A single data-display structure: A new view on
Interactive computer graphics in CAD

N. Marovac

Department of Electrical Engineering, Imperial College of Science and Technology,

Exhibition Road, London, SW7 2BT

The data-display structure (DDS) is a single structure developed for a suite of programs for general
network analysis using computer interactive graphics. Its purpose is to describe a network built on
the screen in full pictorial, constitutive and topological details, and thus to enable the display of the
network and the building of various network matrices required by different network analysis

programs.

Because of the specific topology of networks, there is little extra information needed for network
analysis which is not already present for the purpose of graphical (pictorial) description of the

network, i.e. for its display.

This fact is used as the basic idea in the development of this structure.

(Received June 1971)

1. Introduction

This paper reviews the basic concepts of display files and data
and display structures with particular reference to the design of
an interactive graphical system for general network design and
analysis. A description is given of the considerations which led
to the development of a new single display-data structure for
this general application.

The new structure was implemented in a program for electrical
network analysis on a configuration consisting of a DEC
PDP-9 computer and a DEC 340 display. At present it is being
re-implemented in a software system for electrical network
analysis on a configuration comprising a DEC PDP-15
computer and a VT 15 display.

The paper is divided into five sections. Section 2 sets out basic
concepts and gives definitions and explanations of terms used
in the further text. Illustrations are given in Section 3 of ways
in which basic concepts of display files and data and display
structures have been applied by previous workers, with an
analysis of each application. In Section 4 a general specification
is derived for a version of an efficient and optimal data and
display structure to be used in a software system for general net-
work analysis by interactive computer graphics.

The single data-display structure designed and implemented
on the basis of this specification is presented in Section 5.

2. Basic concepts and definitions

Programs for computer aided design using interactive computer
graphics apply a number of concepts closely related to these
types of programs.

These concepts will first be described in the sense in which they
will be referred to in subsequent sections. Terms which are
defined in the text are in italics when mentioned for the first
time.

The term picture is used to describe a graphical representation
of a network, or a system of networks, in short a system, the
description of which has been built inside the computer, up to
that particular moment. This description is to be used either to
analyse the system or to apply to it any of the used design
techniques.

The part of the picture which is currently displayed on the
screen (windowed) will be called a displayed picture. As an
example, let us consider a large network, the description of
which has been generated inside the computer by drawing it on
the screen. If the network is reasonably large, only a part of it
can be currently displayed on the screen (the displayed picture)
but the description of the complete up-to-date network is kept
in the computer memory, which includes the information neces-
sary to obtain a pictorial (graphical) representation of the

152

network as a whole (the picture).

An object represents a physical or an abstract fundamental
part of a system, as for example a line, an element or anodein a
network.

A display file is a set of all instructions for a display (display
instructions) which enable it to display the picture or a part of it
at one time. These instructions are interpreted and displayed
in the order in which they occur in the display file, except for
jumps to various display subroutines. These subroutines are
used to display ‘instances’ of various fundamental generic types
of objects. (An instance of a display subroutine is a separate
appearance of the corresponding object somewhere in the
displayed picture. An example of a display subroutine would be
a symbol for an element in an electrical network, such as a
resistor.)

After exiting from any display subroutine the display con-
tinues from the place at which the last jump occurred.

A data structure (or an intermediate file) is a file which con-
tains the complete description of a network or a system of
networks with regard to all relevant aspects, i.e. display,
analysis, etc. This description must include information about
graphical properties (position on the screen, visibility, sen-
sitivity to a light pen hit and so on) and semantic properties of
all objects in the system as well as all the topological properties
of the system.

The data structure is used to generate

(a) The desired displayed picture. For this purpose the data
structure is ‘down-compiled’, i.e. it is analysed and all
information concerning the pictorial representation of the
part of the picture to be displayed is extracted and compiled
into the display instructions, to produce the display file, and

(b) All the matrices which are necessary for analysis or design
using the information about the semantic and topological
properties of the network and the parts of the network.

In some program systems a temporary display file is used. This
is a short file serving as an extension of the display file. In it, a
limited number of display instructions are created, while a
limited edition of the displayed picture is being shown. After
the current amendment of the picture has been completed (i.e.
a command is given to the effect that the current amendment
has been completed) the temporary display file is ‘up-compiled’.
This means that the display instructions in the temporary
display file, created during the last amendment of the displayed
picture, are interpreted. The resulting information about the
change in the displayed picture is used to up-date the data
structure to include the recent changes in the picture.

After this the data structure is down-compiled to produce the

The Computer Journal

eojumoqg

o
Q.
(0]

0ol) p

3
=3
=
S
@

20z Idy 61 uo 3sanb Aq £2/2/€/2S51/2/91/9191E/|ulwod/wod dno-ojwapeoe//

new display file and the temporary display file is ready for the
next amendment of the displayed picture.

A display structure is a segmented form of a display file, in
which the display instructions necessary to display any object
participating in the displayed picture are collected together in
separate blocks. These blocks are linked together by display
pointers (display jump instructions) to form either a hierarchical
tree structure or a ring structure, or a combination of both.
The instructions in the structure are no longer interpreted and
displayed in the order in which they are stored in the computer
memory, but in a sequence governed by the display pointers.

The display structure offers greater flexibility during the
editing operations. When adding or deleting new objects the
entire structure need not be re-created as in the case of the dis-
play file. It is only a question of adding or deleting blocks
corresponding to these objects and amending a few display
pointers. Amendments of the displayed picture can be of any
size, and are performed directly on the structure itself, so that a
temporary file is not required.

The display structure requires slightly more space for itself
than the display file (because of the presence of display pointers
which link the structure blocks as a whole). On the other hand,
there is an overall saving of space since there is no need to keep
the pictorial information in the data structure. The small
additional space needed for the display structure is more than
balanced by the saving in space for the data structure.

3. Some examples of the use of the display file, the data structure
and the display structure, in previous work
The process of up-compiling the temporary display file to
amend the data structure and the down-compilation of the data
. structure to produce the display file is used in the program
PIXIE built by N. E. Wiseman and his colleagues (1969). This
up- and down-compilation is performed after every change of
the displayed picture which includes deleting or moving one or
a set of objects and adding a new portion to the displayed
picture (which can consist of a number of objects).

This normally takes a few seconds, during which time the
permanent display file is not displayed. This leads to a flick of
the displayed picture at every up- and down-compilation. As
both the display file and the data structure store the graphical
properties of the objects in the displayed picture, this inform-
ation is duplicated thus reducing the allowable size of the data
structure because of the limited memory space. This implies a
limitation in size of the displayed picture.

The generated permanent display file is compact and its copy
can be easily reproduced. The necessity to have a temporary
display file, which is relatively small, limits the amount of
amendments of the picture at each step.

The data structure and the display file are linked by various
non-display pointers. This assists in identification of the object,
currently displayed, when a light pen hit or any other graphical
type interrupt occurs from the displayed picture.

In another version of the display file, used in the SLAP
program written by A. J. Drew, a short file contains display-
able code for only one object at a time. To display a whole
picture, the data structure is analysed in cycles, and after one
object has been displayed the display code for the next object is
generated in the display file from its description in the data
structure. In the time which elapses after one object is displayed
and the displayable code for the next object to be displayed is
generated, the display is off; this introduces a short dark inter-
val which increases the flicker of the picture.

To keep the display going, the computer re-generates, in
cycles, the display instructions for each object participating in
the displayed picture. This process engages the computer
processor. Thus the processor is free to do other useful work
only in the intervals when the displayable code for each object
has been completed and is being displayed. As display speed

Volume 16 Number 2

increases, the computer processor is more heavily utilised in
re-generating display instructions and available time for other
tasks is diminished.

To store a copy of the picture, a copy of the data structure is
stored and can be reproduced easily. Sometimes in this last
version (Drew) there are two short display files and while one
object is being displayed, the displayable code for the next is
being generated in the second display file. When the display
reaches the end of the displayable code for the first object and
the display code for the second object has been completed, the
display switches to the second file and the display code for the
following object is being generated into the first display file.

The graphic program SELMA built by J. H. Jackson (1969)
for the queueing network analysis program QAS developed by
V. L. Wallace and K. Irani (1970), uses a display structure in a
PDP-9 computer for the display and building of queueing net-
works. The data structure which stores, for analysis, the seman-
tic and topological description of the networks built up on the
screen is in an IBM 360/67, linked via a dataphone line with the
PDP-9. The link to the 360/67 is in a conversational mode. By
the user’s actions the display structure in the PDP-9 and the Y
data structure in the IBM 360/67 are amended together, so that £
up-to- date descriptions of the networks on the screen are kept §
in both machines.

In SELMA there are no one-to-one linkages to create corres- =
pondence links between blocks in two structures belonging to 3
the same object; the user’s actions are accordingly restricted. =
In the case of two or more networks on the screen a newly-builtz
object can only be inserted in the network which was created &
last. The updated or newly-created connection line can only be & =3
inserted into the last connection block, and the up-dated or3
created parameter is assigned to the last created element. The o
user is thus forced to a specific sequence of actions whilec
building the picture on the screen; this is a severe restriction. ©

An advantage in SELMA, resulting from the absence of data & g
structure in the PDP-9, is that the memory portion dedicated to 3
the display structure is bigger, thus allowing bigger networks to
be drawn on the screen.

An interesting example of the use of data and display struc-
tures is in the multi-purpose graphics system built by C.
Christensen, E. N. Pinson and colleagues at Bell Telephone
Laboratories (1967). This system consists of a central computer, &
a set of devices for rapid hard-copy generation called STARE, < N
a cathode ray tube output display called GLANCE and a set\‘
of interactive computer graphics terminals called GRAPHIC-2. “
Each of the GRAPHIC-2 terminals comprises a DEC PDP—9<
computer and a special version of DEC-340 display. Them
central computer may be one of several available in the different -
BTL locations. The main structure called the Graphics Data,
Structure is in the central computer. As the purpose of thlS>
structure is to serve all three types of graphics devices, it isS
device independent. It comprises all information required forM
any of the three types of graphics devices and the data necessary§
for various analysis or design programs. It is structured in
blocks, which are organised in a tree-hierarchical type of
organisation. To obtain a copy of the structure for one of the
three types of graphical devices the main structure is compiled
to suit the corresponding device. The compilation is performed
in the central computer and the resulting device-dependent
structure is sent to the device. There is one translator for each
type of device.

The structure in the PDP-9 is a display structure. It contains
only display information and its organisation is identical to the
structure in the central computer, with the difference that due to
the small memory of the PDP-9 (8K), only blocks required for
the current displayed picture are in the memory. To keep track
of the blocks present in the display structure and to establish
the correspondence between the blocks in the two structures,
there is a block reference table in the PDP-9 memory. The

0.} pepeo

0 dn

LU

Z/9L/9I3!U9/IU

153

entries in this table link identifiers of the blocks in the central
data structure to the addresses of the corresponding blocks in
the display structure. Because of the slow transfer speed of the
line between the central computer and the PDP-9 (2000 baud
voice-grade), editing of the display structure, and so the dis-
played picture, is done in real-time by the PDP-9, and the
information concerning the amendments is collected and sent in
bulk, periodically, to the central computer. This information
received by the central machine is then used to up-date the
central data structure.

It is not possible to analyse this version of the data and display
structures in the way done previously for other systems, because
in the BTL system the central data structure is not dedicated to
serve a single type graphic device but a group of different types
of graphic devices. This obviously has a major effect on the
organisation and the contents of the structure.

4. Requirements for an efficient data and display structure for
general network analysis

Consideration of previous work and analysis of the require-
ments for an efficient combination of (@) a data structure and
(b) a display file, or structure, led to the following conclusions

1. Picture display should be performed independently of a
computer processor. This means that the display file or
structure should be a self-contained entity which does not
require cyclical generation in the computer processor.

2. Editing, i.e. adding new objects to or deleting objects from
the picture, should be carried out directly on the display file
or structure and in unlimited portions at any one time.

3. The nature of the display file or structure, and the relation-
ship between it and the data structure, should be such as to
ensure quick identification of any picture object which is the
subject of a light pen hit flag or any other graphical type
interrupt. The relationship should also enable quick location
of a block in the data structure corresponding to the block in
the display file or structure (and vice versa).

4. Duplication of the information in the display file or structure
and that in the data structure should be minimal.

5. Both the display file or structure, and the data structure,
should enable the storing and restoring of the network they
represent.

The first point rules out the short type of display file consisting
of the display data for only one object at a time, as described in
paragraph 3.2.

The second point rules out the permanent and temporary
display file and the up- and down-compilation, described in
paragraph 3.1.

Considering points 1 and 2 together, the author came to the
conclusion that any type of display file would be inadequate for
the application; the design was, therefore, based on a display
structure, as described in the next section.

5. The data-display structure

The design adopted, as a result of the foregoing considerations,
is a single data and display structure, the data-display structure.
It is a combined structure which serves both for the display and
building of networks on the screen and also to store semantic
and topological descriptions of networks used for analysis.

Because of the specific nature and topology of networks, a
display structure with little additional information about non-
graphical properties of objects in networks can satisfactorily
describe networks for interactive graphics purposes, as well as
for network analysis.

Let us look closer into this statement. Consider a network
drawn on a sheet of paper or displayed on the screen. The
diagram comprises a set of symbols representing network
elements, a set of character strings, and a set of symbols repre-

154

senting diverse relationships between various network parts.

The set of symbols of network elements provides qualitative
and quantitative information about elements incorporated in
the network. The set of character strings depicts values of net-
work elements and labels (names) for various network parts
which have to be separately identified (labels for nodes for
example). The set of symbols representing different relation-
ships between network parts gives graphical indications as to
which parts of the network are relationally linked. These are,
for example, connectivity relations, where the fact that two
element terminals are connected is represented by a connec-
tivity symbol (aline) or a constitutive relation between a voltage-
controlled current source and a voltage across an element. The
latter can be represented by a dotted line from the control
element to the controlled current source, and so on.

The diagram of a network on a sheet of paper or on a screen
possessing all the aforementioned information contains all that
is needed for a theoretical design or analysis of the network.
To display a network diagram on the screen, depicting this
information, the information must be stored inside a computer
in displayable form. Therefore, we can state that all the informa-
tion needed for the display of a network, as well as for its
design and analysis is included in the display code. The task
now is to organise this display code into a form which

(a) Satisfies the specifications listed in Section 4, and

(b) Is suitable for quick and efficient parsing, to extract parts of
the information for diverse purposes, e.g. for design and/or
analysis, for identification of objects involved in graphical
interrupts, and so on.

The display data in the data-display structure is organised to
form a display structure. Every object in a network displayed
on the screen, where an object can be physical (an element or a
connection) or abstract (a node), and also the network itself,
possesses a corresponding block in the structure. These blocks
are called object blocks, and they store all the data which is
needed to display their associated objects.

Besides the display code, in the data-display structure there
are included two types of non-display entities; these are
identifiers and relational-linkage pointers. An identifier is
associated with every block in the structure. It stores the
semantic value of the object corresponding to the block and is
the first word in the block. Its purpose is to describe the block,
so to speed up the identification of blocks, both when interrupts
are handled in the process of building a network on the screen
and in processing the data-display structure to extract infor-
mation about the network builtup on the screen, for design or
analysis. As the identifier is a non-displayable entity, the dis-
play entry to every block is immediately after the identifier.

The second type of non-displayable entity in the data-display
structure is the relational-linkage pointer. These pointers link
blocks whose corresponding objects are participating in diverse
types of relationship. Although these relationships are repre-
sented pictorially and so the description of their existence,
nature and extent is included in the display data, the inform-
ation regarding their topology (i.e. stating which objects are
participating in which relationships) is comprised in the display
data only indirectly. For example, this problem would arise if
there is a requirement to determine which element is connected
to a specified element terminal, given only the information
about absolute co-ordinates of the element terminals and the
ends of lines. (This type of information is actually all that is
available to a computer from the display data representing a
network on the screen, as the computer cannot ‘visually’ inspect
a diagram on the screen.) To solve this problem one uses the
criteria of coincidence of points, i.e. one would have to scan all
lines and elements to find one whose co-ordinates of an end-
point or a terminal respectively coincide (or do so closely
enough) with the co-ordinates of the terminal in question. If the

The Computer Journal

20z udy 61 U0 188n6 AQ £2/2/€/251/2/91/31014e/|ufoo/Wod"dno-oiwapeoe)/:SdRy WOy papeojumoq

found object is an element, then the search is finished, but if it
is a line the search is restarted from the other end of the found
line, and so on.

To speed up the process of defining relationships between
objects in a network and to have always available a complete
indication of the topology and the nature of the relations
present in the network on the screen, the relational-linkage
.pointers were introduced*. These pointers exist, and are
attached to a block, only when the corresponding object
participates in a relationship. There are as many pointers
attached to a block as there are relationships in which the
corresponding object participates. These pointers precede the
identifier of the block.

Fig. 1(a) shows an element in an electrical network. It
represents a voltage-controlled current source. This object
participates in three relationships; two of connectivity and one
of controllability. The corresponding block is shown on the
Fig. 1(b). A part of an electric network comprising the element
and the corresponding part of the data-display structure are
shown on Figs. 2(a) and 2(b) respectively.

With T1, T2 and cntrl. in Figs. 1(b) and 2(b) are denoted
relational-linkage pointers, corresponding to two connectivity
relationships (via terminals T1 and T2) and one controllability
relationship respectively, in which the corresponding element
participates. ID denotes the identifier of the block. The dashed
line in Fig. 2(a) depicts the controllability relationship between
the voltage controlled current source and the voltage across the
controlling element El 1. The dashed lines in Fig. 2(b) show the
flow of relational-linkage pointers.

The data-display structure described above possesses all the
advantages over a display file, derived in Section 4 from analy-
sis of the requirements in general network design. Furthermore,
the data-display structure, as a single, compact, and self-
contained structure, which contains complete geometrical,
topological and constitutive description of a network, offers
greater simplicity and flexibility, in the process of building a
network on the screen and in building a model of the network
in the computer, over a tandem consisting of a display structure
and a data structure.

It was mentioned before that in the case of a tandem of
structures the sequence of users actions in the process of build-
ing a network on the screen by drawing it is restricted, or else
it is necessary to include in the software system a set of complex
software devices. The purpose of these software devices is to
establish correspondence between blocks in the two structures
belonging to the same objects and to enable extraction of
relevant information about an object, when this information is
kept in one structure, while a block, corresponding to the object
and being processed, belongs to the other structure.

It is also the author’s conclusion that a single data-display
structure, as described, is more natural and more closely
related to the system it represents (a network) than is a tandem
of a display file/structure and a data structure.

6. A graphics satellite computer/main backing computer and
structures '

After the completion of a network on the screen, parsing of the
data-display structure provides the information necessary to
build various network matrices. To perform the analysis, these
matrices can either be sent by a link to a larger computer or
used directly in the display computer (the computer associated
with the display, which is a satellite to a large main computer).
The larger computer is required if analysis involves extensive

T

-,

contrl.
T2

N

ID

Display
data

Fig. 1(a) Fig. 1(b)

EL1 _L
25p EL3

Fig. 2(a) 9
2
=1
8

Nd 3 8
- [e ——_—————— -,

re==> 0 |le-—eme- - _ I

i Display | =

1 data 1 é

1 1 7]

1 i 12

L ! o

=== 'i I EL3 %

EL1 1 EL2 ! cntrl. o 15
I H 1 15

T2 : T2 - T2 S
T 11 I s

> 10) 1D ! 8

: Display Display Display : g

i data data data 32

I =

| g

T G ——— ———— — ———— — —— —— - — S ——— — ——— - --l i
e

Fig. 2(b) >
N
2

and complex arithmetic operations, which would take too muchg

time to carry out on the satellite computer. N

It is the author’s strong belief that in a system consisting of a3
small computer with interactive graphics linked to a largeZ
main computer, it is unnecessary to have a fully conversational2
mode between the two computers in the phase of building the”
networks on the screen, or even to have a complex data struc-3
ture in the large computer to represent the picture. ©

The designer, using the program to draw networks on theZ
screen, makes errors in drawing and often changes his decisions%
(i.e. he deletes a part of a network, or he changes the geometry3
of one part of the network); also he takes his time in thinkjng.h
If the program, in responding to his actions, up-dates a data
structure in the large computer after every designer’s action,
much unnecessary core and CPU time is used. It is far more
economical to draw a network, using only the small display
computer, and when the network is completed and an instruc-
tion for analysis is given, the small computer sends all the
prepared data to the large machine. While the analysis is being
carried out in the large computer the designer can either wait
for the results to be displayed, if the analysis is expected to be a

*As previously pointed out, the information which explicitly identifies objects participating in diverse relationships is not directly included
in the display data; presence of this information in the form of relation-linkage pointers does not, therefore, mean duplication of information.
Also, the introduction of relational-linkage pointers is justified from the point of view of efficiency of storage management. Each pointer
occupies one word of memory. However, the software required to search the data-display structure to determine the topology of relationships

is very much smaller and faster when the pointers exist.

Volume 16 Number 2

155

short one, or he can start drawing another network on the
screen.

When the small computer receives a message that the analysis
in the large machine has been completed, a choice is required
from the designer.

The designer can either proceed further with the drawing
already started or he can give an instruction to save the created
portion of the new picture (on disc or magnetic tape) and ask
for the result of the analysis to be displayed. After examining
the results he can continue to draw the new network on the
screen.

Using this mode of link between the two computers, continuity
between the drawing and analysis stages of a network is
provided. It is more economical than having a fully conver-
sational mode with the large computer during the drawing
stage, but more expensive than normal batch mode, because
the link to the large computer must be kept open continuously
to deal with a request for analysis.

7. Conclusion
This paper describes a single structure, the data-display

sary in the case of the display file or structure. The underlying
idea is simple. Just as a picture of a network, on a sheet of paper,
carries all the information necessary for the designer to analyse
the network, so should the picture of the network on the screen
possess all the information needed for the computer program to
analyse the network. The data-display structure is the image of
the picture on the screen, and so should be the starting point
for the network analysis. This leads to the conclusion that
separation of the display file or structure, the means to display
the network, from the data structure storing the description of
the network for analysis (and building the display file where a
display file is used instead of a display structure) is unnatural.

Acknowledgements

I wish to thank Professor V. L. Wallace, now at the University
of North Carolina, Chapel Hill, for the helpful discussions we
held together during his time as an Academic Visitor to Imperial
College, at the initial stages in the development of the structure.
His experience as one of the co-authors of the program for
queueing networks analysis in Michigan (Jackson, 1969;
Irani, Wallace and Jackson, 1970) and his ideas enriched the _

basis of the structure and helped to channel my research in ’theo
current direction.

Thanks are also due to Professor W. S. Elliott who read theQ
manuscript of the paper and made many useful suggestions and2 o
to the SRC who provided a grant to enable the research work tos

structure, which has been implemented for general network
analysis using interactive computer graphics.

The data-display structure serves both to describe the network
in full pictorial details for display, and also to build all the
necessary mathematical description of the network. This leads

O|UM

to the omission of a separate data structure, which was neces- be carried out. i
/ 5

References §
CuristenseN, C. and Pinson, E. N. (1967). Multi-function graphics for a large computer system, AFIPS Conference Proceedings, Fall2
Joint Comp. Conference, Vol. 31, pp. 697-711. g

&

Drew, A.J. SLAP—Small Linear Analysis Program, program for AC steady state analysis using computer interactive graphics, Imperial
College, London—to be published.
Irang, K. B., WALLACE, V. L., and JacksoN, J. H. (1970). Conversational design of stoacastic service systems from a graphic terminal, 8
Internat10nal Symposium Computer Graphics 70, Brunel University, Uxbridge, Middlesex, England.
Jackson, J. H. (1969). SELMA—A conversational system for the graphical specification of Markovian Queueing Networks, Report ofgS

‘dno’

LU

Department of Electrical Engineering, System Eng. Lab., the University of Michigan, Ann Arbor, October. %
MARoVAC, N. The data-display structure elements, 1ntemally circulated. 5
WiseMaN, N. E., LEmMkg, H. U., and HiLgs, J. O. (1969). PIXIE—A new approach to graphical man-machine communication, Internatxonal%

Conferenoe on CAD, 15- 18 April, 1969. The University of Southampton (conference publication).

20z Idy 61 uo 3senb Aq £z.2/€/251/2/91/910!

156 The Computer Journal

