
therefore conveyed little or no information about particular
sequences.

A practical estimate of the relative complexity of binary
sequences was then defined. This definition is based on the
concept of an evolutionary procedure which is capable of
computer implementation. Several sequences were processed
using this scheme and their predictability scores obtained. These
scores provided a plausible estimate of the relative complexity
of the sequences. Further work is necessary on the effect of the
machine size on the predictability scores. The very simple &
described in this paper possesses only a few states and is there-
fore limited in its ability to distinguish structured sequences.

The non-deterministic search technique set out in this paper
has already been applied to related areas in the design process.
This includes the reduction of finite-state machines (Stentiford
and Lewin, 1971) and the design of features for Optical
Character Recognition (Stentiford, 1972). It is felt that
evolutionary searches will provide useful tools in many areas
of information processing where conventional methods have
been unsuccessful.
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