A constructive geometry for computer graphics
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In the present paper a general approach to the definition of complex 3D objects from simpler ones
is illustrated. Intersection and union operations are defined which can be approximated to obtain
a smooth joining of object volumes with one another.
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The representation of the shape of a 3D object in terms of
numerical information stored in the computer memory, gene-
rally by means of a suitable data structure, is still an impor-
tant problem in computer graphics.

In the techniques for object representation till now developed
(see references), the information stored in the data structure
generally relates to the definition of the object surface, often
subdivided in surface patches, thus requiring, unless the object
shape is simple, a large amount of data to define surface points,
continuity conditions, etc. This gives rise to a certain degree of
uneasiness in the modification of the object shape, particularly
when extensive changes are required, as frequently happens in
the early stages in the design process.

The approach to the representation and manipulation of 3D
objects by means of their global definition as solids seems to be
more natural and promising. The technique of the definition of
complex objects in terms of simpler ones has been attempted
(for example, Goldstein and Nagel, 1971) but, while less
information needs to be handled, the component objects
retain their individuality in the final shape by reason of the
lack of a smooth joining of object volumes with one another.

A certain degree of smoothing has been obtained in a par-
ticular technique for the detection of intersections of 3D
objects (Comba, 1968), but this method apparently does not
apply to non-convex objects.

In the present paper, a general approach to the solution of the
problem, through what can be called a constructive geometry,
is presented.

For any solid, connected or disconnected, in the 3D space a
set of associated functions is defined. Functions relating to
different objects can be combined to obtain a new function
representing a new solid, allowing the designer to define it by
means of a small amount of information. The combination of
solids can be realised by applying a suitable sequence of inter-
section and union operations. The operations in the sequence
can be approximated, namely substituted for by operations
which give a slightly different result, thus giving rise to a con-
trolled smoothing of matching volumes and surfaces. By
suitably regulating the smoothing parameter, in the final solid
the component ones may not even be recognisable.

Since solids in the geometry illustrated here can be discon-
nected, a function defining a collection of separate objects can
also be used. In addition, solid defining functions lend them-

-selves to a simple solution of the hidden points problem and no
serious difficulty arises from the implicit, i.e. non-parametric,
form of the equation satisfied by the points of the object
surface, provided that efficient contour mapping techniques are
used to compute paths on the surface. /

1. Preliminary definitions

In the present paper, when a solid S in the 3D Euclidean space
E?® is considered, it is intended that it can be connected or
disconnected, that is to say it can comprise one object or more
objects separated from one another. All the results obtained
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here apply to this general definition of a solid.

For any solid S, the set of its interior points will be denoted
by I, the set of its boundary points by B and the set of its
exterior points by T, with

IVBUT=E? 6)
INnB=BnT=InT=¢ o

A continuous function f(P), non-negative for every P in E3§
will be called a defining function for a solid S if f(P) < 1 whe®
P belongs to 1, f(P) = 1 when P belongs to B and f(P) > &
when P belongs to 7. For any given solid, many dlﬂ‘eren&
defining functions can be found, for example if f(P) is &
defining function for the solid S also (f(P))?, being p a posmvé
real number, is a defining function for S.

An interesting property of defining functions, as they haveg
been introduced above, is that if f(P) is a defining function foﬁ
the solid S, (f(P))~! is a defining function for the solid comB
plement S€ as defined by I =T, B¢ = B,and T = I. -o

Another useful definition is that of the surface equation for z_b
solid S, namely the equation that is satisfied by the point$
belonging to B. For any solid S with f(P) as a defining functlon@
the surface equation is

SP) =1 o

As an example, for a sphere having the radius r and its
centre at the origin of the reference system, a possible definin@

function is %
fP) = (x[r)* + (Yr) + ([r)? (3§

and f(P) = 1 will define the surface of the sphere. ]
N

~

2. Intersection and union operations &

To establish a really useful constructive geometry in computes
graphics, we need operations, allowing simple objects to bg
suitably combined into more complex ones, which will be eas#’—
and natural. Most conveniently, the said combination of sohdss
can be realised by applying a sequence of intersection and uniom
operations. They can be defined in terms of defining functioni;>
and the following two statements will show how the defining

- function for the resulting solid can be derived from those foB

the component solids.

Statement 1—Let n solids S, . . ., S, respectively have defining
functions fi(P),...,f,(P). Then a defining function of their
intersection is given by

1Py = max (fy(P), . . ., £(P)) @

To prove the statement, we firstly note that
T'=T,u...UT, ®)
'=In...nlI, 6)

BT = complement of 1T L T

Then f!(P) > 1 implies that at least one f;(P) is greater than
unit, P belongs to T; and, for (5), P also belongs to TZ. If
fI(P) < 1, all f;(P) are lower than unit and P belongs to every
I, and, for (6), P belongs to I’. In the remaining case, if

157



Pl \
7
;2>1 , \\
’ 1
/ I~
/ N
\

I \
! \
I £ 51 \‘

<1 !

v H=? PR £ ]

\\£2_>_1—’/ S~

Fig. 1. Schematic illustration of the surface equations max(f,, /;)=1 and min (f;, f;) = 1

fI(P) = 1, no f(P) can be greater than unit and P cannot
belong to T, at least one f(P) is not lower than unit and P
cannot belong to I/, then P belongs to the complement of the
union of 77 and I’, namely to B

As a corollary, the surface equation for the solid S’ is

max (fi(P), . . ., fu(P)) = 1
as illustrated in Fig. 1.
As an example, the intersection of the three infinite slabs with
defining functions

@)

f1 = (x/r)?
f2 = (ylr)? ®)
f3 = (r)?
has the following surface equation
max ((x/r)?, (y/r)?, (z/r)*) = 1 ®

which defines the surface of a cube centred at the origin of the
reference system.

Statement 2—Let n solids S|, . . ., S, respectively have defining
functions fi(P), .. .,f,(P). Then a defining function of their
union SV is given by

fU(P) = min (fy(P), .. ., f,(P)) (10)

For the solid SU we have
I"=1u...ul, a1
TV =T,n...NT, (12)

BY = complement of IV U TY

Now, if fY(P) < 1 at least one f;(P) is lower than unit and P
belongs to I; and then, for (11), to IV. If fY(P) > 1, all fy(P)
are greater than unit and P belongs to every T; and, for (12),
P also belongs to TV. When fY(P) = 1, no f(P) can be lower
than unit and P cannot belong to 1Y, at least one f,(P) is not
greater than unit and P cannot belong to TV, then P belongs to
the complement of the union of IV and TY, namely to BY.
As a corollary, the surface equation for the solid SU is

min (fy(P), . . ., fu(P)) = 1
as shown in Fig. 1.
As an example, the union of the two infinite slabs with defining
functions

(13)

fi = ((x — a)/3a)? (14
fr = ((x + a)/3a)?
has the surface equation
min ((x — a)/3a)?, (x + a)/3a)?) = 1 (15)

which defines the surface of an infinite slab centred at the
origin of the reference system and having a half-thickness of
4a.

3. Smoothing approximation of intersection and union
operations

To realise a smooth joining of component solids into a final
one, max and min functions must be approximated by means of

suitable functions depending on a parameter which can be used
to control the degree of smoothing. In addition, differentiable
approximating functions can be used to avoid possible difficul-
ties in computation due to the undifferentiability of max and
min functions, provided that defining functions involved in the
intersection and union operations are themselves differentiable.
In both cases, an approximation may require that defining
functions be everywhere positive in E3.

Meeting the last condition is by no means a real difficulty. In
fact, a small positive quantity ¢ can be added to a defining
function to remove zeroes. The quantity ¢ can be chosen so as
not to alter significantly the solid defined by the function.
For example, adding 1077 to the defining function (3) will give
rise to a modification of the sphere radius of about 0-05 per
cent.

A large variety of sequences of approximating functions can
be used, but only one way of approximating max and min
functions will be illustrated in the present paper. The approxim-
ating functions chosen to be substituted for max and min
functions here are respectively

L(fi, oo ) =T+ ...+ D
Up(fls .. ’f;x) = (f—lp + ...+ f;p)_l/p
where p is a positive real number.
To prove that I, and U, can be used as p-approximations of
respectively max and min functions, the following statements
must be shown to be true.

(16)

Statement 3—For any point PeE>,
lim I(fy...f) = max(fi,...f) =L, (17
p— o0

To prove the statement, we observe that, for any PeE®>, the
uniform norm | f||,, of Cartesian space R" of elements

S =1 fas - - ) is given by
plirg I, = 1115 (18)

where | f|, is the space p norm (Davis, 1963). Since f; > 0

(l = 17 2a MR n)’ ”f”p = p(fl’fZ’ .. 5f;1) and “f”oo = max
(f1, f2> - - ., f,) and (17) is equivalent to (18) and thus proved.

Statement 4—For any point PeE3,
lim U(fy,.... ) =min(fy,...f)=U, (19
P> .

To prove the statement, it is now sufficient to observe that,
letting f; be the solid complement defining functions f; = fi-1,

Up(fl’fl" . ,.f;u) = [Ip(fl,fb .. -’_fn)J_l (20)
Uoo = min (flaf29 .. ’,f;n) = [max (fl’ f25 L] fn)]—l
Then statement 4 is proved by reason of statement 3.

As an example of application of the above statements, a
sphere centred at the origin of the reference system and having
a radius r can be obtained from the defining functions (8) by
means of their approximated intersection I;. Generally, an
intersection solid approximated according to a given value of
the parameter p is interior to the intersection solid approxim-
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Fig. 2.

I, I, and I, intersections and U,, U, and U unions of two spheres

Fig. 3. An example of constructed bi-dimensional profile

ated according to a greater value of the parameter, while for
the union operation an opposite behaviour is experienced
(Fig. 2).

As an additional example, in this case a bi-dimensional one,
the profile illustrated in Fig. 3 has been obtained through
approximated intersection and union operations applied to
defining functions of the general form exp (ax + by + c), each
of them defining a half-plane determined by the numerical
values of the constants a, b and c.

It is worth noting that a solid defining function need not be
expressed analytically, but can be furnished to a computer
program in the form of a table or a subprogram, thus permit-
ting the designer a wide possibility of definition of a whatever
shape. This is important when the solid shape must satisfy
particular technical constraints, the effects of which could be
directly computed in the function sub-program.

Nevertheless only global control over the shape of the con-
structed object is apparently available, sharply defined and
localised modifications can be obtained with a suitable choice
of component solids and approximated intersection and union
parameters.

4. The representation of the solid surface and the removal of
hidden points

Starting from the surface equation (2), a large number of
different techniques can be used to graphically represent the
surface of the solid.

For example, it is possible to cut sections of the solid on
parallel planes and draw curves on them satisfying the surface
equation. On a section plane, the solid reduces to a planar
shape, which can be connected or disconnected, and a reduced
defining function is obtained which has the same characteristics
as the corresponding 3D one. All of the results here obtained
for E? are also valid for E2. In Fig. 4, a few sections of an
aircraft model are shown as drawn by a low precision plotter.

The fact that the above proved statements are valid for E?
suggests a simple way to remove hidden points in the repre-
sentation of the solid by means of bi-dimensional line drawing.

If sections C;, C,, . .., C;, ... are cut perpendicularly to the
view-line, with C; nearer to the view-point than C;, ,, a set of
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bi-dimensional defining functions 4;(P) is generated, with PeE 2§_

By plotting lines satisfying the boundary equations 2
H(P)=1 ; (21§"

with =3
H,(P) = hy(P) (223

H;((P) = Uy (H{(P), hi11(P)) >

a view with hidden points removed is obtained, as exemplified’
by Fig. 5.

A perspective representation can be easily realised by suitably>
mapping the original E* space into a new one (Ricci, 1971§
with no change needed in the structure of the solid defining;
function.

wap

202 1udy 61 U0 }sanb Aq 9%7/2/€//G1/2/91/9191E/|ulLiod/w

Fig. 4. Sections of a constructed aircraft model
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Fig. 5. Examples of hidden points removal in constructed solids

5. The implementation of the geometry

Any implementation of the constructive geometry illustrated
here should be suitably realised in the form of an interactive
graphics system, to permit a real-time design of solid objects.
Since most of the information needed to define solids is carried
by analytical relations among few numerical parameters, con-
structive geometry is a challenge to the development of inter-
active languages for symbolic formula manipulation and
evaluation.

The work illustrated in the present paper (Figs. 2 to 5 are
computer-drawn) has been implemented in the form of an
interactive program for an IBM 2250 display unit supported by
an IBM 360/75 computer. In this program, solid defining
functions and related intersection and union operations are
described within FORTRAN subprograms which can be
displayed, modified and compiled on-line. Most conventional
3D interactive graphics operations are available and the modi-
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fication of numerical parameters can be directly effected and
does not require any compilation.

Since the IBM 2250 display unit is of the image refreshing
type, the program is limited by the unit buffer size to display
only one section of the constructed object at a time, the section
being interactively chosen by the operator and computed by a
contour-mapping routine. When a representation of the con-
structed solid as a line drawing with hidden points removed is
wanted, the program produces it through a digital plotter.

As far as computation times are concerned, the time required
to compute a section of even a complicated object is within few,
rarely more than five, seconds, which does not give rise to an
intolerable delay in the display response.
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