MEMBERS—A Microprogrammed Experimental Machine
with a Basic Executlve for Real-tlme Systems”®

J. K. Broadbent and G. F. Coulouris

Department of Computer Science and Statistics, Queen Mary College, Mile End Road,

London E1 4NS

The aims and methods of a project investigating the direct interpretation of a high-level language

by microprogram are outlined. Some features of a language for real-time applications specifically

designed for interpretation by mlcroprogram are described in the context of other related work.
Factors involved in the use of microprogramming as a system development tool are discussed.

(Received November 1972)

1. Introduction

A conceivable goal for the designer of a computer system is to
provide programmers of the system with a securely imple-
mented programming interface at the highest level of expression
compatible with the intended range of applications.

The secure implementation of high-level structures (i.e. data
structures and functions that operate upon them) in a suffi-
ciently general form to meet such a goal is costly in system per-
formance when done by software and in development time when
done by hardware. Nor is it easy for hardware and software
development to co-exist on the same prototype. The increasing
availability of microprogrammable logic computers that are
competitive in cost with hard-wired machines of comparable
performance offers the researcher or system designer a new
strategy to demonstrate the feasibility and utility of his ideas.

Microprogrammable computers have facilities for two levels
of program interpretation built in to their hardware. The higher
level corresponds to the ‘machine code’ of conventional
machines. However, an instruction in a machine code program
is interpreted each time it is executed by another program
written at lower, ‘microprogram’ level.

Microprograms normally reside in a special fast memory
(called the ‘control store’) and exercise direct control over the
units in the central processor of the computer. They can be
designed so as to overlap many of their activities with delays
that occur in transferring instructions and data to and from the
main memory of the computer (see Fig. 1), and in more com-
plex processors with delays in functional units.

Microprogramming was originally proposed (Wilkes, 1951)
as a technique for the systematic implementation of machine
code. It has more recently been demonstrated (Flynn, 1972;
Weber, 1967) that microprograms can be used to interpret
functions more complex than those found in conventional
machine codes, resulting in faster execution of standard
programming language functions and development of machine
functions and data structures defined at a level more appropri-
ate to user and system requirements.

A number of writers (Rosin, Freider, Eckhouse, 1972;
Iliffe and May, 1972) have also noted that microprogramming
offers a new technique for the investigation of untried computer
system organisations. A computer with a writable control store
offers the research worker and system designer the ability to
evaluate a proposed system organisation at a cost that is low
compared with the construction of specialised hardware.

While the crude processing power of an emulated computer
system cannot be compared with a specialised hardware-based
system at the higher end of the performance spectrum, for
applications with relatively modest processing requirements,
this limitation is often outweighed by other advantages. The
primary benefit is the additional flexibility conferred by the
ability to vary the definition for machine functions and data
formats in the emulated machine. The availability of a writable

*Originally presented at Datafair, Nottingham, April 1973

Volume 16 Number 3

control store may be seen as converting the tasks of logical
checking and hardware debugging in hardwired machines into
a fairly conventional program-debugging activity.

The secondary benefits include increased scope for the
monitoring of behaviour in the emulated system through thg
addition of monitoring extensions to the emulation micros
program, and securlty of the microprograms against corruptloﬁ
by programs in the emulated machine. m

Although there are clear benefits to the hardware manufacturen
in the adoption of the simple, regular processor structure made
possible by microprogrammed implementation, there is as yet
little evidence that the benefits of microprogramming extengi
to improvements in the performance of a fully developed
system. With few exceptions, the functions performed bg
microprograms could equally well be performed by hardwired
logic. Most exceptions are based on the fact that functions of
arbitrary complexity performing iterative operations such as
vector sum and product, table sorting, etc. can be incorporate
in the function set of an emulated machine with greater easg
than the corresponding equivalent hardware extensions.

e/ulwotpuics

2. Hardware and supporting software
Our research is being carried out using an Interdata Model &
computer, to which a 4K x 16 bit Writable Control Store has
been attached. The configuration includes a 32K x 16 bit;
2:4 psec memory, a drum backing store and a variety of:
peripherals. The microorder code of this computer is a simpl&
16-bit one allowing eight microinstruction types to be performeai‘3
with operands held in 26 registers. Although not intended by’
its manufacturer for applications of this type, it has proved g
useable, though not always convenient tool.

When later in this paper we give performance ﬁgures it shoul@’
be remembered that the microexecution time is 400 nsecs for
logical and register load operations and 800 nsecs for arith®
metic operations. The machine is slow by current standardg
and the microinstruction set is oriented towards 1mplementatlom>
of the standard Interdata machine code. Furthermore thg
16 bit microinstruction, despite a high degree of encoding, is
unable to allow general masking or control transfers at the
microcode level in one microorder.

The development of microprograms is assisted by a number of
software systems, including a microassembler, a microprocessor
simulator, a debugging package and a specially-developed
operating system with filing facilities and interactive command
language (Cole, 1972). All of this supporting software is
programmed in the standard Interdata assembler language,
and can be executed using the standard Read Only Control
Store in the Interdata 4 computer.

9

3. Real-time systems
We have chosen to investigate the design and implementation
of programming systems for small and medium-scale real-time

205

MAIN MEMORY CYCLE

CONTROL. [T [T | |

MEMORY CYCLES

> TIME

MAIN MEMORY MICROPROGRAM MICROPROGRAM MAIN MEMORY
- TRANSFER IN PARALLEL SUSPENOED TRANSFER
INITIATED. WITH MAIN WAITING FOR FINISHED,
MEMORY MAIN MEMORY MICROPROGRAM
TRANSFER RESUMES.

Fig. 1

applications. We take the term ‘real-time applications’ to
include as one of its most important elements the problem of
designing and implementing operating systems controlling a
number of asynchronous processes and/or devices. ‘Real-time’
also denotes those applications where the computing system is
required to guarantee to a high degree of certainty that the
resources to perform a given task in a given time can be made
available. As a preliminary exercise, a small-scale survey of
users of systems in these categories was conducted. This has
been reported upon elsewhere (Coulouris and Broadbent,
1971).

4. High-level language implementation

There appear to be at least three distinct approaches emerging
to the implementation of high-level languages on a microcoded
processor. To some extent these reflect different approaches to
the design of microcoded processors and are influenced by
control store technology.

With increasing use being made of encoded microinstruction
sets the differences between microcode and machinecode tend
to be blurred especially when the microcode is interpreted by a
further lower level of stored program steps (Rosin, Freider,
Eckhouse, 1972). Flynn (1972) has proposed the use of a single
micro machine code which then becomes the target code for
compilers with the main memory as an extension to the control
store. Such a solution can hardly find much favour with those
compiler writers who complain that in general machines do not
represent the structures required by high-level programming
languages.

A second approach is to have separate target codes and micro-
coded interpreters for each programming language supported.
Using a writable control store it would be possible to load an
interpreter, at one extreme for an entire work shift or at the
other extreme for each time slice on a system running several
languages simultaneously.

The third approach is to define a system architecture at a high
level incorporating the store allocation and stacking mechan-
isms required by most high-level languages and then to extend
that interface for particular languages by introducing new data
types, control structures and machine functions.

In MEMBERS we have adopted an emulated machine archi-
tecture that is designed primarily to support a particular
programming interface within an environment that approxi-
mates to the second of the above approaches. It is intended
however that by providing for a high degree of generality in

the binding of program references, some scope for the use of the
third approach will also be retained. The programming interface
mentioned has been formulated as a language for programming
the MEMBERS machine. The language is entitled FLUID.
FLUID programs are expressed in a concise and relatively
high-level syntactic form (e.g. at a similar level to POP-2
programs). The functions available in FLUID include all of the
machine and system functions available in the MEMBERS
system, rendering the use of lower-level programming languages
unnecessary.

5. MEMBERS implementation

We shall now describe how microcode is being used in specific
areas for implementation of MEMBERS and how its use
allows us to take particular approaches to system design.

5.1. Order code interpretation

One of the earliest ‘soft’ uses of microprogramming was
Weber’s (1967) EULER translator and run-time system. Since
then several APL interpreters have been microcoded (e.g.
Hassitt, Lageschulte and Lyon, 1973). In such systems the
essential advantages of amendment at statement level to a
running program are retained. The MEMBERS interpreter is
a compromise between a full interpreter in the software sense
and the limited meaning attached to microcoding of a tra-
ditional order code. The result is that much structural infor-
mation is retained in a useful and directly intelligible form
for monitoring, diagnostics, etc. while allowing programs to be
amended at run time by, for example, recompiling individual
functions. The binding of a procedure or function’s external
references and the creation of its variables can be repeated on
each application (i.e. procedure entry) so that any changes in
name space are automatically incorporated. This binding
convention is similar to that of POP-2 (Burstall and
Popplestone, 1968), i.e. binding to the run time rather than the
compile time environment.

Of course such methods impose an overhead but that overhead
is reduced by use of microcode. The minimum time for function
call is 30 microseconds with 20 extra microseconds for binding
of each external reference when necessary.

The machine order code adopted is largely reverse Polish.
Each instruction is only one byte long but can have certain
operands such as constants, strings and switch vectors in
following bytes. It may appear paradoxical to choose such a
short machine code when frequently one of the advantages

The Computer Journal

20z udy 61 U0 1s8n6 Aq €/291.9/502/€/91/1014e/|uf0d/W0d"dNo"oILePEDE//:SARY W) PAPEO|UMOQ

5 BITS 27 BITS
5 8 BYTE
5 & INTEGER
5 11 8 8 ADDRESS
ADDRESS OF LIMIT OFFSET
PAGE CODE -
WORD.
Fig. 2

claimed for microprogramming is the ability to implement
complex machine instructions. However, the complexity in our
case derives not from a diversity of operations but from the
interpretation of relatively simple addressing and arithmetic
operations on a variety of data types or structures, the checking
of the validity of arguments for operations and the taking in line
of processing costs associated with dynamic store allocation.
In such a situation the decoding of a machine instruction is
only a small part of the total operation, accounting for 2
microseconds out of a 20 microsecond operation. The positive
advantage is the order code’s compactness and when designing
for a small computer system, compactness is an important
design aim. Compactness is also particularly important in a
paged system where a dense order code will obviously reduce
the number of page faults in executing a program.

As examples we can give the timing and length of compiled
code for certain language statements. A, B, C are locally
declared named variables and assuming B, C to contain 16 bit
integers we have

STATEMENT LENGTH (BYTES) TIME (4 SECONDS)
A—A+1 3 40
A«<B+C 4 80

The above figures are approximations based on counting
microorders and exclude interrupt handling. Actual execution
speeds can vary with the state of the stack. The orders generated
for referencing externally declared variables are different and
although the same amount of space is used they take slightly
longer in execution.

Volume 16 Number3

5.2. System monitoring

The monitoring facilities being implemented in MEMBERS
are for monitoring execution of functions and access to data
structures in the target system.

Monitoring is initiated by calling a microcoded system
function which marks the descriptor of the function or data
structure to be monitored and links it to a monitoring routine.
The monitoring routine can be either software or microcode,
the user being completely free to define his own software
monitoring routines if so desired.

5.3. FLUID

FLUID is both a command language in the sense that the user
can type individual commands or paragraphs for immediate
execution and a programming language in the usual sense that
he can compile procedures for execution as and when required.
In fact FLUID is designed to be the software programmer’s
lowest interface with the computer. Therefore all his communi-
cations to the system have to be processed by a FLUID
translator. This in turn means that the FLUID translator is a
critical item of software which should be as small and efﬁmenb
as possible consistent with maintaining clarity in the programé
ming language. Fortunately, it has been possible to design the>
MEMBERS machine code to facilitate this. The approach tha%
has been adopted also includes minimising the diversity of:

[0)

syntactic forms in FLUID to such an extent that 3
1 «2; Z

. . . @
is a syntactically correct assignment statement as would be S
10(A, B, C); 8

a procedure call. Provided the left and right hand side of thg
assignment or the procedure name and pdrameters are syn<
tactically correct as expressions then the respective FLUIL
commands will be syntactically correct. But because of thé
interpretive nature of the language these faults will be detected
and fully diagnosed at run time. We would also argue tha§
neither of these above ‘errors’ is a type likely to be made by &
programmer with sufficient frequency to warrant compile tlm&
checks.

The result of evaluating an expression such as A + 1 015;
SIN (X/2) is a 32 bit element of which the first 5 bits is a ta%
and the remaining 27 bits an argument interpreted according;
to the tag. For example, in numeric elements only eight of the?
27 bits are used for a byte and 16 for an integer but wrtIB
addresses of store the 26 bits is broken down to contain address’
of page codeword (or descriptor), current offset from start
page and limit (Fig. 2). C

Store is allocated in vectors and the data types allowed for &
vector include bytes, mtegers addresses and mixed. In the ﬁrstos
two cases the vector is a sequence of 8 or 16 bit elements bui
when the value of one of these elements is the result of am
expression it is converted to a 32 bit element with the correct.;
tag. Conversely when a 32 bit tagged numeric element 1§
assigned to a byte or integer vector element various coercion
rules are followed and the result stored in the compact form
without a tag. Vectors of addresses or mixed types are both
sequences of 32 bit tagged elements.

The use of run-time checking gives several immediate benefits
(as has been noted by Iliffe in the Basic Language experiment,
(1972)).

1. Reduction in object program size for certain classes of
application;

2. Localising of programming errors, particularly through
dynamic array bound checking;

3. Improved diagnostic capabilities.

However it is becoming apparent that the retention of program

structural information in a form which is distinguishable to the

software and the microcoded interpreter could have many

other advantages. We shall consider two here.

207

5.4. Data types and parameter checking
We have used a simple encoding scheme to represent data types,
e.g.

[BY] bytes

[VCIN] vector of integers

These are actually expressions which when evaluated have a
32 bit tagged element as a result. A function is provided in the
language whose result is the address of a new vector of store of
length and type specified by parameter. For example the
statement

BUFFER <~ NEWVEC (100, [VCBY]);

would result in the address of a vector of 100 bytes being
assigned to BUFFER. Depending on the size of vector required
NEWVEC takes upwards from a best time of 20 microseconds
to execute. Some time later we may wish to pass the value of
BUFFER as a parameter. Now parameter type checking is
something which all good programmers surely agree is neces-
sary but few actually carry out consistently because it can be
time consuming, and anyway what do you do if you get an
error? The advantages of parameter type checking by the
interpreter are that when errors do occur they are often
monitored immediately as errors in the procedure call and
become subject to either the user specified recovery procedures
or the standard default diagnostics.

Ideally the parameter checking should include testing of
upper and lower bounds and vector dimensions at procedure
entry. What we are implementing is more limited and makes
use of the type identifiers described previously. So in an example
the function declaration might begin

FUNCTION LIST;
PARAM B[VCBY];

When the function is called the interpreter checks that the
actual parameter is the address of a vector of bytes. Bound
checking will of course occur automatically when the vector is
actually referenced.

5.5. Memory management
A garbage collector is necessary in a dynamic store allocation
system which neither imposes on nor requires of the program-
mer a discipline with respect to the allocation and release of
memory segments. To perform garbage collection it is well
known that the system must be able to distinguish between
addresses and numbers in a program address space and
obviously that is one reason for the tagging described earlier.
But given that these distinctions have been introduced there are
other ways in which store management can make use of the
information available.

MEMBERS store management is not just concerned with

References

garbage collection but also with integrating the core and drum
into a conceptual one-level store by means of paging. Each
process in the machine has a single stack for allocation of space
for parameters and variables to functions in current execution
and for expression evaluation. Therefore by scanning the stack
looking for addresses a first approximation can be made to a
list of pages being used by that process. More specifically by
examining the top part of the stack allocated to the most
recently called function a list of pages in current use can be
obtained, i.e. by looking at the stack we can obtain a good idea
of the process’s working set. The scheduler can use this
approach to run only those processes whose working set it
believes to be in main store and perhaps more importantly to
pre-fetch pages for processes which it wishes to run in due
course.

6. Conclusions

The recent availability of relatively convenient facilities for the
development of microprogrammed interpretive systems has
stimulated widespread interest in the subject. We have reported
here on progress in the design of a high-level programming
system specifically intended for microprogrammed inter-
pretation.

In our own environment, the presence of a suitable micro-
programmable computer has led to a number of other related
research activities, ranging from the simple emulation of
existing machines to the interpretation of several high-level
languages. All of these studies have indicated the importance
of software aids and systematic techniques for microprogram-
ming. Much work remains to be done in these areas.

The performance and usefulness of FLUID and other micro-
interpreted systems remain to be evaluated. Results available
at the time of writing suggest that even for the relatively com-
plex machine architecture implied by FLUID, microprogram-
med emulation can provide an implementation that is
acceptable for many purposes. Further judgements must await
a future report.

7. Acknowledgements

We should like to acknowledge the contributions made to the
MEMBERS project by several post-graduate students and
research staff, in particular, M. S. Cole, P. Macres, B. Neil and
W. M. Newman have made substantial direct or indirect
contributions to the work reported here.

The work reported here has been carried out with the support
of a research grant from the Science Research Council (Ref.
B/RG/500). J. K. Broadbent also wishes to express his gratitude
for the support he has received from ICL Research Division and
the SRC under the SRC Industrial Studentship scheme.

‘WILKES, M. V. (1951). The best way to design an automatic calculating machine. Manchester University Computer Inaugural Conference.
FLYNN, M. J. (1972). International Advanced Summer Institute on Microprogramming. Eds. Boulaye & Mermet, Publ. Herman, Paris.
‘WEBER, H. (1967). A Microprogrammed Implementation of EULER on IBM System/360 Model 30, CACM, September, Vol. 10, No. 9, pp.

549-558.
Rosiy, R. F., FREDER, G., and EckHousg, R. H., Jor. (1972).
CACM, August, Vol. 15, No. 8, pp. 748-760.

An Environment for Research in Microprogramming and Emulation,

ILLiFsg, J. K., and May, J. (1972). Design of an Emulator for Computer Systems Research, International Advanced Summer Institute on
Microprogramming, Eds. Boula-e & Mermet, Publ. Herman, Paris.

‘CoLE, M. S. (1972). An Operating System for Microprogram Development, presented at the InterUniversity Computer Science Collo-
quium, Edinburgh, September 1972. (See also MEMBERS Report 11, Department of Computer Science & Statistics, Queen Mary
College).

‘CouLouRIs, G. F., and BROADBENT, J. K. (1971). Some User Reactions to Operating Systems: a selective survey, International Symposium
on Operating System Techniques, Queen’s University, Belfast.

HassiTT, A., LAGESCHULTE, J. W., and LyoN, L. E. (1973). Implementation of a High Level Language Machine, CACM, April, Vol. 16,
No. 4, pp. 199-212.

BURSTALL, R. M., and POPPLESTONE, R. J. (1968). POP-2 Reference Manual, Machine Intelligence 2, Edinburgh, Oliver and Boyd.

ILiFrg, J. K. (1972). Basic Machine Principles, 2nd Edition, MacDonald.

The Computer Journal

20z udy 61 U0 1s8n6 Aq €/291.9/502/€/91/1014e/|uf0d/W0d"dNo"oILePEDE//:SARY W) PAPEO|UMOQ

