The application of Chow parameters and Rademacher-
Walsh matrices in the synthesis of binary functions

S. L. Hurst

School of Electrical Engineering, The University of Bath, Claverton Down, Bath BA2 7AY

This paper surveys and brings together separate existing information from the field of (a) threshold
logic synthesis, and (b) general binary synthesis using Rademacher-Walsh coefficients. The corre-
lation between the Chow parameters widely used in the former and the latter Rademacher-Walsh
coefficients is pursued. With a better understanding of the common features of both fields, inspiration
towards further profitable developments may be hastened.
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List of symbols used o
a;, i = 0 to n, = minimum-integer weighting in a threshold
realisation. N
b;, i = 0 to n, = threshold function characterising parameter,

(Chow parameter).

f(x) = binary function, value 0 (false) or 1 (true)

f(y) = ditto, value —1 or +1

f(z) = ditto, value +1 or —1

n = number of binary input variables per system.

R,, i = 0 to n, = Rademacher variables or functions, +1, —1

valuation
R,i=0,1,--12,"

-1 valuatlon

Ri’ i=0,1,--, 12, -,

tions, 0, 1 valuation.

[R] = 2" x 2" Rademacher-Walsh matrix.

[R] = 2" x 2" modified Rademacher-Walsh matrix.

p = minterm, e.g. p = 1 is minterm - - - 001

W,i=0,1,---2" = Walsh function, +1, —1 valuation

W/, i=0,1,---2" = ditto, but taken in different matrix row

order from W;

[W]and [W’'] = 2" x 2" Walsh matrix

w; = real-number weight associated with R;, W;, or W/, i =0,

1, etc.

W = real-number weight associated with R;, i = 0, 1 etc.

(note w; = W;, except for i = 0)

., = Rademacher-Walsh functions, +1,

= modified Rademacher-Walsh func-

x,i=12,n = binary input variable, value O or 1
yi,i= 1,2, - n, = ditto, value —1 or +1
z,i =1,2,--n, = ditto, value +1 or —1
Introduction

A considerable volume of work has been covered in recent
years in investigating the nature of linear-separability in binary
functions. A binary function is said to be linearly-separable if,

illustration of
f(x) = [x, + x.x;], threshold realisation (2x, + x; + X3)2:;

Fig. 1. Hypercube linearly-separable function
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when represented on a n-dimensional hypercube such as that
shown in Fig. 1, a separating plane can be drawn which
precisely divides all true minterms of the function from all
false minterms (Hurst, 1971). Fig. 1 illustrates the 3-var1ablg
linearly-separable function f(x) = [x; + x,x3]. 5

All such linearly-separable functions are realisable by a singlg
threshold logic gate of appropriate weights and threshold§
(Hurst 1971; Lewis, 1967; Dertouzos, 1965). The examplg
given above is realisable by a gate which weights the x, 1npu¥
by two units and the x, and x; inputs each by one unit, g=
nominal input summation >2 being required to operate thé
gate, <1 being insufficient to operate the gate. This threshol§
gate realisation therefore may be expressed arithmetically a%
J(x) = 2x; + x; + X3,

Associated with this work has been a classification and tabug
lation procedure for all possible linearly-separable functiong]
mvolvmg the characteristic vectors of such functions ang
canonic positive Chow parameter classifications (Dertouzos;
1965; Winder, 1964; Winder, 1965; Muroga, Tsuboi anﬂ
Baugh, 1967).

In the field of general Boolean synthesis, not restricted to thé‘
above linearly-separable class of functions, work using orthd
gonal matrices has been pursued. The matrices involved arg
normally the 2" x 2" Rademacher-Walsh matrices, which le
themselves directly to the specification of any Boolean funetiof!
of n variables (Coleman, 1961 ; Lockheed, 1964; Cooper, 1963,:",
Liedl and Pichler, 1971). To date, however, direct mrcuE
realisation using this approach has not been an economm
practical proposition.

In the following sections of this paper, therefore, the ex1stmg
state of the art of binary circuit synthesis in both the above
fields is examined and compared. Strong common features w1ﬁ
be found, which it is hoped may assist in furthering the neces>
sary continuing development in this field.
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1. Characteristic vectors, Chow parameters
The ‘characteristic vector’ b; of any linearly-separable (thres-
hold) function uniquely defines the given function (Dertouzos,
1965). The coeflicients of a characteristic vector for an n-
variable Boolean function f(x,, - - -, x,) are (n + 1) in number,
and are defined by:

by = [(number of true minterms) — (number of false
minterms)]

b;, i =1 to n, = [(number of agreements between the value
of x; and f(x) taken over all minterms) —
(number of disagreements between x; and

S
Chow (1961) formally proved that (» + 1) coefficients as above
are sufficient to uniquely define any linearly-separable function.
Also, if the magnitudes |b;| of the coefficients of all possible
threshold functions are taken and written in lexicographical
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order, (e.g. —2, —6, +2, + 10, —6 becomes 10, 6, 6, 2, 2) then
such invariance operations produce the most compact form of
classifying and listing all the possible threshold functions of n
variables, giving the canonic positive CHOW PARAMETER
or CHOW COEFFICIENT tabulations.

2. +1, —1 valuations '

If instead of the false/true valuations 0, 1 for f(x) and x,, x,,
... X,, we adopt the alternative false/true valuations —1/+1,
identified hereafter by f(») and y,, y,, - * * Y., We have that:

f») =02 - 1]

yi,i=1t0n,=[2xi— 1]

and

Thence:
2n—1

bo= T (O},

the summation being taken over all the 2" minterms from p = 0
to2" -1,
and

2n-1
b,i=1ton, = p‘éo {f».y:}-

(NOTE: Y indicates normal arithmetic summation, not
modulo-two)

If now an additional ‘variable’ y, is added to the system,
where y, by definition is always equal to + 1, then b, may be
redefined as:

an—1

by = Eo {f(»).y0}

Hence all the b; may now be defined by the one relationship:
2n-—-1

b,i=0ton, = Eo {1»).y:}

Should yet another alternative terminology be adopted, with
+1/—1 representing the 0/1 false/true values, identified

30 m
/]

(Q)

X3 oo | ol |n 10

X\ oo | o ]| n 10

V]

()

Fig. 2. Linearly-separable functions of three variables
(@) f(x) = [®1(x2 + x3)], = {2%; + X2 + X3a:2
(B) f(x) = [x1(xz + x3)], = {2x1 + X5 + XDz
() f(x) = [x1 + x22x3), = (2x, +. X2 + X3Dai1

hereafter by f(z) and z,, z,, * - * z,, we have that:

f(Z), = _f(y)’ = [1 - 2f(x)] ’

and
z,i=1ton, = —y;, =[1 — 2x;]
Then:
2n—1
bo=— X {f/(2)}
p=0

2n—-1

byi=1ton, = ¥ {f(2).2}.

In a similar manner to f(y) above, if an additional parameter
2, is added, where z, & —1, b, may be redefined as:
2n-1

bo = go {f(z).zo} >

and hence all the b; may be jointly defined by:

2n—1

b;,i=0ton, = Z, {f(2).z;}

Given the b; values for any threshold function, the corres-
ponding minimum-integer realising weights a; required for the
threshold realisation have been fully tabulated. Thus the opti-
mum threshold-gate realisation of

S(x) =LKax; +ax; + -+ XD tyits >

where ¢, and t, are the upper and lower gate thresholds, there-
fore is immediately available.

3. Signs of |b;| ,

As published, each |b;,] Chow parameter listing defines one of
several possible threshold functions, with the same coefficient
values |b;|. To uniquely define any specific threshold function,
reinstatement of the signs of the b;, i = 0 to n, is necessary.
The b, term with its appropriate sign is essential and cannot
be omitted.

For example consider the three linearly-separable functions
plotted in Fig. 2. If the b; values for these functions are com-
puted, we obtain:

b, b, b, b,

Function (a): -2 -6 +2 +2
b): -2 +6 +2 +2
(o): +2 +6 +2 +2

Thus only the sign of b, differentiates between the two quite
distinct functions (a) and (b), and, similarly, only the sign of
b, differentiates between functions (b) and (¢).

This therefore illustrates the absolute necessity to take into
account the signs of all the b; when specific functions are being
considered. The three functions illustrated in Fig. 2 are of
course three of many with the same canonic |b,| classification

of 6, 2, 2, 2.

4. Non-linearly-separable functions, Rademacher-Walsh

coefficients .

The (n + 1) Chow parameters are not adequate to define all

binary functions, i.e. the non-linearly-separable class.
Consider for example the two dissimilar functions plotted in

- Fig. 3, neither of which are linearly-separable functions (Hurst,

1970).
If the b, values for each of these functions are computed, both

will be found to yield:
by by by by
0 00O
Clearly, therefore, from this extreme example, the b,’s, i = 0
to n, are not sufficient to explicitly define functions which are
not linearly-separable. Thus to define or classify such non-
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Fig. 3. Simple non-linearly-separable functions
(a) f(x) = [X: X5 + x1X.]
) f(x) = [x1%; + x1x3]

linearly-separable binary functions, we must either augment the
(n + 1) Chow parameter coefficients with additional infor-
mation, or derive an alternative classification more powerful
than these basic Chow coefficients.

One algebraic method of defining and also classifying all
binary functions is by means of the Rademacher-Walsh
coefficients or ‘spectra’ (Dertouzos, 1965; Henderson, 1964;
Golomb, 1959; Liedl and Pichler, 1971). As will be developed
below, the Rademacher-Walsh parameters form an augmented
form of the Chow parameters, being 2" in number compared
with the (n + 1) total of the Chow classification.

The 2" Rademacher-Walsh functions or variables—the
terminology ‘variable’ is frequently used in the present context
of binary synthesis, although ‘function’ is possibly more correct
—consist of two parts, namely:

(a) the Rademacher functions, which constitute the first
(n + 1) of the 2" total,

(b) the remaining 2" — (n + 1) Walsh functions, which may
be formed from the previous (n + 1) Rademacher set.

The former may be termed the ‘primary set’, and the latter
the ‘secondary set’ (Dertouzos, 1965).

When these Rademacher-Walsh functions are appropriately
multiplied by the minterm values of any given binary function
f(x), the result is the Rademacher-Walsh coefficients or
‘spectra’ of the given function f(x) (Dertouzos, 1965; Lockheed,
1964 Cooper, 1963 L1edl and Plchler 1971). These 2" co-

(n + 1) Chow coefﬁcrents uniquely define any given threshold
function f(x).

(Note: although outside our present interests, it is of interest
to note that these Rademacher-Walsh coefficients will uniquely
define any function which exhibits discrete values in its output
spectra; a binary function with two discrete output values 0
and 1 is therefore merely a particular case of the more general
possible application of these Rademacher-Walsh coefficients.)

The Rademacher functions (or variables) may be found
defined in several dissimilar but equivalent ways (Dertouzos,

Fig. 4. Rademacher functions in the range 0 to +1.

1965; Cooper, 1963; Henderson, 1964; Barrett and Gordon,
1971). All definitions define a series of square waves with two
discrete values, normally —1 and +1, which form a complete
set over a unit ‘range’, or ‘interval’, normally taken as either
from —% to +14, or from O to 1.

One definition for the Rademacher functions R,(0),
2, - - -, over the range of 0 to 1 is:

R,(0) = sign {sin(2"n 0)} . 1-0, where 0 < 0 < 1.

An alternative definition, also over the range 0 to 1 is:

3
]

(=]

—_

olWwapeoe//:sdyy woJj papeojumd(

b

m+ 1 .
= < —— =
R,(O)= +1 if 7 <0< 7 » M = even integer ,
—11f2" \OSYE;TI , m = odd integer .

Both these definitions are as illustrated in Fig. 4. Alternative
definitions over the range —% to +3 are similar, but dlsplace(g
so as to be symmetrical about zero.

It will be apparent from the above that in a binary system the;
Rademacher functions R,, R,, etc. correspond to the bina
variables x,, X,, etc. of a n-variable binary function, where thg
full 2" minterms of the binary function are considered a?g
d in the range A = 0 to 1.

Hence a further definition for Rademacher function
(variables) in an n-variable binary system f(xy, - * * x,) is:

Ry A +1
R,i=1ton, =[1-2x],
= [—y‘]} :
=% see section 2
= [z
Thus for example, for 3 binary variables x,, x,, x3, we have thé’—

following correlation between the variously defined blnary
variables and the Rademacher variables:

Lye

onb Aq ¥9/2/€/591/2

>
Mintern Binary x; Binary y, Binary z; Rademacher R; 2
p X1 X3 X3 Y1 Y2 V3 Zy Z2 Z3 Ro R, R, R, g
0 0 0 0 -1 -1 -1 +1 41 +1 +1 +1 41 +1
1 0 0 1 1 =1 41 +1 +1 -1 +1 41 41 -1
2 0 1 0 -1 +1 -1 +1 -1 +1 +1 41 =1 +1
3 0 1 1 ~1 41 41 +1 -1 =1 +1 41 -1 -1
4 1 0 o | +1 -1 -1 —1 41 +1 +1 =1 41 +1
5 1 0 1 +1 =1 41 1 +1 -1 +1 -1 +1 -1
6 1 1 0 +1 +1 -1 -1 -1 +1 +1 -1 -1 +1
7 1 1 1 1 41 41 -1 -1 -1 1 -1 -1 -1

The additional 2" — (n + 1) Walsh functions may now be
formed by obtaining all possible different products of these
Rademacher valuations at each minterm p, taken two-at-a-time,
three-at-a-time, up to n-at-a-time. (This is the simplest defini-
tion of the Walsh functions, although they may be defined
in their own right without reference to the Rademacher
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1971)). Thus, de-
and noting that:

set (Walsh, 1923; Lackey and Meltzer,
noting the product of R; x R, by Ry, etc.
Ry x Ry = Ry,
R, x R,i=1ton, =R,,
R, x R,i=1ton, = R;,
Rij X Rbi’j: 1ton,i¢j: = Rja
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we have that all the possible Rademacher-Walsh valuations
for a 3-variable binary system are as follows:

Mintermsp: 0 1 2 3 4 5 6 7

g Ro +14+1+1+1+1+1 41 +1

2 R, +1 41 -1 =141 +1—1—1{Set

B R +1—-1+1-1+1-1+1-1

E — — — —— — — = Cmplt
€ RR, |+1+1—-1—-1-1-1+1+1 Set
& RR, |+1—-141—-1—1+1-1+1|Scndry

S RR; |+1—-1—1+4+1+1—1-—1+41(Set

& RRRy|+1—1—1+1-1+1+1—1)

Note: because of the relationships R; x R; = R, etc. there will
always be exactly 2" rows in the complete set for any .

5. Alternative matrix row order
The vertical order of the Rademacher-Walsh functions as
tabulated above follows from using the primary set to generate
the secondary set. If Walsh’s original definition and format is
followed, the tabulation is made in order of increasing number
of zero crossings of the +1, —1 values in the given interval.
This is analogous to increasing frequency of the Fourier series
in sinusoidal working. If frequency is defined as one half the
number of zero crossings per unit time, then the corresponding
‘frequency’ of the Walsh functions, which is termed the
‘sequency’, is similarly defined as:
sequency = 4 (average number of zero crossings per unit
time).

The rows of the previous tabulation for n = 3 therefore may
be arranged in vertical order of Walsh function sequency as
follows:

Wo = R, (zero sequency)
= Rl

= RR,
R,
RyR;
R,R,R
R\R,
R,

N
[ 1 (N

(max sequency)

A yet further alternative ordering of the rows of the matrix
has been proposed by Lechner, Colman and possibly others
(Henderson, 1964). For n = 3, the equivalence of the modified
set Wi is:

W, =Wy =R,
W! =W, =R,
W,=Ws =R,

W, =W, = R,R,
W, =W, = R,

W! = Ws = RR,
W.= W, = RR,
W. = Ws = R,R,R,

which gives a matrix row ordering of'

Minterms p: 0 1 2 3 4 5 6 7

Walsh w;: Wg| +1 +1 +1 +1 +1 +1 +1 +1
wil +1 -1 +1 -1 +1 -1 +1 -1
w,l +1 +1 -1 -1 +1 +1 -1 -1
w;l +1 -1 -1 +1 +1 -1 -1 +1
w,l +1 +1 +1 +1 -1 -1 -1 -1
wil +1 -1 +1 -1 -1 +1 -1 +1
w¢l +1 +1 -1 -1 -1 -1 +1 +
ws +1 -1 -1 +1 -1 +1 +1
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The. interesting feature of this re-ordering of the rows of the
matrix is that is has a simple recursive structure, such that a
matrix of order 2"*! is formed by:

[W2,n+1] = [[WZI"] % [Wzln] ]
Wil i [— W]

Also the binary 0, 1 equivalent matrix (see next section) may
be obtained by a simple relationship, when required.

6. Rademacher-Walsh matrix, 0, 1 valuation
If we convert the R; Rademacher-Walsh values of +1, —1
into x;0, 1 values, i = 1, 2, etc., by the direct conversion of

+1 to 0, —1 to 1, the first 3-variable Rademacher-Walsh
matrix given above becomes as follows:

Minterms: 0 1 2 3 4 5 6 7
Eo 1 1 1 1 1 1 1 1
R, (= x)) 0 0 0 0 1 1 1 1
R, (= x,) 0 0 1 1 0 0 1 1
R; (= x;) o 1 o 1 o0 1 o0 1
R.R, 0 0 1 1 1 1 0 0
R,R, 0o 1 o0 1 1 0 1 0
R,R, o 1 1 o o0 1 1 0
R,R,R, o 1 1 o0 1 o0 o0 1

Note: the designation R,, R, etc. will be used to differentiate
between an 0, 1 Rademacher-Walsh matrix, and a +1, —1
matrix. R,, the first row of the matrix, by definition remains
+1.

If we now examine the secondary R,R, etc. Rademacher-
Walsh products, we see that in this converted 0, 1 set they will
be generated by modulo-two addition of the appropriate
primary Rademacher values, with any carry of the modulo-two
additions discarded.

eg. RRR, =R ®R,,=x,@x,.
=R, ®R;,=x,®x;.
RR —R @R =X, @ X3.

RRR3—R1®R2€BR3,—x1®x2®x3

To summarise therefore, if these modified 0, 1 Rademacher-
Walsh variables R; are considered for binary synthesis and/or
analysis, the first (n + 1) R-W variables R, to R, constitute
the actual binary inputs x; of the system, with R, A 1, whilst
the remaining R-W varlables are modulo-two addltlons of
these actual inputs. A binary system may therefore be con-
sidered as shown schematically in Fig. 5.

7. Orthogonality

The complete —1, +1 Rademacher-Walsh matrix as detailed
in Sections 4 and 5 will be seen to be orthogonal and normal,
i.e. ‘orthonormal’, as the integral of the product of any two of
the 2" function R;, R; taken over the full interval 6 = O to 1 is:

1
j R; R;.d0 = 0, i # j (orthogenal)
=0 = 1, i = j (normal).

As the R-W functions are discrete-valued, the above
R Ry Ry >‘
£ |.X|.",X'h.
Modulo-2 System
addirions .
(Lincar (Non-linear| Ourpur(s)
. fransform-
Fransformations) IS::SPS?W ations)
ﬁ @Qz,eh‘..

Fig.-5. Rademacher-Walsh synthesis procedure
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integration may be replaced by the summation:
1 {2t =0,i#j,
?’{ % {Ri.RJ}} = 19 i =j’
the summation being taken at each discrete interval 0 to 2" — 1
in the full interval of @ = 0 to 1.
Note:

. 1. .
(a) without the 7 in the latter summation, the resultant for
> R;.R; when i = j will sum to 2" rather than to unity.
The % is thus a normalising factor;

(b) irrespective of the order of the rows of the matrix, for
example the Lechner/Colman order given in Section 5, the
matrix will remain orthogonal;

(c) when, however, the +1, —1 values are converted into
binary 0, 1 values, see above, the resulting 0, 1 matrix
[R,-] is no longer orthogonal for R;.R;. Orthogonality
now holds for R; % R;, as

21"{2"%—1{&*Rj}}=0,i#j,

=1li=j,
where{R, % R) A[1 — 2{R; ® R;}].
Note: (27~
{ Y {R, ¥ RJ}} = [(agreements between R; and R))
(V]

— (disagreements between R; and R;)] .

8. Rademacher-Walsh coefficients or spectra, +1, —1 configur-
ation

Any arbitrary switching function of n variable can be described
by the arithmetic sum of its 2" Rademacher-Walsh variables
R;, each individually weighted by an appropriate real-number
w;, i.e.

f@), A + 1or — 1 at any minterm p,

= (X w; R),, where w; is the weight associated with
each respective R;,
i=0,1,2,---12,---,

These weights w; of the Rademacher-Walsh variables may
now be termed the Rademacher-Walsh ‘coefficients’ or
‘spectra’ of the switching function.

The required weights may be expressed by the matrix relation-
ship:

wl = 5 [R1.A1,

where w;] = column matrix whose elements are the
" required w;,

'yZ Ro

x=Y2
R, —_— %0

R, —— 0

Rs —— 4 x 0
R/R, —]xth
R,R3 ] th
R, R4 x +2
RRR;——=1 «0

+R2 R Ry
+12R,Ry

Arithmetic .
Summarion

Normolised Weightings

Fig. 6. Rademacher-Walsh realisation for
S(x) = [x1 %2 + x2%3 + X1x3]
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[R] = the 2" x 2" square matrix whose rows are the R;’s,
and f,] = column matrix whose elements are the output
values +1 or —1 of the function f(2).
Proof of the above follows from the orthogonality of the
matrix, see Dertouzos (1965), and others.
For example, given the 0, 1 function

S(x) = [xX; + X2X3 + X;1%3] .

Converting from 0, 1 to +1, —1, we have:

p Xy X2 X3 S(x) Z Z3 23 - f(2)
0 00O 0 +1 +1 +1 +1
1 0 01 1 +1 +1 -1 -1
2 010 1 +1 -1 +1 -1
3 011 1 +1 -1 -1 -1
4 1 00 1 -1 41 +1 -1
5 1 01 1 -1 41 -1 -1
6 110 1 -1 -1 +1 -1
7 1 11 0 -1 -1 -1 +1
Hence:

p= 0 1 2 3 4 5 6 7 f(z

+1 +1 +1 +1 +1 +1 +1 +1]
+1 41 41 +1 -1 -1 -1 -1
+1 41 -1 -1 +1 +1 -1 -1

1|41 -1 +1 -1 +1 =1 +1 -1

eoTimoq

+1 -1 +1 -1 -1 +1 -1 +1
+1 =1 =1 +1 41 —1 —1 +1
41 -1 —1 +1 —1 +1 +1 -1

2

|

A

" \

+

|

|

|

|

+

+
L+

o

c

vy °

- 8

0 3

0 >

+ =}

+4 %

»

[ 0] N

>

a

or: &
Wo = _'} ’ ':‘)
Wl == 0 Py g
W2 = 0 > g
W3 = 0 ’ (.(.C;
wiw, = +% H a
WiW3 = +'& s g
w2W3 = +'k ’ 6
W1W2W3 = 0 - -Cj;>
.. The normalised Rademacher-Walsh spectra for the giveg
~

function is:
_%’ 0: Oa 0; +%9 +'}: +‘l’s 01
giving the realisation for f(z) of:
f@), = C{=3Ro + 0 + 0 + 0 + }(R,R;) + }HR,Rs)
+ ‘}(RZR3) + 0})p ’
or, equally:
(T {—4Ro + 4(R;R;) + 4R R3) + 4R2R3)}),

which can be quickly shown to correctly realise f(z) = —1 or

+1 over all the 2" minterms p.

Thus if we generate the + 1, — 1 Rademacher-Walsh variables,
it would be possible to synthesise the given function to give the
required oatput f(z) = +1 or —1, as shown in Fig. 6. The
+1, —1 output f(z) could subsequently be converted to an
0, 1 output f(x), if required.

If the above matrix definition for the required weights w; is
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re-examined, it will be seen that they may be re-defined as
follows:

_ 1 [(number . of true minterms) — (number of false

Yo = "1 minterms)] ,

-3z vey.

and
wi=1,2,-,12,---, =

1 [(number of agreements between the value of R; and f(z)

on taken over all minterms p) — (number of disagreements
between R; and f(z))].

Both these results may be jointly expressed as:

121
Wi = 2—,,[ 5 {f(Z)-Ri}],

i=0,1,2,+12,""

It is now interesting to compare the above, which apply to a//
Boolean functions expressed in the +1, — 1 notation, with the
threshold Chow parameters b;, i = 0 to n, given in Sections 1
and 2. A basic ‘sameness’ will be noted, except that the thres-
hold b;’s are not normalised by dividing by 2".

9. Rademacher-Walsh spectra, 0, 1 configuration

To redefine the above procedure in terms of the normal 0, 1
binary notation and the resultant modified Rademacher-Walsh
variables R, it can be shown (Cooper, 1963) that:

f(x),, A 0 or 1 at any minterm p,
= (WoRo + X WiRi)p R

where W, = weight associated with R,,
W; = weight associated with each R, i=1, 2, -,
. 12, .
These weights w; of the modified Rademacher-Walsh variables
may now be termed the modified or binary Rademacher-Walsh
‘coefficients’ or ‘spectra’ of the given switching function.
The value of the weights is given by:

WO = f(x)p=0’
i.e. the value of the function f(x) at minterm p = 0, and

Wi’i=1,25“'3129.”’=

2n—1 _
! I: T{fxme ﬁ;) -(fx @ ﬁ;)}:l

7 Z,
Note: .

As R, is always 1, WoR, is therefore always S(X)p=0 -

Also the above expression for w;, i # 0, will on examination
be seen to define precisely the same summation as for the

A
Ry= ! o

A
R=x, 0

A

RZ=XZ x0
R x o

3 A3 %
Lol - ﬁ|© ﬁz
" Modulo - ﬁ.@ﬁs cth
two - A

addirions [ R,®R, s+l
~ROR®R; | «o

Normalised
Weighrings

Fig. 7. Maodified 0, 1 Rademacher-Walsh realisation for
S(x) = [x1%2 + Xxo%3 + X1X,]

)

E@——‘fm,
Oorl

Arithmeric
Summation
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+1, —1 case, namely:

wi,i= 1,2,”°’125'.', =

1 [(number of agreements between the value of R; and f(x)

on taken over all minterms p) — (number of disagreements
between R; and f(x))].

Considering our previous example

J(x) = [x1%; + x,%3 + X;1x3]

again, we now have the following development:

p: o 1 2 3 4 S5 6 1
f(x): o 1 1 1 1 1 1 o0
R, 1 1 1 1 1 1 1 1
R, 0o o o o 1 1 1 1
R, 0o o 1 1 o0 o0 1 1
R, 0o 1 o0 1 o0 1 0 1
R,R, 0 o0 1 1 1 1 0 o
R,R, 0 1 o0 1 1 0 1 o0
R,R, o 1 1 o0 o0 1 1 o0
R,R,R, 0o 1 1 o0 1 0 o0 1
whence ‘

Wo = 0

W, = 0

W, = 0

Wi = 0

Ww, = 43

Wiws = +3

WzW3 = +'1‘

WW,Wy = 0

The normalised modified binary Rademacher-Walsh spectra
for the given function is therefore:

0’ 0, O’ O’ +%, +%’ +—%’ O’
giving the realisation for f(x) of:
fx), = L
E{0+0+0+0+ %(Rlﬁz) + H(R4R;) + j(ﬁzﬁs) + 0})p,
= CHR, ®R) + 3R, + R) + IR, + R3)}Dp s
=30 @ x3) + 3x; @ x3) + Hxz + x3)}),-

Thus the function may be realised as shown in Fig. 7.

10. Alternative definitions for w; and W,

In both the +1, —1 case, see Section 8, and the 0, 1 case, see
Section 9, it was shown that the respective required weights w;
and Ww; for the Rademacher-Walsh variables, i # 0, can be
defined as:

wiorwi,iz 1,2,"‘,12,"‘,=
%,—, [(No. of agreements ——) — (No. of disagreements —)] .

(NOTE: the w,, W, weight is not the same in the +1, —1 and
the 0, 1 cases).
This expression may be algebraically re-arranged as follows:

Let @ = number of minterms where f(x) = 1 and x; = 1,
b = number of minterms where f(x) = 1 and x; = 0,
¢ = number of minterms where f(x) = 0 and x; = 1,
d = number of minterms where f(x) = 0 and x; = 0,

for example see Fig. 8(a), where a X,, x, map division is
illustrated. Then w; and W,, i # 0, are given by:
N 1
W Wy = 0@+ d) = (b + )]
Considering just the expression within the
re-arranging we have:

[(@—b) —(c—d)],
=[@-5)-(@""'-a - - b,
=[(@—b) — (—a + b)), = 2[(a — b)].

brackets,
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Fig. 8. Karnaugh-map plots of f(x) = [¥,x, + XX5 + X3x,]
(a) %,, x, division
(b) x, ‘window’
(c) x, ‘window’

Now (a + b) = number of true minterms, = say m.
.". Substituting we obtain the expression:
2[a—(m—a)],
= [4a — 2m].
.. The normalised equation for the required w; or W;, i # 0,
may be written as

%[4a—2m],

1 [4(number of true minterms of the function when x; is
" true) —2(total number of true minterms)] .

This alternative definition lends itself to reading off the required
w; or W;, i # 0, from Karnaugh maps by merely counting the
number of true minterms in the appropriate part of the map.
For example the function shown in Fig. 8(a) is further illustrated
in Fig. 8(b) and (c), from which the following results may be
read:

wlorw1=2l"[(4,x3)—(2x9)]

1
wzorW2=-2!;[(4x 5) — (2 x 9]

1
2"

[+2],

and so on for wj, etc.
NOTE: for the +1, —1 situation w, may be rewritten as:

Wo = = o5 [m — @ = m)]

— g lom =271,

For the 0, 1 situation, W, remains as the function value f(x) at
p = 0, see Section 9.
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11. Karnaugh-map identification of all 2" Rademacher-Walsh
functions

It is of interest to further consider the areas or parts of a
Karnaugh-map layout that all the 2" Rademacher-Walsh
functions (variables) define. We have previously seen that the
Rademacher variables, the ‘primary set’, are equivalent to the
binary input variables of the system, R, always being +1, the
‘secondary set’ being all different modulo-two additions of this
primary set in 0, 1 working.

Thus for #n = 3, we have the full situation shown in Fig. 9.
Similar maps for n = 4 etc. may be drawn.

It is now of great interest to note that although the primary
set Ry, * - *, R, are all linearly-separable (threshold) functions,
that is each may be realised by one threshold logic gate, NONE
OF THE MODULO-2 SECONDARY SET ARE LINEARLY
SEPARABLE. In fact, the final Rademacher-Walsh variable
Rys..., (Ry5...,), is as far removed from a threshold function
as is possible—it may be considered as ‘opposite’ in some sense
to a threshold function.

This may help to non-mathematically indicate why a com-
bination of all these variables, appropriately employed, is able,
to realise any given binary function, whereas threshold
functions, which form a more restricted class of binarg
functions, require only the appropriately-weighted primary
set Ry, * * -, R, for their realisation, see Fig. 10 () and (). =

It may also help to explain the interest that one or tw§
researchers have shown, in attempting to realise any given
binary function by the use of some minimum combination of
threshold gates plus modulo-two gates. By definition a linearlys
separable function requires only one threshold gate; if a giveg
function is not linearly-separable, then the minterms which
cannot be included by a threshold gate may be included by
some modulo-two gate, such as to give some overall minimurg
network realisation as indicated in Fig. 11. (
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Ro(Ry) ——
R/(R) ————
. A Any funcfion
RyRy) ——— o Wi (W) f(z) or f(2).
RIZ(RlZ) ImEe———
. Appropriafe
. Summarion
Rypeen (Rgeen) —=
(a) Appropriale Weightings
RolR ) —
R) —! Threshold function”
BRI wi(i) f(z)or f
' - Appropriale
R"(ﬂ") Summarion
(b) Approprialt Weightings

Fig. 10. Comparison of Rademacher-Walsh and threshold synthesis
(a) Rademacher-Walsh
(b) threshold

It should be noted that the weighting of all the 2" Rademacher-

Walsh variables and their subsequent appropriate summation, '

whilst mathematically elegant and universal, does not normally
provide an economic realisation if a direct one-to-one trans-
lation into hardware is contemplated.

Considerable work in this field of minimum network synthesis
remains to be investigated.

12. Classification of Boolean functions

The magnitude of the Chow parameters |b;| taken in a lexi-
cographical order forms the most compact form of classifying
and listing all the possible linearly-separable (threshold)
functions (Dertouzos, 1965; Winder, 1965), see Section 1.
This form of classification is a numerical form of SD (‘self-
dualised’ or ‘hyperfunction’) classification.

It may therefore be of interest to consider the Rademacher-
Walsh w; to see if they form a classification for all binary
functions, in a manner similar to the |b;|’s for threshold
functions. .

As an exercise, take as a starting point the Chow parameter
|b;] classification 6, 2, 2, 2. This classification covers a series of
threshold functions of three variables f(x,, x,, x;), character-
ised by having either 7, 5, 3 or 1 true minterms. (The 7 and the
1, and the 5 and the 3, are complements of each other, res-
pectively, these two groups being related by the SD classi-
fication.)

Let us therefore list a few linearly-separable and non-
linearly-separable functions with the above minterm count.
The Rademacher-Walsh weights will be listed un-normalised,

that is not divided through by 217', so as to make the w, to w,

numerically identically to the b, to b;, respectively. Fig. 12
illustrates the functions chosen. ‘

From these arbitrary examples, the following features will be
seen:

Binary 5’1,\

Inpurs

Threshold
Gate(s)

Modulo-Fwo
Gahy(s)

Fig. 11. Threshold and modulo-two synthesis

Chow paramefers by by b, byl - - - —
Rademacher -Walsh waights (nof normalised){ Wo W, W, Wa | W, Wiz Wos Wi
XX,
@  xN oojor |1 |10
Threshold O | l
funchion: A% 4 +2 -6 +2 2| -2 -2 -2 +2
| L\/ v | V]
XX
®  xNZo0 ol |n |0
Thyeshold © !\/ v |
funclion : b +2 46 +2+2 |+2 +2 -2 -2
VIV
XX,
@ xN\Zoo ot || 0
Threshold © | J1 V)
funclion : |2 +6 +2 -2 | -2 +2 -2 +2
| v/
X
«h x_,,x' 00 ot |11 |10
Threshold ©
funchion . ct+t2+2-2|-2+2+2-2
|
XX,
@  xN\ %00]0 |11 |0
Threshold ©
function -6 12 t2+2 |-2 -2 -2 +2
|
X
) xsx' oo |1 0
Thashod O|[ /] V | /| V]
funchion : +0 42 -2 -2 |-2 -2 +2 +2
! MM
Q sz,xz ol:f 1l |10
Non -ls. © \/ I
funcrion % +2 -2 2 2 |+2 -6 -2 -2
V)
X
t xsx‘ Do jol |1 |10
Non-ls. O I\/ /l
funchion - f +2 +2 +2 +2|-2 +6 -2 2
viv]v]
X
g x,x' ool 10
Non -ls. O l |
funclion @ \/ \/ +2 +2 +2 2|+6 -2 -2 +2
| [\/ V|V J
w  xXo0)01 | 11 | 10
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Fig. 12. Classification of example binary functions
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(i) all given functions are characterised by un-normalised
Rademacher-Walsh weights |w;| of

6,2,2,2,2,2,2,2
when listed in descending magnitude;

(ii) if however the ‘6’ appears in the left-hand ‘primary set’,
then the function must be a threshold function; converse-
ly if the ‘6’ appears in the right-hand ‘secondary set’,
leaving |b,| to |b5] as 2, 2, 2, 2, then such a function cannot
be a threshold function;

(iii) with the threshold functions, the values of the ‘primary
set” w, to w; with their appropriate signs, uniquely
define the function, as these primary sets are the Chow
parameters, see Section 3. Hence the remaining w;
values, i = 12, 13 etc., do not add any further infor-
mation about the function—their values must therefore
be determinable from the w; of the primary set.

The precise correlation between w;, i = 0 to n,and w;,
i = 12, 13, etc. of these and all other threshold functions,
howeyver, is not directly obvious;

(iv) when the function is not a threshold function, the values
of the primary set do not define the function, see Figs.
12(h) and (j) covering functions with the same w, to w,
values. Equally, however, the secondary set w; values
do not explicitly define the function, see further examples
illustrated in Fig. 13.

Thus for a non-linearly separable function, all 2" Rademacher-
Walsh weights with their appropriate signs are essential to
define the function.

To attempt to summarise the above, it would appear that all
binary functions could be classified by their |w;| values, in the
same way that all threshold functions are classified by their
|b;| values. At this stage it is not quite clear just what invariance
operations are involved per classification. (The invariance
operations involved in the threshold function |b,| classifications
is well understood (Dertouzos, 1965).)
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Fig. 13. Classification of dissimilar functions
@) f(x) = [x:%5 + X1x5),
we=0,—-4,4,0;0,4,4,0
®) f(x) = [x1x5 + x2X3],
wi=0,4,—-4,0;0,4,4,0

The precise correlation between the w; values, i = 0 to n, and
the w; values, i = 12, 13, etc. for the threshold functions also
requires some further thought.

Conclusions
A considerable area of research and consolidation is still ope%
in the field of synthesis of Boolean switching functions. W1t§
the increasing practicality of economically generating complqg&
switching functions in integrated-circuit form, such as thresho@
gates and modulo-two functions, etc., a new approach to tlg
most economical practical reahsatlon of given switching
problems may arise. The present-day NAND/NOR ga@
realisations may well be superceded by more compact realisa:
tions, with a smaller gate population, in future generations 6f
equipment.
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