A method of software evaluation: the case of
programming language translators

H. C. Lucas, Jr.* and L. Pressert

This paper presents a method for the specification and evaluation of software modules. The proposed
strategy involves the use of existing documentation and synthetic or benchmark programs to evaluate
a set of key characteristics that represent the module under consideration. The method is discussed
and illustrated by considering the evaluation of programming language translators in detail. An
example demonstrates how the method is applied to the evaluation of the popular WATFIV

FORTRAN compiler.
(Received August 1972)

The evaluation and selection of computer systems is an import-
ant aspect of modern technical management. At the present
time, software represents a major portion of the cost of
computer systems. Therefore, systematic approaches to the
specification, evaluation and selection of software are of great
practical importance.

The problem is emphasised by the recent ‘unbundling’ of the
computer industry. Originally, all hardware and software was
‘obtained from the computer manufacturer at a single, ‘bundled’
price. Today, different manufacturers have different practices,
but IBM with well over half the world’s computer market has
separate pricing. A large number of independent software
companies offer software packages which compete with those
available from the hardware manufacturer. For the decision
maker, this increased flexibility means that more alternatives
will have to be considered in the configuration of a system.
Indeed, the sophisticated and aggressive manager may effect
large savings through a sound evaluation procedure.

In this paper a method is presented for the evaluation
(specification) of programming language translators which
include compilers, interpreters, and assemblers. The method
illustrated here for the case of translators may be applied to the
evaluation of other software modules.

The evaluation of programming language translators is
carried out by first identifying for evaluation a set of fourteen
key translator characteristics. The weight and applicability of
each characteristic depends on the evaluator’s environment.
Next, techniques for the evaluation of these characteristics are
discussed. Finally, as an example, the method is applied to the
evaluation of the WATFIV FORTRAN compiler.

Translator characteristics

For purposes of evaluation and specification it is appropriate
to consider a programming language translator as composed of
a set of independent characteristics, the aggregate of which
defines the desired translator (Presser, 1970). These character-
istics are not listed in the order of importance; their weight will
in general be unique to each situation.

Set of characteristics

1. Cost

Specifies the cost of the translator in dollars, the terms for
purchase or lease, and the provisions for update and modi-
fications.

2. Source language _
A translator must accept and correctly translate any syntacti-

cally legal source language program. The processofdefiningthe
syntax of a source language, that is, the total set of valid
programs, is under control (e.g. Backus Naur Form). However,
the translator may only have been designed to accept a subset
of the full language specifications.

3. Translation environment

It is necessary to specify the minimum environment required
by the translator, or the available environment if it is in excess
of what is considered the minimum requirements. The speci-
fication should consist of a description of the hardware
environment (e.g. CPU, memory space, I/O units) as well as of
the software environment (e.g. library, utility, and storage

management routines). Also, a delineation of the interfaces

between the translator and the rest of the system should be
included.

4. Translation time
How much time does the translator require in the translation
of programs ? Is the translator I/O or compute bound ?

5. Execution environment
Comments similar to those appearing under 3 above apply here.

6. Execution time
Comments similar to those appearing under 4 above apply
here.

7. Diagnostic information and error recovery

There are two aspects of this characteristic: the first is diag-
nostic information provided and degree of error recovery.
The effectiveness of a language and translator system should be
measured in terms of the amount of time and effort required
from the time a programmer starts coding (assuming he under-
stands his problem well) to the time he obtains a working
program. Thus, it is important to determine the degree to which
a translator aids a programmer in the isolation and correction
of errors.

The second aspect is general information. Any summary data
and its quality should be evaluated including: location of
variables, constants and literals; which variables were refer-
enced and where, etc.

8. Documentation

Four types of documentation are important: first, structural/
functional documentation describes the logical and modular
composition of the translator as well as its interfaces with the

*Graduate School of Business, Stanford University, Stanford, California 94305, USA.
+Department of Electrical Engineering, University of California, Santa Barbara, California 93106, USA. (This work was supported in part

by the National Science Foundation, Grant GJ-31949.)

226

The Computer Journal

20z udy 61 U0 1s8n6 Aq £GE91.9/922/€/91/5101E/|UfL00/W0d"dNO"oILLEPEDE//:SARY W) PAPEOUMOQ

rest of the system; more detailed documentation should include
the actual code interspersed with comments. Third, installation
information explaining how to install and tailor the translator
to a particular environment should be provided. Finally,
documentation describing maintenance procedures is useful.

9. Translator writing system organisation

A translator writing system is the aggregate of tools that
facilitate the writing of translators for various languages and
different computers (Presser, 1972). The importance of this
characteristic depends on the environment and use planned for
the translator. What is involved in making modifications to the
translator such as moving it to a different computer or trans-
lating a different source language? If such changes are con-
templated, consideration of this characteristic at translator
selection time could result in major savings.

10. Translator mode
The translator may operate in diverse environments (modes)
such as batch or time-sharing modes.

11. Execution mode
Comments similar to those appearing under 10 apply here.

12. Conversion and function evaluation

Most programming languages include automatic conversion
and evaluation of functions (e.g. SIN); the accuracy of these
evaluations is important.

13. Effect of translator on language

To what extent does the translator, itself, influence the original
source language definition ? For example, in some cases it may
be possible to effect a much better translator implementation
if changes to the source language are permitted (McAfee and
Presser, 1972). This characteristic would only be applicable if
a new language was being designed.

14. Monitoring artifact

It is useful to obtain measurements on the translation process
and on the execution of translated programs (Lucas, forth-
coming). It is necessary to specify here the type of measure-
ments desired and an upper limit to the cost of obtaining these
measurements. The cost is specified as a percentage of the time
and resources (storage space in particular) required for
measurement. Experience shows that the introduction of
software measurement artifact for the collection of a large
class of interesting data is inexpensive if considered during the
design of the translator; this is particularly true if the trans-
lator is well organised (Presser and Melkanoff, 1969).

Evaluation techniques

Methods

Two basic tools are available to evaluate the performance of
computer systems or their component modules. Modelling,
whether analytic and/or through simulation, allows the predic-
tion of system performance. Monitoring, through hardware
and/or software techniques, permits the measurement of actual
performance. A number of block-level models of programming
language translators have been developed (Presser, 1972);
however, these are not suitable for detailed evaluation of
translator performance. The coding of the detailed simulation
of a translator would require as much effort as the actual
translator implementation, particularly so when translator
writing system tools are available. Therefore, the recommended
methodology for the evaluation of implemented translators is
based on benchmarks or synthetic modules and monitoring
(Lucas, 1971a). Benchmarks and synthetic modules are exam-
ined in some detail here. For a careful treatment of monitoring

Volume 16 Number 3

techniques the reader is referred to Presser and Melkanoff
(1969) and Dumont and Presser (forthcoming).

A benchmark program represents an existing program which
has been in use in the installation. The program is physically
executed on the computer which is to be involved in the evalu-
ation. A synthetic module is used in the same way as a bench-
mark program; however, it does not necessarily represent an
existing program. Instead, a synthetic module is written to
model the characteristics of the anticipated job stream. The
major advantage of synthetic modules over benchmarks is the
flexibility they provide. A series of synthetic modules can be
parameterised so that the user has a number of different options
available for representing his job load. For example, a module
dealing with matrix manipulation should make it possible to
select the different operations performed and to input para-
meters defining the size of the matrices involved in the calcu-
lations (Lucas, 1972). For translator evaluation, the use of
synthetic modules may be required if there is no history from
which to select benchmarks.

Use I
To use a series of benchmarks or synthetic modules, it is necess
sary for the evaluator to have some idea of either his present of
anticipated job stream. Appropriate benchmarks or synthet@
modules can be selected which reflect that job stream. Once g
jobload has been estimated, a series of benchmarks or synthetid
modules can be linked together to form programs. At the nex%
level, the different programs are merged into a series of experi2
ments in which the jobs are executed and the results interpreted
For example, to model a 40 per cent I/O bound and 60 per cerﬁg
CPU bound system, the evaluator could configure synthetic.
modules or benchmarks representing exactly this proportiog
of activity, or he could use four exclusively I/O bound and six
CPU bound jobs in one experiment. For some of the criteri&
for translator evaluation, timing information will be the onl

data to be evaluated. However, for a thorough profile of the
translator, the evaluator will have to examine listings, errox
diagnostics and other information produced by the runs ang-
some of this information must be rated subjectively. o

ce/eloL®

Problem areas
There are a number of problems with the technique suggesteg
above for evaluating translator performance. In many instance@
determining the job load is a difficult undertaking for several
reasons. First, particularly in scientific or engineering computZ
ing centres, the load varies widely from day to day. While the
average load may not tax the available equipment, peak loads
create large bottlenecks in processing which are difficult t&
model. A large number of runs is needed to faithfully model the
anticipated job mix. When the purpose of the evaluation is t&
select a translator for a system development project, the typ%
of code which will be translated may not be obvious at th&
stage when translators are being evaluated. (For an interesting
discussion of some experimental results on FORTRAN usage,
the reader is referred to Knuth, 1971.)

It is not clear exactly how different modules should be linked
together to form jobs. If the modules are too small, a large
amount of time may be spent in linkage between modules so
that the runs become unrepresentative. Using the approach
suggested here also requires access to the translator and to the
computers on which it might be used. A large number of runs
and corresponding computer time may also be required to
undertake a thorough evaluation. Finally, the analysis of the
results is difficult. For some of the simple indicators such as
execution time and memory space utilisation, there is little
problem. However, other indicators such as quality of docu-
mentation or degree of error recovery require careful
consideration.

227

Table 1 Translator characteristics and evaluation techniques

TRANSLATOR CHARACTERISTIC BENCHMARK/ SYNTHETIC

MODULES

EVALUATION

SPECIFICATION DOCUMENTATION

1. Cost

2. Source language
definition and
acceptability

A series of syntactically
correct program modules
representing all source
language elements

3. Translation environment A series of program modules
that exercise the specified
translation time minimum

environment

4. Translation time A representative set of
program modules is translated

(and executed)

5. Execution environment A series of program modules
that when translated exercise
the specified execution time

minimum environment

6. Execution time A representative set of
program modules is translated

and executed

7. Diagnostic information
and error recovery

A series of program modules
with specific errors is
translated and executed

8. Documentation

9. Translator writing
system organisation

10. Translator mode A series of program modules

is translated (and executed)

11. Execution mode A series of program modules
is translated and executed
12. Conversion and function A series of program modules
evaluation is translated (and executed)
13. Effect of translator —
on language
14. Monitoring artifact A series of program modules

is translated and executed,
with and without the artifact

Is the translator, in the desired
form, and its documentation
available for the amount
quoted ?

Are the programs translated
and executed correctly ?

Are the programs translated
and executed correctly ?

Is translation time within
specified limits ?

Are the programs executed
correctly ?

Execution time below specified
limits ?

Evaluation of diagnostic
information and error recovery
[refer to (Presser & Benson,
submitted for publication) for
a possible approach]

Does the documentation
satisfy the general objectives
stated in the text of

this paper ?

Does the translator
organisation permit the type
of modifications desired ? Is
the effort required within
specified limits ?

Does the translator operate
correctly in the desired
mode(s)?

Does the object code execute
correctly in the desired
mode(s) ?

Are converted and evaluated
values within specified limits?

Cost

Are any restrictions and/or
extensions to the source
language accurately
documented ?

Are the stated minimum
environment and interfaces
accurate ?

Any special cases?

Are the stated minimum
environment and interfaces
accurate ?

Any special cases?

Is error handling within
specified limits ?

Is the documentation
available ?

What are the inherent system
limitations ?

Any special cases?

Any special cases?

Any special cases?

To what extent is it permissible —

to modify the source language ?

Are the desired measurements
clearly output? Is the
monitoring cost within
specified limits ?

Are the monitoring facilities
and their use clearly
documented ?

Translator evaluation
Translator attributes
It is not possible to evaluate directly or simply some of the
criteria for translator performance discussed in the second

section of the paper. Table 1 lists the various criteria and des-
cribes how synthetic modules or benchmarks are used for
evaluation along with an examination of documentation. The
second column of the table describes the modules which are

The Computer Journal

20z udy 61 U0 1s8n6 Aq £GE91.9/922/€/91/5101E/|UfL00/W0d"dNO"oILLEPEDE//:SARY W) PAPEOUMOQ

executed for each particular criterion. The third column des-
cribes how the results of the tests are evaluated and the final
column discusses the role of the documentation.

For example, the second criterion, the acceptability of specified
source language, can be evaluated using a series of syntactically
correct modules which represent all of the language elements of
interest. The output of this process is evaluated on whether or
not the programs were translated and executed correctly. The
documentation is also examined to determine if it properly
specifies any limits of the source language. The methods sug-
gested in the table are sufficient for the evaluation of a single
translator or for comparing several alternative translators for
the same language.

Module requirements

In reviewing Table 1 it can be seen that the evaluation process
requires a number of different benchmarks or synthetic modules
and calls for the formulation of several different types of
experiments. Two major types of modules are required as
shown in Table 2. The first of these is a ‘standard series’ of
modules which reflects the anticipated job mix. It contains a
representation of the important elements of the anticipated job
stream. Different subsets of this series are selected for experi-
ments. For example, one subset can be used to evaluate func-
tion conversion and evaluation. Other criteria are evaluated
with this series by selecting modules to represent the proportion
of input and output activities; the proportion of compilation
versus execution, etc. This representation can either be accom-
plished in the selection and linking of modules, or in the types
and numbers of modules incorporated into a series of
experiments.

Table 2 Synthetic/benchmark module series for translator
evaluation.

Series 1
Modules reflecting anticipated job mix

Series 2

(a) All language elements

(b) Syntax errors in all language elements
(¢) Logical errors

The second series of modules is composed of three subseries
used for evaluating particular translator criteria. The first of
these subseries incorporates every statement type specified for
the translator. The modules in this subseries should also
execute in some meaningful way so that both the syntactic
acceptability of the subset and the correctness of the code
generated can be evaluated. The second subseries contains
statements with incorrect syntax for each statement type to
evaluate the handling of individual errors and their cumulative
effect on translation. This subseries contains a number of
modules in which the type and severity of errors are varied.
The last subseries includes modules with logical errors to
determine how errors are handled at run time.

Using these two major series of modules, experiments can be
formulated to evaluate translators on many of the criteria
described earlier as shown in Table 3. The amount of effort
devoted to the evaluation can be balanced against the expected
benefits. Simple modules which are roughly representative of
the anticipated job mix have been used where time or resources
for evaluation are quite limited (Lucas, 1971b). Also, if two
translators are being compared which are known to be very
similar and to differ only on minor points, some of the criteria
may not be evaluated to reduce the amount of effort involved.

An example
A hypothetical example has been constructed to illustrate the
proposed method for translator evaluation.

Setting :

An engineering computer centre is used primarily by different
personnel for engineering computations both for research
and design work. The processing load is almost entirely in
FORTRAN; there is minimal Input/Output activity and there
are a large number of compilations as many short jobs are
debugged. The computer in use is an IBM 360 model 75
running under Operating System (OS) 360.

Table 3 Translator characteristics and evaluation modules

Cost

Source language definition and acceptability
Translation environment

Translation time

Execution environment

Execution time

Diagnostic information and error recovery
. Documentation

. Translator writing system organization

10. Translator mode

11. Execution mode

12. Conversion and function evaluation

13. Effect of translator on language

14. Monitoring artifact

VONAUNA WD~

*
2
1
1
1
1
2b, 2¢
*
*
1
1
1
*
1

*Not suitable for evaluation with modules; see Table 1

The management of the computer centre is interested in?
evaluating WATFIV!, an in-core compiler whose demgn
emphasises detailed diagnostics. The major management g

noogLuepe:JE//:sdnu WwioJ} papeojumoq

3

=
Q

questions are: Will it execute successfully on the present_

computer ? How does it compare with two other FORTRAN
compilers available at the centre: FORTRAN G? andz
FORTRAN H3? '

Approach

The proposed evaluation method can be used to answer these
management questions. While the evaluator does not have
specific data available on the job mix, it appears to be similar&;
to the one reported in Knuth (1971). In that work, static

=

1

o]

€919/9¢¢/€/91/31!

-

)]

U

analysis and dynamic monitors were used to analyse the@

structure of a number of FORTRAN programs; the most3
1mportant statements in terms of compilation and amount of
time in execution were listed. In summary, it was reported that
the most popular constructs were: ASSIGNMENT, IF, GO =
TO, and DO.

To represent such a job mix, a group of synthetic modules
was programmed. The first series consists of several modules®
linked together to represent exactly the proportion of state-
ments observed by Knuth. Since a dynamic monitor was not
available to give execution frequencies, the synthetic program
was designed to execute each statement the same number of
times as the frequency of execution time reported in Knuth
(1971). These tests matched thestaticcountsexactlyand approxi-
mated the dynamic behaviour. A separate synthetic module was
coded to evaluate function conversion. This module printed the
sine, cosine, tangent, and cotangent for a sample of arguments.
Common and natural logarithms were also evaluated in the
same manner.

The WATFIV compiler (Version 1, level 2, Aug. 1970), is available from the University of Waterloo Faculty of Mathematics, Waterloo,

Ontario.
2Level 18.
3September 69 release.

Volume 16 Number3

('D

o

_\

>

o
=

Table 4 Evaluation of WATFIV

1. Cost
WATFIV: $500 (Includes a copy of the translator, future

updates, user’s guide and installation guide.)

G: No additional cost to IBM 360 centres. (Includes
an object copy of the translator, future updates,
user’s manual, installation information, and
program logic manual.)

H: No additional cost to IBM 360 centres. (Includes
an object copy of the translator, future updates,
user’s manual, installation information, and pro-
gram logic manual.)

2. Source language

WATFIV supports the FORTRAN language defined in IBM
document C28-65-15-7; in addition the following facilities are
supported.

Free form I/O

Character variables

Multiple assignment statements

Expressions in output list

Initialisation of blank COMMON

Initialisation of COMMON in other than block data
subprograms

Implied DO’s in data statements

Subscripts in right-hand side of statement function
definitions

Logical complex, or character value subscripts

Multiple statements per card

Comments after statements

3. Translation environment
Hardware. The minimum translation time requirements of
WATFIV are an IBM System 360 with:

128K bytes of main memory

Universal instruction set

One printer with at least 132 print positions
One direct access storage device

One tape drive.

Software. A detailed list of all OS 360 Data Management and
Supervisor Macros used by WATFIV is available; however,
it is not presented here for the sake of conciseness.

4,6. Translation and execution times

As described under item 14 below, the WATFIV compiler out-
puts translation and execution times. Since such information
is not supplied by the G and H compilers it is difficult to make a
fair comparison without careful study (monitoring) of these
systems. WATFIV performs translation and execution in one
step. The G and H compilers require one step for translation
and one for execution. Operating System 360 outputs the times
spent in each step of a job. Thus, listed below are the total times
spent in translation and execution as read from the printed
step times. The adjusted results are the difference between the
synthetic series step times and the step times of a program
consisting solely of an END statement. The adjusted figures
represent a rough estimate of translator performance less
operating system overhead. When interpreting the results
tabulated here, the reader should be well aware of the fact that
the Standard timing mechanisms in the System 360 are rather
poor for measurement purposes (Dumont and Presser, 1972).

STEP TIME IN SECONDS

WATFIV G
Synthetic series 1 2-57* 3-44 + 129 = 473
END card program 0-35* 040 + 0-66 = 1-06
Adjusted results 1-28 + 0-85 ~ 2:22 3:04 + 0-63 = 3:67
H(H2)!
Synthetic series 1 507 + 112 = 6:19
END card program 077 + 0-55 = 1-32
Adjusted results 4-30 + 0-57 = 4-87

5. Execution environment
Similar to 3.

7. Diagnostic information and error recovery*

"WATFIV G H(HO)

ASSIGNMENT 66 55% 47%

IF 73% 58% 69%
GO TO 72% 51% 429% o
DO 65% 12% 459% 2
<)
8. Documentation available to user %
WATFIV G H 3
Structural/functional No Yes Yes :
Listings Yes Yes Yes g
Installation Yes Yes Yes S
Maintenance No No No 2
Q.
[0}
9. Translator writing system organisation %
The WATFIV translator is intended for a well define@®

FORTRAN/360 combination. It is coded in 360 assemblﬁ
language and this characteristic does not apply.

10. Translator mode
WATFIV G H

Batch (in-core) Batch Batch
11. Execution mode

WATFIV G H

Batch Batch Batch

6 Aq £5€£91.9/9z2/€/91/9101E/|ulWOod/Wo

12. Conversion and function evaluation
Selected trigonometric functions agreed to at least five demmaﬁ
places between all three compilers. Selected common and”
natural logarithms agreed to at least four decimal places’
between all three compilers. All results agreed to four demmalﬁ
places with a book of tables (Allen, 1947).

20z Iud

13. Effect of translator on language
Since FORTRAN is well defined, no changes to it are permitted
and this characteristic does not apply.

14. Monitoring artifact

The WATFIV translator outputs the time that it took to
translate a program, as well as the time that the translated
program spent in execution. Information about the amount of
memory used by a program during execution is also output.
Such information is not supplied by the FORTRAN G and H
compilers.

The FORTRAN H compiler allows one of three levels of optimisation to be specified: HO, H1, H2; the highest level is H2.

?According to the WATFIV output 1.31 secs was devoted to compilation and 0.86 secs to execution.

*According to the WATFIV output 0.03 secs was devoted to compilation and 0.01 secs to execution.

*The higher the percentage, the better the diagnostics. For details on the rating scheme, refer to the text and Presser and Benson (submitted

for publication).

230

The Computer Journal

The second series of modules did not include a program to
exercise all language constructs. It is known that WATFIV
does include the IBM FORTRAN specifications from experi-
ence, documentation, and because this was a major design goal
of the compiler. This second series consisted of a set of sub-
modules that were used to evaluate syntactic error detection and
correction.

The approach employed for the evaluation of diagnostics is
that discussed in Presser and Benson (submitted for
publication). In essence, it consists of defining a weighted error
range and assigning to each translator a total score based on its
performance; the higher the score the better the performance.
The level of the error range utilised varies from detection and
correction of specific errors at the positive extreme to incorrect
error information at the negative extreme. Four synthetic error
submodules were coded. Each submodule was utilised to
evaluate the response of the translator to errors in each of the
four FORTRAN statement types previously mentioned. The
overall quality of the diagnostic messages was also taken into
consideration.

Finally for those translator characteristics shown in Table 3
which were not-amenable to evaluation using synthetic modules,
relevant documentation was examined. All runs were made on
an IBM 360/75.

Results
The results of the evaluation are shown in Table 4. The
WATFIY translator is relatively inexpensive and is, in essence,
compatible with IBM’s G and H FORTRAN translators.
(WATFIV provides extensions to the FORTRAN language not
supported by IBM ; these might have to be prohibited from use
by management to maintain compatibility.) The translator
requires a translation and execution environment that is amply
covered by the hypothetical facilities.

The various times measured are listed in Table 4. In evaluating
these times it must be taken into account that different trans-
lators are designed with emphasis on different characteristics.

References
ALLEN, E. S. (ed.) (1947).

Limited, United Kingdom (forthcoming).

KNUuTH, D. (1971). An Empirical Study of FORTRAN Programs, Software Practice and Experience, Vol. 1, pp. 105-133.

Six Place Tables. McGraw-Hill Book Co., Inc. New York.
DuMoONT, D., and PRESSER, L. System Monitoring, in Infotech’s 1972 State of the Art Report on Operating Systems, Infotech Informatio

For example, WATFIV is supposed to emphasise diagnostics
while the IBM FORTRAN H is intended to emphasise the
optimisation of object code. The evaluation of diagnostics
indicates that WATFIV indeed performs a much better
diagnostic task than either the G or H compilers. To do a fair
evaluation of the object code (i.e. execution time) generated by
the FORTRAN H compiler it would be necessary to run a more
elaborate job mix and to obtain more accurate execution times.
Also, since the WATFIV translator is resident in main memory
during execution of object code, the WATFIV system requires
more main memory space than the G and H translators.

The results relating to the remaining characteristics can be
read directly from Table 4, answering management’s earlier
questions. First, the WATFIV compiler will run on the system.
Second, it compares well with the presently available
FORTRAN compilers. WATFIV offers superior diagnostics
and fast compile times but slower execution times. Thus, it is
well suited to an environment which includes heavy debugging.

Summary
The proper evaluation and selection of software is of greaty
importance to those technical managers responsible for thé
software acquisition process. A method has been presented thatg
permits a sound approach to the problem of evaluating soft-(I>
ware modules. In essence, the method consists of 1dent1fy1ngq1
those characteristics that determine the behaviour of the softS
ware module under consideration. Once these characteristicss
have been isolated they are evaluated through synthetic o
benchmark programs that model the anticipated job mix. Then
results obtained are examined to arrive at an overall evaluatlonQ
of the software module. Throughout the process the avallablg
documentation is examined in detail.

To illustrate the method, the evaluation of programmlng
language translators was treated in detail. Fourteen key3
translator characteristics were identified and modules for thelé

evaluation described. Finally, the technique was employed tds
evaluate the WATFIV compiler.

q £5£919Rzz/E/91/o0ME U

Lucas, H. C., Jr. (1971a). Performance Evaluation and Monitoring, Computing Surveys, Vol. 3, No. 3, pp. 79-91.

Lucas, H. C., Jr. (1971b). The Evaluation of a Time Shared Computer Using a Synthetic Job, La Primera Conferencia de Computacion parif
Latmoamenca, Mexico City, Mexico, August 1971, pp. 573-582.

Lucas, H. C., Jr. Performance Evaluation and Project Management, in Command and Control Software Technology for 1975-1985. Navalﬁ
Electromcs Laboratory Center, San Diego, California (forthcoming). S

Lucas, H. C., Jr. (1972). Synthetic Program Specifications for Performance Evaluation, Association for Computing Machinery 1972 Annuals
Conference Boston, Massachusetts, pp. 1041-1057. P

MCAFEE, J., and PRESSER, L. (1972). An Algorithm for the Design of Simple Precedence Grammars, JACM, Vol. 19, No. 3, pp. 385- 3952

PRESSER, L. (1970). On the Specification of Programming Language Translators, IEEE Sixth Regional Conference, Seattle, Washmgtong
May 1970.

PRESSER, L. (1972). Translation of Programming Languages, in Computer Science, A. Cardenas, L. Presser, M. Marin (eds.), John Wiley &
Sons, Inc., New York, pp. 365-408.

PRESSER, L., and BENSON, J. Evaluation of Compiler Diagnostics, (submitted for publication).

PRESSER, L., and MELKANOFF, M. A. (1969). Software Measurements and Their Influence upon Machine Language Design, Spring Joint
Computer Conference, Boston, Mass., May 1969, pp. 733-737.

Volume 16 Number 3 231

