State estimation algorithms for non-linear stochastic

sequential machines
S. G. Tzafestas

Computer Control Section, Computer Centre, Nuclear Research Centre, 'Democritus’,

Athens, Greece

The problem of estimating the state sequence for a number of stochastic sequential machine models
is considered. Basically, all models are assumed to have the structure commonly used in the
stochastic control field, i.e. that of a deterministic system corrupted by random disturbances. A
Bayesian sequential information processing approach is followed which is most convenient for
dealing with finite-state systems. The resulting estimators are given in the form of sequential algor-
ithms which are suitable for a digital computer. However, these estimators can be reduced in the
form of finite machines with the aid of well-known state equivalence/reduction techniques. An
example is presented which illustrates the effectiveness and usefulness of the theory. The results
of the paper are applicable to a large variety of digital communication systems involving noisy
channels and also to quantised stochastic control processes.
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1. Introduction

Much research has been devoted in recent years to the prob-
lems of designing optimal filters, predictors and smoothing
filters for conventional dynamic systems, lumped or distri-
buted, corrupted by random disturbances and noises (Bucy,
1968; Cox, 1964; Handschin, 1970; Kailath, 1968; Kalman,
1963; Meditch, 1967 and 1970; Raugh, 1963; Tzafestas and
Nightingale, 1969). However, not much analogous theory
exists for stochastic finite automata and sequential machines
(Booth, 1970). The research in the automata field was mainly
devoted to the design of realisable models (Gelenbe, 1971),
state assignment and decomposition (Bacon, 1964; Stearns and
Hartmanis, 1961), and state reduction (Even, 1965; Carlyle,
1963 ; Nieh, 1970).

The present paper is the first part of a work dealing with the
application of modern stochastic estimation and control
techniques to finite-state systems such as automata and sequen-
tial machines. The results will find application to the optimal
design of time-sharing computing systems, of digital data
processors, of digital noisy communication systems, of sampled
data processes with quantised states etc. This paper treats the
filtering, prediction and smoothing problem of several, hard-
ware-realisable, stochastic sequential machine models.* A
Bayesian approach is adopted which is most convenient for
treating finite-state systems.

The results are given in the form of sequential computational
algorithms, i.e. in the form of growing-state machines. How-
ever, using well-known state-reduction techniques (Booth,
1967, 1970) these infinite-state machines can be reduced to
equivalent finite-state ones which then can be realised with
conventional digital hardware equipment by using the results
of Gelenbe (1971).

An example is studied which illustrates all aspects of the
present theory namely the realisability of the stochastic
sequential machines considered, the usefulness of the estima-
tion results and finally the possibility of reducing the estima-
tors into realisable finite-state machines.

2. Problem formulation
The basic model to be first treated in the present paper is a
stochastic sequential machine (SSM) M, of the type:

3l + 1) = f10e0), w(l), K, _
My 30 = gy, o), k) K =0 L2 } ()

where k denotes discrete time, x(k) is the state vector of the
machine at time k taking values from a finite vector set
X = {x;, X5, ..., X,}, called the state set; y(k) is the output

*These models cover most of the situations encountered in practice.
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vector of the machine at time k taking values from a finite2
vector set Y = {¥y, V3, - . . Ym}, called the output set; w(k) iss
the input random vector d1sturbance at time k taking valueﬁ
from a finite set W = {w;, w,,...w,}, called the mpth
disturbance set; v(k) is the output random disturbance at tim
k taking values from a finite set V. = {vy, vy, . . . v}, called thes
output disturbance set; and f;, g, are known vector-valuecg
functions, usually described by transition tables or state dia+;
grams, which define the behaviour of the machine. An)&

known input functions, such as test sequence signals or contro‘g
inputs are accounted for by the explicit dependence of f; an

g, on the time argument k. 2

It is assumed that the random disturbances w(k) and v(k) have;

known discrete probability distributions =4

. o

{pw)} = {p(w): w; € W} with Z pw) =1 } (Zé

{p()} = {p(vy): v; €V} with Z P(v.) =1

and possess the following properties:
(i) w(k) and v(k) are stationary
(ii) w(k) and v(k) are white
(iii) w(k) and v(c) are independent for all k, 6 = 0, 1, 2, .
This is actually a Mealy type machine with random mputs an
is denoted here as;

M; =<{W,V,X, Y, {pW)}, {P(V)} f1, 817 3

f1 :X x W > X (next-state mapping)
1 :X xV->Y (output mapping)

where
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A block dlagram of this machine is shown in Fig. 1. Since thez
disturbances w(k) and v(k) are white, the machine M, actually\,
represents a finite-state Markovian process. The problem to bng
studied here is:

Given a sequence of observed outputs
= {»0), ¥(1), .. ., y(k)} @
of the SSM M, and an a priori probability distribution
{p(x(0))} = {p«0) = prob [x(0) = x;] : x; € X}

a0 =1

Find an optimal estimate £(k + 6|k) of x(k + 6) for 6 = 0,
0 >0and 0 <O.

Note that when 6 = 0 we have the ‘filtering’ problem in
which an optimal estimate of the current state is sought, when
0 > 0 we have the ‘prediction’ problem in which an optimal
estimate of a future stateis sought, and finally whenf = —c¢ <0

)
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we have the ‘smoothing’ problem in which an estimate of a
past state is sought.

In the above formulation one can include in the state vector
x(k) unknown parameters either constant or random (machine
identification problem), and also unknown input signals
(messages) generated by noisy sources (digital communication
problem). For completeness, it is briefly illustrated here how
the SSM M, may represent a digital communication system
composed by a noisy digital message source followed by a
digital message processor (coder, modulator, etc.) and by a
noisy channel with memory.

It is assumed that the vector-valued message x,,(k) generated
by the source, is described by the stochastic sequential machine
equation

Xp(k + 1) = fu(Xn(k), Wn(K), k)

where the function f,, is known and the random disturbance
w,(k) is white. The message processor unit receives x,,(k) and
gives the signal y,(k). Its equations are

xp(k + 1) = fo(x,(k), xn(K), k)
Vp(k) = gy(x,(k), xp(k), k)
where x,(k) is the state vector of the unit. Finally the channel
receives y,(k) and transmits the observed signal y(k). The
channel equations are
xk + 1) = fux k), y,(k), w k), k)

W(k) = g(x[(k), y,(k), v(k), k)
Defining the overall state vector x(k) and the next state func-
tion f; as:

Xn(k)

x(K)| »

x(k)

x(k) =

Jn(Xn(K), Wn(K), k)

Selx k), g,(x,(k), xn(K), k), w(K), K}

the overall communication system equations take the form (1)
with

81(x(k), v(k), k) = g.{x(k), g(x5(K), Xn(k), k), v(k), K}

and
Wi(K)
wk) = [- -- -]
w (k)

3. Filtering problem
In this case we seek the estimate R(k|k). Let us define the
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conditional probabilities S;(k|k) and Sk + 1|k) as:

S;(klk) = prob {x(k) = x;| Y,} i=12...n 6)
Sik + 1lk) = prob {x(k + 1) = x;|]Y,) k=0,1,2,...

It is well known that Si(k|k) : i = 1,2, ..., n contain all the
necessary information for estimating x(k), i.e. for computing
R(klk).

A recursive equation for computing {Sy(klk) : k=1,2,...}
can be found by making use of Baye’s rule as follows:

Sk + 1lk + 1) = prob {x(k + 1) = x;| Y, 1}

_ prob {x(k + 1) = x;, Y}, y(k + 1)} (1)
- prob {Y,, y(k + 1)}

_ prob {y(k + D|x(k + 1) = x;} prob {x(k + 1) = x;| Y3}
_zl prob {y(k + DIx(k + 1) = x;} prob {x(k + 1) = x| ¥;}

Now using the output equation y(k) = g,(x(k), v(k), k) we see
that given the observation y(k) at time k, the probabilities

Zi(k) = prob {y(k)lx(k) = x;} = 3. p(v) ®)
k=0,1,2,...;i=1,2..,n

where
V.= {veV:yk) = g,(x; v, k} )]

can be easily computed. Hence Zyk):i=1,2,..
k=0,1,2,... are assumed to be known.
Introducing the following vector notation:

RN

S, (klk) S,(k + 1]k)
sik) = | SR s+ 1 = [S2E F TR
S, (k) S,k + 1K)
Z,(k)
z) = [“®[  ao)
Z,(k)
Z.(k + 1)S,(k + 1[k)
Zk + 1Stk + 1)) = |22k + DSa(k + 11k) |
Z,(k + DS,k + 1]k)
(Z(k + 1), S(k + 11k))
Sy(k + 1]k)
={Zk+1),...,Zk + 1)}[ : } (11)
S,(k + 1]k)
equation (7) can be written in vectorial form as:
_ Z(k + 1Stk + 1K) .,
Stk + 1|k + 1) = D SE TS 1k =0, 1,2..(. |
12

The probability.S,-(k + 1]k) can be computed as follows:
Sik + 1|k) = prob {x(k + 1) = x;|Y,}
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prob {x(k + 1) = x;, x(k) = x;| Y}

3 prob {x(k + 1) = x|x(k) = x;}
- x prob {x(k) = x| ¥;}
3 Mk Sy(klk)) = MT(60) S(klk) (13)
where M, (k) isj defined as:

M;k) = prob {x(k + 1) = x;|x(k) = x;} = Z p(w )}(14)

wek

W, = {xe W:x; = fi(x;, w, k)}

and is the(j, i)th submatrix of the transition probability matrix

M, 1(k) """"" Mln(k)

M(k) = [M(K)] = [----- EEERRRES O (15
@) MR
TN SRR AT

Here M7 (k) is the transpose of M(k).
Combining equations (12) and (13) yields:
* T,
Stk + 1Jk + 1) = 2k + D*{M7(6) S(klk)}
<Z(k + 1), M"(k) S(klk))
AF(yk + 1), Sklk), k) (16)
which is the desired recursive scheme for computing the
probabilities {S(k|k):k =0,1,2,...}. The function F, is a
mapping of the set Y x S onto the set S where
S = {Sklk):k=0,1,2,...}
which obviously is a growing set with a countable number of
elements as k increases. That is:
F,:YxS->S 17

The initial condition S(0|0) required for initiating the scheme
(17) can be found in a similar way and is:

0)
Z(0)*p(0) P
5(010) = —=—= ,p0) =| : (18)
<Z0), 30> 2.0)
The optimal estimate £(x|k) of x(k) can be defined as
R(klk) = {x; e X: Sy(klk) = max} A G {S(k|k)} (19)
i.e. as the mode of S(k|k). The function G, maps the set S into
the set X cXie.:

output set )2, i.e.
M; =<Y,S,X,F,, Gy (20)
The block diagram of this machine is shown in Fig. 2.

The computations required by the machine M, can easily be
performed by a general purpose digital computer. In practice,
however, it should be desirable to reduce M, to a finite-state
physically-realisable sequential machine M} which is equiva-
lent to M, in a certain predefined sense. A discussion of such
a reduction was given by Booth (1970), and will not be repeated
here.

4. Prediction problem
The optimal estimate £(k + 6]k), 6 > 0 is defined as:

Lk + 0k) = {x;eX: Si(k + 0lk) = max}
AG,{S(k + 0lk) 21

To determine the density S(k + 0|k) we use the relation

Si(k + 0lk) = prob {x(k + 0lk) = x;| Y,;}

= Y prob {x(k + 0lk) = x;|x(k) = x,,} prob {x(k)
lo=1

|w]
=xlo| 5}
= ¥ 3 prob {x(k + 0lk) = x;x(k + 1) = x,,} 8
lo=1 I1=1 [0)
o x prob {x(k + 1) = x,,|x(k) = x;,} Sy,(kIk)
........................ e
i 5
n n ' g
= 121 121 IZ Mgy1y, (k + 6-1). ;3;.
o=1H= g=1 $
X My, (k + DM, (0S,(klk)  (23)
Equation (23) can be written in vectorial form as: %

Sk +0k)=M"k+60 - DMk +6—-2)... MT(k + 3)
x MT(k) S(klk) (24)
Equations (21), (24) and (16) define a sequential predxctar
machine M, with input set Y, growing state set
S ={Sklk):k=0,1,2,...}
and output set &, g_ X, ie.:
=<Y,S,X,,F,,G,>
where the output mapping G, is defined by equation (21)
R(k + 0lk) = G,{S(k + 6k)
=G’ {MT(k +60—-1)... Mk + 1) M7(k)

~~

p20z Iud 61 B3159n6 Aq 1 B9 L@VZ/Q/QL/GD

Equations (17)-(19) define a deterministic sequential machine S(klk)}
(filter) M, with input set Y, growing countable state set S, and = G,{S(klk)} (
e Predicted
r estimate
ylket) - 6p [stkrwi] L_____.
| X(k+0/k)
|
, ' Filtered

—F [y ks lk/k_)]l .
DELAY

G, [sthri)] T

!
/
/

Fig. 2 Block diagram of optimal filter My, and smoothing filter M given by equations (20) and (25)
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We observe that the machines M, and M, have the same
input set, the same state set, the same next state function F,
and differ only in the output mapping. This is illustrated by
the dotted part of Fig. 2.

5. Smoothing problem
The problem is to determine an estimate 2(k — ok) of x(k — o)
on the basis of the measured set Y;.

For simplicity let us find first an estimate (k|L) of x(k) on the
basis of measured data Y.

Define the smoothed probability density.

Sy(k|L) = prob {x(k) = x;| Y.} (27)
Then,
S(KL) = ¥ prob {x(k) = xfx(k + 1) = x;, ¥,}
j=1
x prob {x(k + 1) = x;| Y.}
= prob {x(k) = x;|x(k + 1) = x;, Y.} Sk + 1|L)
T @8)
Now,

prob {x(k) = x;|x(k + 1) = x;, Y,;}
_ prob {x(k + 1) = x;|x(k) = x;, Y} } prob {x(k) = x;| ¥} }
- prob {x(k + 1) = x;| Y}

prob {x(k + 1) = x;|x(k) = x;} prob {x(k) = x| ¥}}

Zn‘, prob {x(k + 1) = x;|x(k) = x;} prob {x(k) = x;| ¥}
Mm@

T M) kil
Thus finally,

S(k|L) = z

j_

(29)

Si(klk)M i1(K)S j(k + 1|L)
: (30)

{ ;=21 M, (k)Si(kl|k) ]

or in vectorial form

{S(KJ*M,(k)}S(k + 1]L)

S0 = 2, = e, sckfoy b
where:
S,(kIL) M, (k)
S(k] L) — Sz({‘lL) M (k) Mz;(k) (32)
S,(k|L) M, (k)

Using equation (31) for computing S(k — r|k):r =1,2,...,0
yields

Stk — 1]k) =

3 {8tk — Tlk — 1)*M,(k)} Sj(klk)
=1 Mjk), Stk — 1]k — 1))

Z {S(k — 2|k — 2)*M;(k)} Si(k — 1]k)

Sk =20 = X =m0, 5 - 2k - 2)

........................
........................

IStk — olk — 0)*MK)} Sk — o + 1]K)
Sk — o) = 2 {MI(K), Stk — ok — o))

(33)
By consecutive substitutions it is easily seen that S(k — o[k) is
a function of S(klk), Stk — 1|k — 1), Stk — 2|k — 2),...
S(k — olk — 0), i.e. the smoothed probability density
S(k — olk) is a function of the o previous filtered densities:
S(k — olk) = Fg{S(klk), Stk — 1|k — 1),...,
Stk — olk — 0)} (34)
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where by equation (16):
S(k|k) = F {y(k), S(k — 1| k — 1), k}
Stk — 1|k — 1) = F{y(k — 1), S(k — 2|k — 2, k}

BT (35)

Sk — olk — ) = F {3k — o),
Stk — o — 1k — ¢ — 1),k}

Defining the augmented state vectors S,(k|k) and F, as:

S(k|k) F,
s,k = [SE =1k =D g - H (36)
Sk — alk — o) F,
equations (34) and (35) can be written in vectorial form as:
' S(k — olk) = Fs{S,(k|k)} (37
Sy(klk) = Fro{S,(k — 1|k — 1, Y} .} (38)

where

Yio={k—o0),yk —0+1),...,pk—1),k)} 39)
The optimal estimate £(k — a]k) is given by:
Xk — olk) = {x;€X: Sk — olk) =

A G, {S(k — dlk)}

- = G, {Fs(S,(k|k))}
A G, {S,(klk)} (40)

Equations (37)-(40) define a sequential smoother machine M,
with state

max}

o

S,(klk)eS, =S x Sx...xS
input
c

Y,,€Y, =Y x ¥Yx...xY
and output £(k — olk) € ﬁ, E X. That is
Msm = <Ya, Sa, Xm Ffa" Gsm> (41)

It is useful to note that the filtered densities S(k|k),
Stk—1lk — 1),...,S(k — olk — o) involved in S(k|k), which
is used in equation (40) for calculating £(k — olk), are com-
puted in the process of determining R(k|k) as described in
Section 3. From equation (34) it is clear that to initiate the &
smoothing process, i.e. determine the initial condition S(0|o) g
the smoother machine M,, must wait for a time of & clock
periods during which the filter machine M, calculates S(0]0),
S(11), ..., S(alo).

9/Stz/S/9 1 /81onue/|ulwoo/wod dno-olwapese//:sdny WwoJl papeojumoq
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6. Treatment of other sequentlal-machme models

The purpose of the present section is to show how the results
of the previous sections can be applied for treating other P
sequential-machine models.

20z |udy 61 uo 1sen

SSMM,
This is a Moore SSM model of the type:
3l + 1) = f,(x(K), wik), k)} @)
2 y(k) = ga(x(k), k)
where xe€X, weW, yeY, The stochastic disturbance
{w(k)} is assumed to be white and has a known probability
distribution {p(w)}. Equivalently M, is denoted as:

M2 = <W, X: Y’ {P(W)},fz, g2>
[:Xx WX
2,:X-Y

All the results derived for the machine M, are valid for M, as
well, with the understanding that:

43)
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1 for i = i* such that

Zi(k) = prob {y(k)|x(k) = x;} = ¢ k) = g,(xF)  (44)
for i # i*

The machine M, covers all cases where the disturbances appear

only within the dynamics, i.e. only in the next state equation of
the machine.

. SSMM,
This model has the form of SSMM |, i.e.

Lx(k + 1) = fi(x(k), wik), k), xe X,we W
M k) = giGilh), o0, &), veV,yey } 43
or

M; =<{(W,V, XY, {p(W)}, {P(le)},f;;, g3>} (46)

[i=XxWoXg,=XxVoY

but the white disturbances w(k) and v(k) are correlated with
known conditional probability distribution:
(k) = vylwk) = w), v, eV, w,e W
In this case the probabilities p(v(k) = v;) are given by
pk) =v) = 3 p(k) = v;, wk) = w)) 47)

weW
= w);w (k) = vilwk) = w)) p(w(k) = w))
and !
Zik) = p(y(BIxk) = x) = ¥ p(v) 48)

vevk
Vi = {ve Viyk) = g3(x;, v, k)}

Using equations (47) and (48) all the results concerning M,
are valid for M as well.

SSMM,

This model, in which the stochastic disturbances w(k) and v(k)
are assumed to be Markovian and independent of each other, is
described by the equations:

M. x(k + 1) = fo(x(k), w(k), k), xe X,we W
+% 3(0) = g4(xlk), v(k), k), y € Y, 0€ ¥ “9)
w(k + 1) = h, (w(k), m(k)),me X,
v(k + 1) = h(v(k), n(k)), neX, }
where the disturbances m(k) and n(k) are white, independent of
each other, and assume values in the finite sets
2,={m,m,, ... m
z, = {{nl,lnz,z. .. Ny} & 6D
The probability distributions {p(m)} and {p(n)} are assumed
to be known.
This machine is denoted as:

M4 = <£m, Zm W, V. X,Y, {p(m)}’ {p(n)},f:t’ 84> hw’ hv> (52)
with

(50)

farWxVSX g,:VxXoY } (53)

hy:Z, xW->W,h :2 xV>YV
Using the probabilities p(m) and p(n) one can find the disturb-
ance transition probabilities as follows:
®;; = prob {w(k + 1) = wjlw(k) = w;}
= Y p(m), X ={meX,: w; = h,(w;, m)} (54)
mez""
¥,; = prob {v(k + 1) = v;lv(k) = v;}
= Z p(n)’ 2: = {n € Zn : vj = hu(vi’ n)}(55)
nez;
The probabilities {p(w(k) = w)} and {p(v(k) = v,)} are
recursively computed by the equations:
pwk + 1) =w) = prrob {wk + 1) = wjlwk) = w;}
x prob {w(k) = w;}
= - P;p(wk) = w;), p(w(0) = w)) given for all w,e W

wis

(56)
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with

plok + 1) =) = ¥ prob {v(k + 1) = vjvk) = v;}

vieV
x prob {v(k) = v;} (57
= 3 ¥,pk) = v;), p(v(0) =v; given for all v;e V

vieV

The transition probabilities Af;;(k) are again given by

M;(k) = % W), W, = {weW:x; =fy(x,w,k)} (58)
where {p(w)} is determined by equation (56), and the data
probabilities Z;(k) are given by

Z (k) = prob {y(k)| x(y) = x;}
= 2 p@), V= {veV:iyk) = gilx;v,k)} (59)

veVi
where {p(v)} is determined by equation (57).

It is now clear that the results concerning the machine M, can
equally well be applied to the machine M, with the under-
standing that in the later case M;,(k) and Z;(k) are determined
using equations (58) and (59).

SSMM

This model has the equations §
x(k + 1) = f5(x(k), u(k), w(k), k) 8

Ms: y(k) = gs(x(k), x(k + 1), u(k), v(k), k) (60%

u(k) = hs(x(k)) 3

or equivalently g
MS = <W’ V’ Ua X’ Y’ {p(W)}, {p(v)}’fS’ &ss h5> (61§

peoey/

s XxUxW-oXg:XxXxUxVoY,
hs:X > U (628

where u(k), the input of the machine, assumes its values in thé
finite set ©
U= {u, up,...,u,} (63§

and ks is a mapping of X onto U that associates a uniqué
element u €U to each x e X. The properties of {w(k)} and
{v(k)} are the same as in the SSMM,. The main difference
between M 5 and M, is that the output y(k) of M5 depends nof
only on the present state x(k) but also on the next staté
x(k + 1). The machine M is the realisable model derived by2
Gelenbe (1971) for a Mealy machine with random disturbances}y
In the present case one knows the probabilities g

M,;; = prob {x(k + 1) = xj|x(k) = x;, u(k) = u,}
= Y P(w)a wk = {W eEW: Xj = fS(xi’ U, W)} ’ (64)8

weWi o

€919/

Z,,(K) = prob {W(R)Ix(k) = x;, x(k + 1) = xp u(k = .} <
= ve% P(v), Vk = {U ev: y(k) = gs(xi’ xj’ U, U)} (65}8»

and - >
1 fori=i*¥and ©

(k) = prob {u(k) = u|x(k) = x;} = C u = hy(x¥) G
for i # i* (66)2

Equation (13) which relates Sy(k +1|k) and S;(k|k) takes the
form:
Si(k + 1]k) = prob {x(k + 1) = x;| Y} }

=% 5 prob {x(k + 1) = x,, x(k) = x;, u(k) = 1| %y}
Jj=1r=1

=2 3" prob {x(k + 1) = xiJx(k) = x;, u(k) = 1}

"' prob {u(k) = u|x(k) = x;} prob {x(k) = x| ¥;}
- él T Myim, (0 SilR) ©7)
or in vectorial form
Sk + 1|k) = MI(k) S(k|k) (68)
where the (j, i)th element of the matrix M, (k) is defined as:
Moji(k) = 3 My () (69)
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Similarly equation (7) must be replaced by:
= Z”: Zq prob {x(k + 1) = x;, x(k + 2) = x;,
j=1r=1
’ uk + 1) = 4 Y, yk + 1)}

prob {y(k + D)|x(k + 1) = x;, x(k + 2) = x;j,
u(k + 1) = u,} x prob {x(k + 1) = x;,

o g x(k + 2) = x;, ulk + 1) = u| Y}
B El Z, prob { Y, y(k + 1)}
Z,;{k + 1) prob {x(k + 2) = x;|x(k + 1) = x;,
u(k +. 1) = u,} prob {x(k + 1) = x;,
e u(k + 1) = | ¥}
j=1r=1 prob { Y, y(k + 1)}

[ Z, ik + 1) Mym,(k + 1) Sk + 1]K)

n n q (70)
T X X Zk+ 1) Mym(k + 1) Sk + 1|k)

i=1j=1r=1
Defining a vector 2(k + 1) as:

Q,k + 1)
Qk + 1) = Qz(k:+ 1)
Q,k + 1)

Qk +1) = Z Z Z,k + 1) Myymy(k + 1) (71)

equation (70) can be written in vectorial form as:
Q(k + 1)*S(k + 1]k)
Sk + 1k +1 = ok + 1), Sk + 10>
_ Q(k + 1)*{M{(k) S(klk)}
<%k + 1),M{K) Sklk)>
It is easy to verify that the initial condition S(0]|0) required
for initiating (72) is given by

(72)

2(0)*P(0)

809 = 750,705 )
where
Q2,(0) " q
9(0) = E ’ Q,(O) = Z Z rJ:(O) r_n ;r(O)
2,(0) =i )
P,(0)
P(0) = [ ] , P,(0) = prob {X(0) = x,}, x;€ X

The prediction and smoothing problems can be treated in the
same way.

An important problem concerning SSMM 5 is that of deter-
mining an optimal estimate u(k + 6|k) of the input u(k + 0)
on the basis of the data Y,. A similar problem was considered
by Booth (1970).

Consider the case 8 = 0. We first compute the probability
?,(k|k) = prob {u(k) = u,|Y,}

= 2"‘, i prob {u(k) = u,, x(k + 1) =

1111

xj, x(k) = x| Y }
i z prob {x(k + 1) = x,|x(k) = x;, u(k) = u,}
x prob {uk) = u|x(k) = x;) prob {x(k) = x| Y} (75)

Zl Z ru lr(k) Sl(klk) (r = 1, 2, ooy q)
J i=1
and then choose #i(k|k) as:

i(klk) = {u, e U: &, (k|k) = max)} (76)
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The predicted estimate #(k + 6]k): 0 > 0 and the smoothing
estimate #(k — o]k): ¢ > 0 can be found in a similar way.

Clearly, u(k) = hs(x(k)) represents a state feedback law, and
since the function ks is nonlinear the expression As(%(k|k))
does not always give the best estimate of u(k). Equation (76)
provides the best estimate of the feedback control input u(k)
on the basis of the available data Y, and thus it is useful in all
state feedback applications of stochastic sequential machines
with inaccessible state variables.

7. Example

Consider the SSM
M = <wa v, U’ X, Y’ {p(W)}, {P(U)},fs, 85 h5> (77)

where
V= {UI, 02}’17(01) = 6/7’17(02) = 1/7
U= {0’1}’X= {x19x2}’Y= {0’ 1}

and the functions f5, g5 and k5 are described by the following
tables:

W = {w;, w,}, p(wy) = 1/5, p(w,) = 4/5}
(78)

"~ Table 1
fs:UxXxW-oX
X
UxW x X,
©, wy) X, X,
0, wy) X2 X1
(1, wy) X2 X1
(1, wy) X1 X2
Table 2
hs . X b d U
X U
Xy 0
X 1
Table 3

g5: X xXxUxV->Y

A\
XxXxU V¥V, V,
(15 x1, 0) 0 1
(x15 X2, 0) 0 1
(x2’ xl» 0) 1 0
(xz, X2, 0) 1 0
(xl’ xls 1) 1 1
(x1, X2, 1) 1 1
(x2s X15 1) 1 1
(x2’ X2, 1) 1 1

This machine (without the mapping hs) was studied by
Gelenbe (1971) who showed that it is equivalent to a stochastic
Moore machine of the type

=, X, Y, (M(ylu)}>
{xl’ xz}» Y= {Oa 1}

where
U={0,1}, X =
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(o,w,)/(v,/0) / (vy/1)

(0. W’)/{Vy/’)/(Vz/O)

(1,w) /(v /1)fiv, /1) (1,Wo)/ (v, /v, /1) 9
(1, wl/(v,/1)/(v, /1) §

us1t §

Fig. 3 State diagram of SSM M E
U(k) _ R =~ +"AND &:3

X (k) g

/ \ f y(k) g

(k) ~ ' S

u ( ©

> 1 =

Xk TONTT 2

 DELAY §

wik) « o LQ" g
NOT g

: 43

x(k) # vik) g

~ —ulk)>

Fig. 4 Logic circuit for the realisation of SSM M g

6/35 24/35 1/35  4/35
M(0|0)=[ ],M(1I0)=[ ]
4/35 1/35 24/35 6/35

00 4/5 1/5

M(0|1) = [ },M(lll) = [ ]

00 1/5 4/5

The element m;i(y|lu) of M(ylu) in the above relations is

interpreted as the probability that the machine M’ started in

state x; will go to state x; and produce output y for input u.
The state diagram of M is shown in Fig. 3.

Coding the values x;, w;, v;: i = 1, 2 as follows

(19)

x20,x,->1;,w,->0,w,>1;0, 50,v,>1

Volume 16 Number3

we find from Tables 1 and 3 that the logical equations of M are:
x(k + 1) = a(k) wk) x(k) + u(k) w(k) x(k)
+ di(k) wk) x(k) + u(k) w(k) x(k)
k) = u(k) + x(k) v(k) + x(k) v(k)

Table 4

u=20 u=1

M = p(wy) = 4/5
My, = p(wy) = 1/5
My =pw,) =1/5
My, = p(wy) = 4/5

My, = p(wy) = 1/5
My, = p(w,) = 4/5
Moy, = p(w,) = 4/5
My, = p(wy) = 1/5
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and so the machine M can be realised by the logic circuit shown
in Fig. 4, in which the input disturbances w(k) and v(k) are
generated by two independent random pulse sequence gener-
ators with probabilities as required by equation (73).

Using (78) and Table 1 we find Table 4
Similarly from the Tables 2 and 3 it follows that:

Table 5

y=0 y=1
Zy11 = p(v,) = 6/7 Zy11 = pvy) = 1/7
Zy12 = p(v,) = 6/7 Zyy2 = p(vy) = 1/7
Zyz1 = p(vy) = 1/7 Zyy1 = p(vy) = 6/7
Zozz = p(vy) = 1/7 Zyzz = p(vy) = 6/7
lel =0 11 =1
Zuz = 112 =1
2121 =0 121 = 1

122 < Ziy =1

and
Tyo =1,y = 0,750 = 0,75y =1
Consequently applying equation (69) yields
1/5 4/5
[1/ 5 4/ 5]
The a priori distribution is assumed to be

P,(0) = P(x,(0)) = 1, P,(0) = P(x,(0)) = 0
and the data are given in Table 6.

Mo =

(80)

Table 6
k'012345

yk) | 01 00 01

With the aid of equation (71) we find that Q,(k + 1) are as
follows:

Table 7
yk+1)=0|yk+1=1
Q,(k+ 1) 10/35 25/35
Q,(k + 1) 0 1

Equation (68) reduces to:

[Sl(k + 1|k)] [1/5 1/5} [Sl(klk)
S,k + 1]k) 4/5 4/5 S,(klk)
from which it follows that

Sy(k + 1]k) = 4S,(k + 1|k)
Similarly equation (73) yields

@81

References

[S 1(010)]

= (82)
$2(0(0)
and equation (72) gives

[Sl(k + 1k + 1)]

S,k + 1k + 1)

|

1
= ( } when y(k + 1) =0  (83)
| 0

25
5 Si(k + 1]k)

[Sl(k + 1k + 1)]
S,k + 1k + 1) | sk 4 10
(25/35)S,(k + 1]k) + S,k + 1)

25/35 5/33
[ } [ ] when y(k + 1) =1 (84)
4 28/33

T (2535 + 4
Consequently using (19) we find that

/xl when y(k) = 0
< i.e. R(klk) = y(k)
x, when y(k) =1 k=0,1,2,...

and so the optimal filtered estimates corresponding to the data
given in Table 6 are:

2(k|k) = (85)

Table 8
k| 012345
2klk) | 0 1.0 0 0 1

Finally, using equation (75) we find that
Do(klk) = S,(k|k), Py(klk) = S,(klk)
and so, by equation (76),
U(klk) = %(klk),k =0,1,2,...

8. Conclusions
In this paper an attempt has been made to apply modern
filtering techniques for estimating the state of stochastic
sequential machines. Several sequential machine models were
considered which cover the majority of practical situations.

It is believed that the results of the present paper should
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o
<

initiate more research in this field which is valuable in many <

engineering applications particularly in the digital computer,
digital control and digital communication areas. The present
paper is the first part of a project, the aim of which is to extend
the conventional optimal control theory to finite-state machines.

Our next step would be to develop general methods for
designing realisable finite-state filters amenable to LSI
technology.

Of particular interest is the class of linear sequential machines
over a field GF(p) for which a well-defined algebra exists
(Tzafestas, 1972, 1973).

It is useful to remark that the control results should find
applications to discrete-time processes with quantised states,
optimal design of time sharing systems, etc. In general we
believe that stochastic estimation and control of finite-state
machines is a versatile area for further research.

Bacon, G. (1964). The Decomposition of Stochastic Automata, J. Inf. Control, Vol. 7, pp. 320-339.

BootH, T. (1967). Sequential Machines and Automata Theory, John Wiley, N.Y.

Boortn, T. (1970). Estimation, Prediction, and Smoothing in Discrete Parameter Systems, IEEE Trans., Vol. C-19, pp. 1193-1203.

Bucy, R. (1968). Recent Results in Linear and Non-linear Filtering, Symp. of Amer. Auto. Control Council on Stochastic Problems in

Control, Univ. of Michigan, Ann Arbor.

252

The Computer Journal

D
(2]
—

o

20z Iudy 61 U



CARLYLE, J. (1963). Reduced Forms for Stochastic Sequential Machines, J. Math. Anal. Appl., Vol. 7, pp. 167-175.

Cox, H. (1964). On the Estimation of State Variables and Parameters for Noisy Dynamic Systems, IEEE Trans. Vol. AC-9, pp. 5-12.

EveN, S. (1965). Comments on the Minimization of Stochastic Machines, IEEE Trans., Vol. EC-14, pp. 634-637.

GELENBE, S. (1971). A Realizable Model for Stochastic Sequential Machines, IEEE Trans., Vol. C-20, pp. 199-204.

HANDscHIN, J. (1970). Monte Carlo Techniques for Prediction and Filtering of Non-linear Stochastic Processes, Automatica, Pergamon
Press, pp. 555-563.

KaiLaty, T. (1968). An Innovations Approach to Least-Squares Estimation (part I), IEEE Trans., Vol. AC-13, pp. 646-660.

KaLMman, R. (1963). New Methods in Wiener Filtering Theory, Proc. 1st Symp. on Engrg. Applications of Random Function Theory and
Probability, Bogdanoff, J. and Kozin, F. Eds., John Wiley, N.Y.

MEepITCH, J. (1967). On Optimal Linear Smoothing Theory, J. Inf. Control, Vol. 10, pp. 598-615.

MepircH, J. (1970). Newton’s Method in Discrete-Time Nonlinear Data Smoothing, The Computer Journal, Vol. 13, pp. 387-391.

Nien, T. (1970). On the Uniqueness of Minimal-State Stochastic Sequential Machines, IEEE Trans, Vol. C-19, pp. 164-166.

RaAuGH, H. (1963). Solutions to the Linear Smoothing Problem, IEEE Trans., Vol. AC-8, pp. 371-372.

STEARNS, R. and HARTMANIS, J. (1961). On the State Assignment Problem for Sequential Machines, IRE Trans., Vol. EC-10, pp. 593-603.

TzAresTAS, S. and NIGHTINGALE, J. (1969). Maximum-Likelihood Approach to the Optimal Filtering of Distributed-Parameter Systems,
Proc. IEE, Vol. 116, pp. 1085-1093.

TzAresTas, S. (1972). Concerning controllability and observability of linear sequential machines, Internat. J. Systems Science, Vol. 3, pp.
197-208.

TzAFesTAs, S. (1973) State observer design for linear sequential machines, Internat. J. Systems Science Vol. 4. pp. 13-25

Book reviews

#loy) papeojumog

from examples, and also deduces the surface structure equivalentss
in the foreign language of some deep structure trees. Ingenious, but=
we need to know a lot more before this could be more than a hmltedm
exercise. =

On finishing the book I felt some admiration for the efforts ofS
Simon and his students, but also disappointment that so little o
clear general principle comes out of it all. There are approaches ands
feasibility demonstrations; we need definite discoveries which canC
generally be accepted as valuable.

Representation and Meaning, by Herbert A. Simon and Laurent
Siklossy, 1972 ; 440 pages. (Prentice-Hall, New York, £7-00)

This book is a collection of five Ph.D. theses from Carnegie-Mellon
University on topics in artificial intelligence ranging over natural
language processing, game playing, inductive generalisation and
special purpose programming languages. All the theses were super-
vised by Simon, and three papers of his own, one jointly with
Siklossy, are included. The book is thus comparable with Semantic
Information Processing edited by Minsky from MIT, although not
of the same degree of interest. The theses were completed between
1965 and 1969, and one can see how some of the ideas have con-
tributed to more recent developments in natural language processing
and programming languages. They read quite well, although as
theses they inevitably have a little more padding than Journal
articles would.

Simon’s own contributions are very lucid, but the one on his
‘Heuristic Compiler’ is just a slightly extended version of a paper he
published in the Journal of the ACM in 1963, and the one with
Siklossy is a rather out-of-date review of natural language processing
programs. I enjoyed his third paper ‘On Reasoning about Actions’
which manages in a dozen or so pages to raise several interesting
speculations about methods of tackling ‘state-action’ problems.

Altogether I would say that this book provides some useful material
for research work or course projects in artificial intelligence, but is
rather unrewarding for the general reader.

Let me describe briefly the content of the theses.

T. G. Williams developed a ‘general’ game-playing program, trying
it on a number of card and board games. It seems to be mainly a
collection of useful subroutines to enable one to program game-
playing, alleviating the tedious intricacies of programming in IPL-V.
D. S. Williams developed an inductive program for taking intelli-
gence tests of the sequence-extrapolation variety.

A program by Coles applies well-known syntax directed compiling

R. M. BURSTALL (Edmburgh)3

Q

A Collection of Programming Problems and Techniques, by H. Aé
Maurer and M. R. Williams, 1972; 256 pages. (Prentice-Hall=.
Inc, £3-50, paper)

19L/000E

One of the difficulties that faces anyone involved in teachlng pro-=
gramming is the provision of a good supply of graded exercises forw
the student to tackle. Ideally they should have their sources in a'\>
wide range of topics, they should illustrate particular techmques,
there should be specimen solutions to guide the student. All these are,
present to some extent in this book, yet I do not find it wholly©
satisfactory.

There can be no complaint about the variety of problems that are<
offered, ranging over simple mathematics, methods of sorting, strate-
gies for playing simple games, statistics and networks (to name a~
few) in subject and from trivial to very difficult in standard. TheS
specimen solutions exist only in the form of hints and numericalg
answers that could be expected for certain values of input parameters, >
there are no actual programs to show how a particular problem—-
would be coded.

Each section has a brief introduction to the topxc, followed by 1t34>
selection of exercises. What I find disturbing is the way particular
techniques are described, with little or no assessment of how they
compare with others for the same problem, nothing about limitations

techniques to the problem of interpreting natural language state-
ments about pictures on a CRT display. Thus given ‘Each polygon
smaller than a triangle which is black is a square’ it can test whether
this is true. This is a substantial piece of work and has quite a lot in
common with Winograd’s recent celebrated program. It uses
predicate calculus as an underlying language and is rather pre-
occupied with the English use of ‘each’ and ‘all’. Siklossy, in his
thesis, is more ambitious and has a program which learns to produce
Russian or German sentences from a sort of parenthesised English
with grammatical markers, thus (BE BOY [MOD THIS] HERE).
Roughly, it learns to pick out foreign equivalents of English words

Volume 16 Number 3

on their use. For example, the section on solving equations gives the
Newton-Raphson method, but not straightforward iteration, without
even mentioning that the iteration may not always converge. Solu-
tion of linear equations recommends Gauss-Seidel iteration as the
best method for more than 50 equations, again without comment that
the matrix may not give guaranteed convergence. Cramer’s rule,
incidentally, is ‘not recommended’ only because it is said to be

tricky to program, not because of inefficiency.
Altogether, a useful book for the alert teacher who will supplement
and expand as necessary, notquite so good for the student on his own.
P. A. SameT (London)
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