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The information measure has been developed as a criterion of merit for intrinsic classifications.
The information measure for non-hierarchic classifications has been described previously and a
program developed which searches for that classification optimising the information measure.
However, hierarchic classifications are often of practical importance and this paper develops the
information measure for hierarchic classifications. Two algorithms are outlined for generating
hierarchic classifications which minimise the information measure. One of these has been pro-
grammed and first tests show a good agreement with conventional taxonomy.
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1. Classification by information measure

The problem addressed is the partition of a population of S
things into classes, where each thing is characterised by
measurement values x[d,s] on D different attributes
(s=1,2...5,d=1,2... D). The aim is to produce classes
such that things in the same class are sufficiently similar to be
treated as equivalent for some purposes. This is the classic
taxonomic problem, and has been attacked by many authors
(e.g. Sokal and Sneath, 1963, Lance and Williams, 1967a,
1967b).

In an earlier paper (Wallace and Boulton, 1968), we suggested
that progress on this problem could be accelerated if an attempt
was made to define a criterion or figure of merit designed to
measure the degree to which a particular classification of a
population achieved its aims. As a possible criterion, we
defined the ‘information measure’ of a classification.

If the measurement data is used to estimate for each class of a
classification the within-class statistical distribution of attri-
butes, the union of the estimated distribution functions can be
regarded as a composite frequency distribution function
covering the whole population. The function can then be used
to estimate the probability, or relative frequency, of occurrence
of things having particular attribute value sets. The probabilities
thus found can then be used to establish an optimum Shannon-
Fano code (Oliver, 1952) for encoding a message which con-
veys our knowledge of the data x[d, s], in which the segment
of message conveying the attributes of a particular thing has
a length (in units of log, e bits, or nits) of minus the logarithm
of the probability of occurrence of such a thing.

Such a message is unintelligible, as it stands, to anyone with-
out prior knowledge of the classification and the composite
distribution function. If we assume that the only prior know-
ledge available to the receiver is S, D and the nature and range
of each attribute, the message must be augmented by a segment
which (again using Shannon-Fano encoding) describes the
number of classes, their relative abundances, and each within-
class distribution function. The overall length of the resultant
augmented message is defined as the ‘information measure’
of the classification.

We propose that the information measure (or rather, its
negative) be used as a criterion of goodness of classifications,
and have shown (Wallace and Boulton, 1968) that when the
classification is chosen to minimise the information measure,
the following properties can be asserted of the classification:

1. Each thing is assigned to that class which is most likely to
contain such a thing.

2. The estimates of relative abundance and within-class
distribution parameters are essentially maximum likelihood
estimates.
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It may also be asserted that if the known population is a
sample of size S from an infinite population having T classes,
and the within-class distributions of the infinite population con-g
form to the assumptions made about them in the encoding;
process (e.g. that if the true within-class distributions are nor-m
mal for continuous attributes, then normal dxstrlbutlonm
functions were used in the encoding) then for sufﬁcnentlyO
large S the classification which minimises the information3
measure can be expected to exhibit 7' classes. This pro-§
perty of minimum information measure classifications follows?.
from the optimal nature of Shannon-Fano codes. N

In previous work, we defined the information measure only!l
for non-hierarchic classifications, that is, classifications in3.
which each class is defined and its properties stated indepen-'(é
dently of other classes. In this paper, we derive the informationc
measures for two kinds of hierarchic classification, and discuss%
the computer strategies used to generate optimum thI'arChJCo
classifications. 3

In an hierarchic classification, the population is not partmoned\
into classes in one step. Rather, the population is first par-2
titioned into a few broad classes. Each of these is furthera
partitioned into smaller classes, and each of these furtherm
partitioned, and so on, until terminal classes are generated.\)
which are not further subdivided. Hierarchic classifications areJ>
more widely used in everyday life and scientific work thanA
non-hierarchic classifications. Examples are the Dewey de01ma14>
library classification (which has the property that each par-g
tition is 10-way) and the biological hierarchy of phylum classo
order, family, etc. (which has the property that a definite and%
fixed hierarchic depth, or number of successive partitions, 1so
used).

Hierarchic classifications may be represented by inverted treej>
structures, or ‘dendrograms’ in which the root (highest) nodeS.
represents the whole population, and the terminal ‘twig’ nodesM
represent the terminal classes. N

2. Assumptions
In forming within-class attribute distribution functions, and in
the encoding of message segments describing these functions,
certain assumptions must be made. Following Wallace and
Boulton (1968) we treat two kinds of attribute—continuous
and multistate.

A continuous attribute d is one measured on a continuum
scale, to a specified accuracy ¢[d], Within a terminal class ¢,
a continuous attribute is assumed to have a normal distri-
bution with mean u[d, t] and standard deviation o[d, ¢].

A multistate attribute takes one or another of a finite set of
values or °‘states’. If attribute d is multistate and can have
M{[d] states, labelled 1 to M, then its statistical distribution is
described by the set {p[m, d,t]} (m =1,2... M[d]) where
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plm, d, t] is the probability that a thing in terminal class ¢
will have attribute 4 in state m, i.e. the probability
(x[d,s] =m|set).

Within a given terminal class, attribute values are assumed to
be uncorrelated.

The above assumptions concern only the distribution of
attribute values within a single terminal class, and do not
concern the distribution of values for the population as a whole.
The latter distribution will be expected to exhibit strong inter-
attribute correlation, and, if significant class structure exists,
will not be unimodel.

Within a single terminal class our assumed distribution for
variables is the most general possible marginal distribution.
The assumption of normal form for the within-class distri-
bution of continuous attributes is a compromise which we
hope to be adequate in most cases. Where good empirical
or theoretic reason exists for expecting some other distri-
bution function for a continuous attribute, the information
measure can readily be appropriately modified. In some cases,
for instance when the within-class distribution of some attri-
bute is expected to be log-normal, a preliminary transfor-
mation of the attribute values will lead to transformed
values expected to have a normal distribution. We believe the
normal form to be the most colourless assumption we can make,
having both a position and a scale parameter.

The assumption of no inter-attribute correlation within a
single terminal class is unfortunate, in that there are many
cases where we would expect to find significant correlations
within a group of things which we would not wish to subdivide.
For instance, all linear dimensioned attributes, such as length
and height, of the members of a single species can be expected
to have a strong positive correlation, reflecting their common
dependence on an ‘overall size’ factor. It would be possible, but
very time consuming, to incorporate interattribute correlations
in the assumed distribution function for each terminal class.
However, to do so would require a computation similar to a
principal components analysis to be performed for each
terminal class for each iteration of the analysis. An alter-
native expedient, which appears to suffice in the practical cases
we have attempted, is to attempt to remove such correlations
from the original data, e.g. by reducing a set of linear-
dimensioned attributes to a single ‘size’ attribute and a set of
dimensionless ‘shape’ attributes. Similar expedients are
necessary in most classification methods.

It may be felt that by assuming a specific functional form for
each within-class density function, we are being more restrictive
than other classification techniques which make no such explicit
assumption. However, other techniques which we have studied
seem to rely for their rationale on tacit assumptions of a
similar nature. For instance, the ‘nearest neighbour’ technique,
based on some dissimilarity measure, is rational only if it is
assumed that the probability that a member of a given class
would be found to have certain attribute values is a decreasing
function of the minimum of the dissimilarities between its
attribute values and the values of all known members of the
class, and that this function is the same for all classes. This is, in
fact, quite a specific assumption about the expected form of
class density distributions, and is possibly less consistent
with the empirical distribution of accepted terminal taxonomic
classes than is our assumption.

For the non-hierarchic case, we have shown (Wallace and
Boulton, 1968) that the message specifying the class properties,
i.e. the u, o and p values for a class, should not, for optimum
encoding, specify these quantities too accurately. In fact, we
show that a standard deviation is best quoted to an accuracy

a\/ 6/(N — 1) where N is the number of things in the class, and

that a mean u is best quoted to an accuracy a\/ 12/N. The
relative frequency of a state m of a multistate variable d is best
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quoted to an accuracy \/ 12Np[m, d, t]/N , likewise the relative

abundance of a class is best quoted to an accuracy \/ 12N/S.
The form for the resulting length of the message required to
state the measurements x[d, s], allowing for the inaccuracies of
the encoding distribution, has been derived. It can be shown
that in an hierarchic classification, the same optimum accur-
acies of quotation obtain.

It thus follows that the length of the part of the message
which states the attribute values x[d, s] is unaffected by a
change from a non-hierarchic to an hierarchic classification.
The hierarchic classification differs from the non-hierarchic in
the way in which the terminal class properties are encoded. In a
non-hierarchic classification, the properties of one class are
described without reference to those of any other class. For
instance, for a continuous attribute, each class’s class mean is
conceptually free to take any value within a range limited only
by the known limits of the population as a whole, and must be
described by a message segment sufficiently long to specify the
class mean to the required accuracy within this range. However,
if two terminal classes have similar properties, these properties
may, by a suitable coding scheme, be more efficiently descrlbedo
by a message which first describes the union of the classes, andé
then indicates how they differ. It is this possibility which ano
hierarchic description seeks to exploit. We restrict all branch-Q
ings of a tree to two-way branches for computational reasons.-:

Suppose that two terminal classes are to be described via aS
description of a non-terminal parent class which is their union.=
We must now consider what kind of description of the parcntB
should be given.

The description of a terminal class comprises its relativeX
abundance, the class mean and standard deviation of each3
continuous attribute, and the class probability for each state ot?g
each multistate attribute. Since the purpose of the descriptionS
of the parent is to aid in the description of its two member3
classes, quantities described for the parent should be restricted%
to functions of the above properties of its member classes. Ing
principle any functions of these properties could be included=
in the description of the parent. However, we believe it to be‘%’,
consistent with the intent of an hierarchic classification to—
require that the description of a non-terminal class should be ac,
function only of the attribute values of the things in that class,®
and should not assume or imply the terminal classification oéﬁ
the things.

The only functions of the terminal class properties Wthh cam>
be expressed in terms of the attribute values of things in thew
parent class, without knowledge of their terminal classu<

oB//:

fication, are: g
(2]

(a) the relative abundance of the parent class, §
(b) the parent class mean and standard deviation of eachg
continuous attribute z

(¢) the parent class probability of each state of each multistate_;
attribute. S

The description of a non-terminal class which is the union of
two terminal classes therefore has exactly the same content as
the description of a terminal class. The argument above may be
extended to imply that the description of any non-terminal
class at any level of the hierarchy should likewise have the
same content as the description of a terminal class.

The accuracy to which the properties of non-terminal classes
should be quoted for highest efficiency can be shown to follow
the same rules as for terminal classes.

It should be noted that, although the same properties are
described for non-terminal classes as for terminal classes, it is
not assumed or implied that non-terminal classes have distri-
bution functions conforming to the terminal class model. In
particular, it is not assumed that the marginal distribution of a
continuous attribute within a non-terminal class has normal
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form. In fact, no use is made in the classification process of any
assumed distribution function for non-terminal classes. A
calculable density function is required only for terminal classes.

3. Hierarchic encoding

An hierarchic structure is, in our context, a scheme for the
economic encoding of information about the terminal classes
of a classification. Since each partition of our hierarchies is
two-way, the encoding at all levels of the tree follows the
pattern:

Given the properties of a class X to certain accuracy, state
the relative abundance of two classes 4 and B which are the
subclasses of X, and give their properties to the appropriate
accuracy.

We will derive the lengths of the message segments required
to achieve such a step in the encoding of the class properties in
later sections. It is also necessary to encode at each partition
the occurrence of that partition (i.e. the fact that the class being
divided is non-terminal) and the relative abundances of the two
sub-classes into which it is split. We now proceed to derive the
length of this part of the message.

The relevant prior knowledge assumed is the total size S of the
population, which we assume to be known exactly. The first
partition (if it exists) will split the population into two sub-
classes, of sizes U and V. (U + ¥V = S). The message which
describes this partition will quote U and V only to limited
accuracy. However, the accuracy is sufficient for the receiver
of the message to infer that all members of the first subclass
will be labelled as such with an identifiable message segment
of length In (S/U), and to deduce what this label is. Similarly,
the receiver can deduce the form of the label used to denote
membership of the second subclass. Thus, the receiver can,
after decoding the message quoting U and V approximately,
scan the labels attached to each thing in the population to
determine the subclass to which each thing belongs. He can
thus acquire exact knowledge of U and V. Thus, if one of these
subclasses, say the first, is further subdivided into classes of
sizes A and B, we again have an encoding problem for that
partition where U, the size of the parent class, is known
exactly, and 4 and B, the sizes of the subclasses, need be quoted
only to limited accuracy.

We may further economise the message length requirement by
adopting the convention that at each partition, the first-quoted
subclass will be the one of smaller size. Thus, for each partition,
we require for the description of the class sizes, the quotation
of subclass size 4 to limited accuracy within a range 1 to U/2,
where U is the exactly-known size of the parent class. In
Wallace and Boulton (1968) the length, if 4 has a prior
expectation uniformly distributed in the range 0 to Uj2, is
shown to be

3(n (U3/124B) + 1) — In2 3.0)

However if this range is limited to 1 to U/2 (as no class can
have no members) (3.0) becomes

3(ln (UU — 1)%/124B) + 1) — In 2 3.1)

It is readily shown that the hierarchic structure itself, i.e.
the tree structure, can be topologically described by the addition
of one bit of information for each node save the root, given the
prior expectation that an arbitrary class will have probability
of one half of being terminal.

The resulting contribution to the message length due to the
description of the spllttlng of one non-terminal class into two
sub-classes is

3(In (U(U — 1)%/124B) + 1) + In2 (3.2)

This form covers the statement that the split occurs, and the
relative abundance of the subclasses. We must now discuss the
information needed to specify the subclass distribution func-
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tions, given the distribution functions of the parent class.
Because no interattribute correlations are included in the
assumed forms for the distribation functions, each attribute
may be considered separately.

4. Hierarchic specification of continuous distributions

Suppose that at a particular partition of the hierarchic tree, a
class A of N members is divided into two subclasses B and C
of L and M members respectively. Suppose that for some
continuous attribute, the description of A4 specified the class
mean p and class standard deviation ¢ to accuracies
+ -}a\/ 12/N and i%a\/ 6/(N — 1) respectively. Given this
information, we have to describe for classes B and C their
means a and b, and their standard deviations r and ¢, to the
accuracies shown below:

a+3rJ12IL  r+ir/6L - 1)
b+ 3t /ToM 1+ 3e/6[(M = 1)

We shall for simplicity in the following drop the —1 in the
formulae spemfymg the standard deviation errors. The deri-
vation below is unaffected in principle but algebraically much &
complicated by its retention.

Notice that since the accuracy of quotation of the means, and
hence the encoding scheme used for means, depends on the &

O
3
Q)

o

standard deviations, the message must begin by stating r and ¢. 5

The optimum encoding of a, b, r and ¢, and hence the con-

3

tribution to the information measure, depends on the priorz

expectation distributions assumed for them once u and ¢ are <
known. We wish to make our prior assumptions as nearly
colourless as possible, and seek to assume uniform prior g

=

Q

[©)

distributions where possible. 2
Define o
p=+/Lr, 1= /Mt, d=a—b @.1)3

6 =./IM/Nd (4.2)3

Then we have from the ideal relation
Lr?> + Mt* + LMd?*/N = N¢?
p* + 7% + 8* = N(o % 30./6/N)
= (R + 3,/6 o)’

— oW

4.3)

where

Zr91.9/vSe/E/9L /o101 e/|ufw

Thus, our prior knowledge of 6, N, L and M restricts thew
possible sets (p, 7, §) to lie in a }-sphere shell of radius R and<

thickness @4/6. The shell is a }-sphere because of the condltlons @

p=0,7>0.
If we assume a uniform prior distribution of expectation for
(p, 7, &) sets within the shell, it can be shown that the corres-

ponding marginal prior expectation functions for p, 7, and 62

are each approx1mately uniform, the first two in the rangey
0 — R and the last in the range —R to R.

We first find the information needed to specify p and 7
simultaneously.

Projecting the uniform expectation throughout the shell onto
the p, © plane, we find a prior expectation density at a pair
(p, ©) given by

P(o,7) = 2/nRS 4.9

Hence, to quote p to accuracy +3 r\/ 6 and 7 to accuracy
+1 t\/g requires a message of length

In (nRS/12r1) 4.5)

Having specified r and ¢ to the required accuracy, we have by
implication specified 6 through the equation (4.3), which can be
rewritten

8% = R? — p? — 12 (4.6)
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However, each term on the right hand side of (4.6) is known
only approximately. The resulting uncertainty in é can be
estimated by assuming that the squared error in 62 is approxi-
mately the sum of the squared errors in R?, p? and t%. The
range of uncertainty in 6 is found to be

The resulting range of uncertainty in d is

(15 JE_Z (No* + Lr* + Mt%) (4.8)

N(No* + Lr* + Mt @.7n

This gives us some information about the means @ and b. We
also know pu = J_IV (La + Mb) to an accuracy %a\/ 12/N.

Since the Jacobian from p, d space to a, b space has magnitude
1, our approximate knowledge of u and d locates @ and b in

a, b space to within an area of uncertainty given by the product
of the uncertainty ranges in d and g, i.e.

%\/72(N0'4 + Lr* + MtYLM (4.9)

We require to specify @ and b to within ranges of size r\/ 12/L
and t\/ 12/M respectively, or to within an area of uncertainty

12 rt/ 1/LM (4.10)

This information required to specify @ and b to the required
accuracies is the logarithm of the ratio of 4.9 to 4.10, i.e.

In (Jm % JWN* ¥ L ¥ Mt4)> 4.11)

Adding from (4.5) the information needed to specify r and ¢
gives, for the total information needed to specify the subclass
distribution parameters for this attribute:

m(m/zﬂﬁ JNWNe* + Lr* +Mt4)) (4.12)

However, the derivation, in which a and b were determined
from d? and u, leaves an ambiguity in the sign of d, requiring
In 2 nits to resolve. When this is added, the total message
length is

2
In (6———\/7;%2 JNWe* + Lr* + Mt4)) (4.13)

The only significant assumption made in the above derivation
is the assumption that, within the quarter-sphere shell of
possible (p, 7, 0) values, all parts of the shell have equal
probability density. The consequence of this assumption is that
the coding scheme developed does not expect any greater
similarity between the subclasses than can be strictly inferred
from the description of their union, and hence cannot exploit
a stronger similarity when one is found. Even if the subclasses
happen, for the attribute considered, to have nearly equal
means and standard deviations, the message required to specify
these parameters is little if at all shorter than if they differed
by the greatest amount possible consistent with the description
of their union. It could be argued that in many applications of
numerical taxonomy, subclasses of a parent class may reason-
ably be expected to resemble the parent class and each other
very closely for most attributes, and that our coding scheme
should therefore concentrate its prior expectation in that region
of the quarter-sphere where the subclasses are most similar, i.e.,
near the point

6=0,p=Lo, 1= /uc}.

Such a choice would have the effect that the advantages of
hierarchic description would be very great for similar sub-
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classes, but would disappear completely for strongly-differing
subclasses. Our present choice is a more cautious approach,
designed to get some modest benefit from even weak similarity
between classes, and therefore not able to achieve dramatic
reductions in the information measure even from strong
similarities.

The best choice of prior expectation can be made only on the
basis of empirical evidence. In any field of application, our
expectations about the distribution of subclass properties
given the properties of their parent should be based on the
observation of the distributions exhibited by hierarchies
known to be useful in that field. Unfortunately we have little
or no quantitative information of this kind, and are forced at
this stage to make the weakest possible assumptions.

5. Hierarchic specification of multistate distributions
Suppose that for some multistate attribute having Q possible
states, the parent class was described as having n; members in
state i (i = 1,2... Q). Given this information, we have to
describe the distribution of the multistate attribute in each of
the two subclasses. Let the number of members of B having,
state i of the attribute be /; and the number of members of C2
having this state be m;. We wish to determine the length ofs
message required to specify the set of values {/;,, m;} (i = 1,
..., Q) given prior knowledge of L, M, N and the set {n;}.

Before developing this result, it will be helpful briefly t
present a derivation of the message length required for thes
non-hierarchic description of the occupancy of a single multi5
state attribute within a single class. Let there be N things in thé§
class, and let the number having state i of the attribute be n; .g
Assume all possible sets of values for the n; to be equallyﬂ>
likely.

Were all n; values and N specified exactly, we would have

Q
Zni=N

i=1

ufdyy psbt

—~
e
—

The number of sets of non-negative values n; obeying (5.1) i
given by Y, where

N+Q-1
Y= 2 CQ—I

For N » Q, (5.3) is sufficiently approximated by
Y= N2 D)0 - 1! (5.3)§

If all such sets are equally likely, and the n; values were spec1ﬁed$
exactly, the information requlred would be simply In YM
However, it can be shown that in the optimum encoding, eaclg
value n; should be stated only to an absolute accuracy of order
\/ n;, thus lowering the information requlred by an amount?
1 In n; for each state. However, the errors in quoting the n3
values result in (5.1) not being obeyed exactly. The expecteds
error in (5.1) is of order \/ N. Hence, the number of pos&bl%
sets of n; values is increased from Y to approximately Y\/ N;\)
thus increasing the information required to nominate one set°

by In \/ N. The total information required is hence approxi-

mately
In(Yy/N) = 3G lnny)
=(@-PIN-15Ihn,-In(Q -1 (54

A more rigorous derivation, justifying the choice of accuracy in

quoting n; values, is given in Wallace and Boulton (1968).
We now apply the same reasoning to the hierarchic problem

of specifying a set of /; and m; values, given the constraints

~
':JI
N

1€/9 L7aTo!ue/fﬁfLuoo7Uj00'dn0'0|

4

I; + m; = n; (alli) (5.5
2L=L (5.6)
2my=M 5.7

257



Let the number of sets satisfying all constraints exactly be Y.
Then the information to specify one such set exactly would
be In Y. However, each /; or m; value is to be specified to

an absolute accuracy of order \/ I; or \/ nT, respectively, thus
reducing the information requirement by a total of

3>l (;m).

As a result of inaccuracies in stating /; and m; values, the
constraint equations (5.5), (5.6) and (5.7) will be satisfied only
to an absolute accuracy given, in each case, by the square root
of the right-hand side. We thus expect the number of possible

{l;, m;} sets to be increased from Y to Y\/ L \/ M1 \/ n).
i

However, the errors in equations (5.5), (5.6) and (5.7) are not
independent, being constrained by the equation

L+M=Zn,'

which is itself obeyed to an absolute accuracy of order ./ N.
Thus the number of possible {/;, M;} sets is increased by the
errors in the constraints to

Y JIMINT1/n;

To specify one of these sets, each /; and m; value being given to
an accuracy of the order of its square root, requires a total
message length given by

In {Y/IM/NTI/n} — 4 Sln(l;m)

n; \LM
=In H(l,-m,)T +InY

A more exact analysis, following Wallace and Boulton (1968),
modified (5.8) by a constant, giving

Q

LM n;

3in< o H T
i=1

The determination of Y is, in general, difficult. For binary

attributes (Q = 2), it is easily shown that

Y=1+ min(L, M, n,, n,)
For Q > 2, we have given exact algorithms for the calculation
of Y in Boulton and Wallace (1973).

The only significant assumption in the above is that all Y sets
of numbers are equally likely. This assumption is subject to
comments essentially the same as those appearing at the end of
Section 4. As is the case for continuous variables, the fact that
the description of a non-terminal class involves, for a multi-
state attribute, the same kind of information as appears in the
description of a terminal class does not mean that the distri-
bution of things within a non-terminal class is modelled by the
same kind of density function as is employed for terminal
classes. In fact, no model is proposed or used for the distri-
bution of a multistate attribute within a non-terminal class.

(5.8)

+InY —-3Q—-1In12

6. Describing the things
The main body of the message consists of the specification of
the class membership of each thing and its D attribute values.
After receipt of the class description message the receiver will
have knowledge of the composite distribution formed from the
union of the T terminal class distributions. The relative
frequency of a thing’s set of D attribute values which is used
for their encoding is estimated from the distribution of the
terminal class to which the thing belongs. Hence the need to
first specify the terminal class membership of each thing.

6.1 The class membership
The ultimate terminal class membership of each thing is speci-

fied by a series of subclass membership labels. The total length
of the set of labels for things is given by:

In S/N; + In Ny/N, +...In N,_,/N, = In S/N, (6.1

where N, is the population of the terminal classand N, ... N,_;
the populations of the intermediate classes to which s belongs.
The relative abundance of terminal class ¢ is N,/S and hence
(6.1) is the optimum label length to specify the terminal class
membership of thing s non-hierarchically.

Thus the length of message to specify the class membership of
each thing depends only on the set of terminal class relative
abundances and is independent of the sizes of the non-terminal
classes. This fact is made use of in the agglomerative classi-
fication algorithm described later.

6.2 Encoding values of attributes

It is shown in Wallace and Boulton (1968), that for a terminal
class of N members, the information required to specify the
values possessed by its members for a continuous attribute is
approximately

N(n (\/270/e) + ) + % 6.2)
where o is the usual unbiased estimate of standard deviation

(N - )o* = 2. (i) = w? 6.3

and ¢ is the range of error 1nherent in each given measurement.
It is also shown that the information required to specify the >
values of the members for a multistate attribute is

§ﬂﬂmw+gmmn+n+ﬂg—n

where Q is the number of states and n[q] is the number of thmgs
in the gth state.

To find the total information required for a particular class ©
and its members, to give all the attribute values, we sum (6.2) %
over continuous attributes, and (6.4) over discrete attributes, 5
and add N In S/N for the class membership labels. This result 3
can be summed over all terminal classes to give the total 2
attribute message length, to which must then be added the =
information needed for the hierarchic encoding of the class @
properties and dendrogram structure.

Vu

dno-ojwepese)/:sdpy OJ} papeojumoq

(6. 4)
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7. Minimisation strategies
If the information measure is accepted as a criterion of merit £
for a classification, it is desirable to devise classifications which %
minimise the measure. No explicit method has been found for &
calculating the optimum classification. However, we have:(Q
devised methods of makmg successive improvements to a m
classification by optimising in each step some variables of the & o
classification while holding others constant. The steps are —
listed below.

7.1. Distribution adjustment
With fixed class membership and hierarchic structure, the =
information measure is minimised with respect to the within-
class distribution parameters of terminal classes by setting each
of these to values which are essentially maximum likelihood
estimates based on the measurements of the class members.
Thus, the mean of a continuous attribute distribution is set
equal to the mean of the measurements of the class members,
and so on. These optima are in fact assumed in formulae
(6.1), (6.2) and (6.4).

20z 1udy 61

7.2 Reclassifying

With fixed class properties and hierarchic structure, the measure
is minimised with respect to the classification of each thing if
each of the S things is assigned to that terminal class within
which its measurements may be most economically encoded.
This choice is equivalent to assigning each thing to the terminal
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class most likely to contain such a thing, i.e. to the terminal
class whose density distribution function is greatest in the
neighbourhood of the thing.

It can be shown that the optimum choices in both steps 7.1 and
7.2 are independent of the hierarchic structure. Thus, a
repeated cycle in which reclassifying and distribution adjust-
ment alternate can be used to bring the classification to at least
a local optimum, which cannot be improved by either of steps
7.1 or 7.2. Other steps must be employed to gain further
improvement, and in particular, to vary the number of terminal
classes.

7.3 Class merging

Given two terminal classes, we may ask whether or not the
classification will be improved, i.e. the information measure
reduced, by combining the two classes into one. Combining
two classes into one will inevitably (unless the classes have
identical properties) increase the message length needed to
specify the atiribute values of their members. However, it will
also reduce the amount of class description information
required.

Let us assume for the moment that, when this question is
asked, an hierarchic description of the classification has been
set up, and that the terminal class description information has
been optimised by distribution adjustment. Since it will
presumably be advantageous to combine two terminal classes
only if they are very similar, we will consider combining two
terminal classes only if they are immediate subclasses of the
same non-terminal class.

Let the non-terminal class be A4, of size N, and let its terminal
subclasses be B and C of sizes L and M respectively where
N =L + M. We can work out Iy and I, the message lengths
required to give the attributes of the members of classes B and
C, and can also work out 7, the message length that would be
required for specifying the attributes of all N things were
classes B and C combined into a single class 4, which would
then be terminal.

We also work out I(B, C|A), the information needed to
specify the existence, relative sizes, and properties of classes
B and C given the properties of the non-terminal class A.

Then it is advantageous to combine classes B and C into the
single terminal class A if

Iy + Ic + I(B, C|4) > I, (7.1)

Terms I, I, and I, depend only on the class properties and
the given measurements of the things. They are thus indepen-
dent of the hierarchic structure and of the properties and
members of classes other than A.

Moreover, our choice of hierarchic encoding methods for
class properties, as summarised in formulae (3.2), (4.13) and
(5.7), leads to a form for I(B, C| A) which is also independent
of the hierarchic structure and classes other than A. Thus, the
choice as to whether two terminal classes which are immediate
subclasses of the same non-terminal class should be combined
can be made without reference to other classes.

Suppose now that the hierarchic structure had not yet been
established, and that we had only a set of terminal classes
whose properties had been optimised by distribution adjust-
ment. We may consider all pairs of terminal classes, and for
each pair, evaluate the criterion (7.1). If this condition is
satisfied, it implies that the information measure will favour
combining the pair into a single class, rather than describing
them as subclasses of a single non-terminal class. It does not

indicate whether some other arrangement is preferable in which.

the classes are preserved as separate, but not described as
immediate subclasses of the same non-terminal class.
However, if nonetheless we adopt (7.1) as a rule for deciding
for any pair of terminal classes, whether they should be com-
bined, we find that there is only one case in which we are led

Volume 16 Number 3

astray. This case requires that the optimum choice is separate
classes not immediate subclasses of the same class, but that
combining the classes is preferable to having them as separate
immediate subclasses of the same class. This case represents
a quite remote possibility, as it requires that the classes be
sufficiently similar so that 7, does not much exceed I + I,
yet sufficiently dissimilar that other classes should be associ-
ated with classes B and C at the lowest hierarchic level. We
therefore adopt (7.1) as a decision rule for combining classes
even when the hierarchic structure is unknown.

7.4 Half-classes

A rule for combining classes, and so reducing the number of
terminal classes, was outlined above. We also need to incor-
porate in the minimisation strategy a way of increasing the
number of terminal classes. For this purpose, we introduce
‘half-classes’, which are subclasses of the terminal classes, two
per terminal class.

Class Description parameters are maintained for half-classes
as for terminal classes. Whenever, during a reclassify step, a
thing is assigned to a terminal class, it is also assigned to oney
or the other of that terminal class’s half-classes. The para-=
meters of half-classes are optimised during each distribution 3
adjustment step. Normally, we would expect that if criterion &
(7.1) were applied to the half-classes of a terminal class, it
would indicate that their separate existence was not justified. S
However, if it is found that (7.1) is not satisfied, the half-classes =
can be taken as proper terminal classes thenceforth. They arez
then themselves given half-classes, initially by a random®
partition of their members.

8. The agglomerative strategy
A program has been written in ALGOL to generate minimum-+
information hierarchic classifications using the optimisation 8
techniques described above. It is an iterative process, which =
seeks to improve upon a given, or initially random, classi- S
fication. An iteration commences with some number of ter-=
minal classes, with known class properties. One or more cycles =.
are then performed which improve these classes by alternate%
reclassify and distribution adjustment steps. Half-classes are >
maintained and improved for each terminal class during these £
cycles.

After these cycles have been performed, the criterion (7.1)
is applied to discover advantageous class combining oper-
ations. However, it is applied to half-classes rather than to ©
terminal classes. All half-class pairs are considered, whether S
or not they belong to the same class. Normally, half-classes of §
the same original terminal class will be recombined, but theg*
opportunity exists for new terminal classes to be created. 2

The combinations are carried out in decreasing order of ©
advantage. Whenever two classes are combined into one, the ©
new one also becomes a candidate for further combinations. N
This process stops when no beneficial combinations can be 1
found. The iteration is then complete. Notice that the iteration
does not require the erection of the hierarchic dendrogram.

The dendrogram is established by a direct non-iterative
agglomerative technique. Each pair of terminal classes is
considered and that pair (B and C, say) found having the
minimum value of I(B, C| A) where A is defined as the union
of Band C. B and C are then expressed as subclasses of a new,
non-terminal class 4, and eliminated from further treatment,
their place being taken by 4. The new set of classes, with B and
C replaced by 4, is again examined for the lowest-cost pair,
which is replaced by a non-terminal class, and so on until all
classes have been brought into a single dendrogram.

Actually, the program incorporates an additional feature in
that if at any stage of the agglomerative process it is found that
the classes remaining can be more economically described on a
non-hierarchic basis than by further upward growth of the
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dendrogram, the former choice is made. Thus, the final result
may consist of a number of unlinked dendrograms. The
agglomerative process thus includes non-hierarchic classi-
fications as a subset of hierarchic ones, and will generate a
non-hierarchic, or partially, or a fully hierarchic classification,
according to the dictates of the information measure.

9. A divisive strategy
The agglomerative process above produces a dendrogram in
which all classes, terminal and non-terminal, are described in
basically the same way. Although this is convenient in many
ways, it makes the construction of a simple identification rule
difficult.

If terminal classes B and C are subclasses of A, and terminal
classes Y and Z are subclasses of X, no simple rule based on
the properties of 4 and X can necessarily determine whether a
thing belongs to class 4 or to class X. The described properties
of the non-terminal classes 4 and X do not define the distri-
bution density function within these classes, since no functional
form for the distribution density within a non-terminal class is
assumed in the analysis. Hence, it is not possible to compute the
boundary between 4 and X, which is defined by points of equal
A and X density. Hence identification of the non-terminal class
membership of a new thing cannot be made by using only the
non-terminal class properties. Instead, its terminal class must
be found, using the terminal class properties and the assumed
functional form for distribution density functions within
terminal classes.

However, it may be that in practice, few things will be mis-
classified at a high hierarchic level if the boundaries between
non-terminal classes are approximated by assuming a density
distribution function within a non-terminal class of the same
form as is assumed for terminal classes. Even though this
assumption is clearly incorrect in general, the differences
between high-level classes are expected to be more pronounced
than the differences between some terminal classes, so that
even an inaccurate model of the density distribution within
non-terminal classes may suffice to identify most of their
member things.

We have not attempted to verify the above conjecture, but, if
it is close to the truth, a different classification strategy may be
employed.

In this strategy, one starts with a single class comprising the
whole population. By optimisation of its half-classes, this may
be split into subclasses. These are then given half-classes,
which, after further optimisation, may be further split, and so
on, until a stage is reached when no class has half-classes for
which the combine criterion (7.1) does not hold.

Note that in this process, once a class has been created, its
properties and membership are not subsequently altered.

This divisive strategy will yield a ‘decision tree’ type of identi-
fication rule, exactly paralleling the structure of the dendro-
gram. However, it will not in general have the property that
each thing is assigned to that terminal class most likely to
contain such a thing. Thus, its information measure will in
general be greater than that of an agglomerative classification
of the same population, and a non-hierarchic identification rule
cannot be used.

Moreover, it is open to the theoretical objection that it
embodies the clearly inconsistent assumption that classes at all
hierarchic levels have density distributions of the same func-
tional form. This objection, incidentally, can be raised against
most numerical taxonomy techniques, with the notable excep-
tions of the nearest-neighbour strategy and the agglomerative
method described in this paper.

Apart from its possibly greater convenience, the divisive
strategy may be preferable on theoretical grounds in popu-
lations such as some biological ones where the dendrogram
may be considered a model of an actual generative process of
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the population, and where differentiation of a class into sub-
classes proceeds independently of the differentiation of other
classes.

Results

The agglomerative algorithm for minimising the information
measure is the only one which has, as yet, been programmed.
Unfortunately testing is made difficult because, apart from our
own efforts, there does not appear to be any objective means for
testing a classification. However, the program has been used to
classify 99 representatives of nine accepted species of the
genus Pediastrum.

The data consisted of 14 attributes: five binary, eight multi-
state and one continuous measure. The species content of the
sample is given in Table 1.

The data was collected from prepared slides by second year
botany students during a laboratory class at Monash Univer-
sity. Record was kept for each plant by the student who
measured it but neither this information nor the species of each
plant was input to the program.

g

Table 1 Species content of sample §
Q.

2

SPECIES SPECIES NAME NUMBERS 3T
NUMBER PRESENT i
1 P. Biradiatum 14 >
2 P. Tetras 8 g)
3 P. Sp. LB114 14 g
4 P. Duplex 7 &
5 P. Boryanum v Boryanum 14 2
6 P. Clathratum 14 3
7 P. Angulosum 7 3
8 P. Boryanum v Longicorne 7 §
9 P. Simplex 14 5
- 2

Total 99 <)

e

S

Table 2 Contingency table showing comparison between the:

nine species and the seven program produced
terminal classes

Program Classes
1 2 3 4 5 6 7

—
—
S
fum—y

P20z MRy 670 jsenb Aq £zv919

3 14

—
S

S
2
2

5 14 14
6 14 14
7 7 7
8 7 7
9 7 7 14

21 8 14 7 14 21 14 99
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PROGRAM CLASSEsI I l l \

4 [~} 3 5 1 2 T

SPECIES 29 6,29 3 5 1,4 2

INFORMATION MEASURE = 1453.10

Fig. 1 Dendrogram for best classification.

The best solution obtained by the program comprised seven
terminal classes. These are compared with the classification into
nine species in Table 2, The best dendrogram is shown in
Fig. 1.

This example has actually yielded two unlinked dendrograms.
The two classes (4, 6) and (1,2, 3, 5, 7) are so different that
their parameters are more economically specified as two
independent classes rather than by an hierarchical speci-
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fication of the parameters of their union. An inspection of their
properties verifies a marked difference between them.

We have also classified this data using our non-hierarchical
program (Boulton and Wallace, 1970). The best classification
it found contained six classes, five of them being identical to
hierarchical terminal classes 1, 2, 3, 5 and 7, and the other
identical with the union of terminal classes 4 and 6. When the
non-hierarchical program was forced to limit the number of
classes to three the best solution corresponded to the union of
hierarchical terminal classes (4 and 6), (2 and 7) and (1, 3 and 5)
as occurs in the dendrogram. Thus the hierarchical informa-
tion measure appears consistent with the non-hierarchical
measure.

The hierarchic analysis of the above data was performed by an
ALGOL program running on a B5500 computer. It required
nine iterations and took 3% minutes.
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Book reviews

Computer Applications of Numerical Methods, by Shan S. Kuo, 1972;
xii + 415 pages. (Addison-Wesley, £5-75)

This is a revised version of a book first published in 1965. It gives an
introduction to FORTRAN programming and numerical methods,
with numerous examples. The first five chapters are devoted to
computers, flowcharts, floating-point arithmetic, and programming.
Some of the information is specific to IBM machines, and much of it
is IBM-oriented, so that the reader would feel most at home if he
worked in a System 370 installation. The description of the
FORTRAN language is informal and is given mainly through
examples; the majority of users would need a reference manual as
well if they were actually writing programs.

The numerical methods section, which occupies about two-thirds
of the book, discusses non-linear equations, initial-value problems
in ordinary differential equations, linear equations and eigenvalues,
interpolation, curve-fitting and quadrature, the Monte Carlo method,
and linear programming. Some of the sections probably date from
the first edition, and should have been revised, e.g. the Runge-Kutta-
Gill method (page 142), Jacobi’s method for eigenvalues (page 217),
an interpolation method for Chebyshev curve-fitting (page 267).
The presentation is rather uneven; some sections give a good back-
ground to the method described, leading up to a useful example,
while others are rather sketchy, and plunge the reader into a long
and complicated program. It seems to me that much of the space
used for programs would have been better given to more practical
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discussion of the methods, including reasons for choosing one method
rather than another, and common pitfalls.
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The unevenness of the book makes it rather unsuitable for a class
text, and a number of better books are available in this field for c>
reference. g

JoaN WALsH (Manchester) €
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Introduction to Computational Methods for Students of Calculus, 9
by S. S. McNeary, 1972; 196 pages. (Prentice-Hall International, 2
£4-25)

A
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The preface to this book tells one that it is neither intended as a text g
in programming (yet the first sixth is a résumé of FORTRAN), nor Y
as a text in numerical analysis. As an introduction to other books it
is far too expensive, so I was left wondering just what this book is to
do and for whom.

The material covered, besides FORTRAN, are formula evaluation,
convergent sequences, errors, solution of equations, linear equations,
polynomial approximation and numerical integration. The treatment
throughout is elementary, assuming rather less than ‘A-level’
mathematics and, indeed, not going beyond a modern mathematics
‘A-level’ syllabus.

The references are entirely to American text books and among the
list of ‘Periodicals oriented toward computation’ there are none
published outside the USA.

P. A. SaMmeT (London)
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