Large scheduling problems with bivalent costs

N. Christofides

Department of Management Science, Imperial College of Science and Technology,

Exhibition Road, London SW7 2BX

Consider 7 items to be produced on one facility in a cyclic manner, and assume the costs of resetting
the facility (so that an item can follow immediately after the completion of the previous one), to be
bivalent (two-valued); i.e., either resetting of the facility is necessary and the cost is /¥, or no
resetting is necessary and the cost is zero. The problem considered in this paper is that of scheduling
the 7z items so as to minimise the total resetting cost incurred. This problem is a special case of the
well known travelling salesman problem and could be solved as such, although only small size
problems could be treated in this way. The present paper describes an alternative formulation of
the problem in graph-theoretic terms, which enables the solution of large size problems (involving
several hundreds or thousands of items). Computational results are given for six problems varying

in size from 50 to 500 items.
(Received April 1972)

In a number of industries, especially the chemical and pharma-
ceutical industries, the following basic scheduling problem
arises: A number (say n) of items is to be manufactured using
a single processing facility or reaction vessel. The facility
(vessel), may or may not have to be reset (cleaned), after item
p; has been manufactured (but before production of p; is
started); depending on the item combination (p;, p;). The cost
of resetting the facility is constant regardless of the item p; that
has just been produced or the item p; that is to follow; and, of
course, there is no cost incurred if no resetting of the facility is
required. Suppose that these n items are to be manufactured in
a continuous cyclic manner, so that after the production of the
last of the n items the manufacture of the first item in the fixed
cycle is started again. The problem is to find a sequence of
manufacturing these items which incurs the least additional
resetting costs.

The above problem can arise in two ways; either the resetting
costs are in reality independent of the items, or, alternatively,
detailed cost data is not available and an average constant
value is taken as an approximation. A number of variants to
the above problem exist and appear quite frequently in practice.
Thus, the n items may be required to be manufactured just
once and not as a continuous product cycle; or more than one
facility may be available for the manufacture of the items; or,
alternatively, the required quantity of some item p; may be so
large that not all of it can be manufactured in a single oper-
ation (i.e. the quantity may be greater than the capacity of the
facility or vessel), and multiple operations are therefore neces-
sary to produce the required amount.

The basic scheduling problem described above can be recog-
nised immediately as a special case of the well known travelling
salesman problem (Little et al, 1963; Belmore and Malone,
1971; Eilon, Watson-Gandy and Christofides, 1971; Christo-
fides, 1970). Thus what is required is a travelling salesman tour
(cycle), through the n items which incur the least total cost. A
travelling salesman tour such as p;, pi,, Pis, - - - Pi, is then
taken to mean that this is the sequence in which the items are
to be manufactured. The cost matrix is C = [c;;], where ¢;;
is the cost of resetting the facility when the production of p;
follows that of item p;. C is therefore a bivalent matrix whose
entries have values either zero or some constant quantity W
(say).

Since a variety of algorithms for the solution of travelling
salesman problems exists in the literature, it may at first sight
be thought that the present problem need not be considered
further. However, since all present-day algorithms for the
optimal solution of general travelling salesman problems are

262

limited to problems containing less than about 70 points, and

umoQ

o

since practical problems of the scheduling type discussed in this§
paper often involve hundreds and sometimes thousands of>

products, the existing algorithms are of little value. Moreover,
it is a well known (although perhaps unexpected), fact

=
o

-
—

(Little et al, 1963 ; Bellmore and Malone, 1971 ; Eilon, Watson-g

Gandy and Christofides, 1971) that algorithms of the branch

=
=
Q)

and bound variety (which are the most efficient methods ot"n;»
solution of travelling salesman problems), are at their peakg
efficiency for problems with random asymmetrical cost matriceso
[c;;], and that their performance becomes worse as the costg
matrices become more and more structured. Thus the presentg
problem with a bivalent cost matrix may be expected to be a3

‘difficult’ problem as far as the branch and bound methods ares

concerned!

[woo,

juf

The present paper formulates the bivalent cost schedulings

_ problem as a graph-theoretic problem and gives an algorithmo

for the optimal solution of large scale problems, involvingg
several hundreds or thousands of products. The increase inc
the computational effort of the proposed method is more or3
less linearly related to the problem size, (n), as compared withs
the exponential (Little et al, 1963) or high order monomia@
(Bellmore and Malone, 1971), increase noted for the branchS

and bound techniques.

Problem formulation
Consider a graph G = (X, 4) where X is the set of vertices ofS
the graph, and 4 its set of arcs. Let the graph G be defined soo
that there is a vertex x; corresponding to every item p; to beZ
scheduled, and that an arc (x;, x;) is in the set of arcs 4 if an%
only if no resetting of the facility is necessary when the manu-g
facture of item p; follows that of item p,. =

We will start by giving the following definition.

A hamiltonian circuit of G is a circuit which uses only arcs
that are in the set A of arcs, and which passes through every
vertex of G once and once only.

Now, if the graph G = (X, A) possesses a hamiltonian circuit
say X;, X, Xi,, - - -, X;, then the corresponding sequence of
items p; , pi,, Pi,» - - - Pi, can be manufactured by the facility
without any resetting, since by definition of the hamiltonian
circuit (x;,, x;,,)€A forall k =1,2,...,n—1 and A4 has
been defined as the set {(x;, x;)|c;; = 0}.

If G possesses no hamiltonian circuit, we can construct the
graph G, = (X, A,) where:

X, =Xv {n}
and
4, = A0 {(xy)lxe X} v {(y, X)lxe X}

The Computer Journal

1senb Aq

i.e. a dummy vertex y, is introduced into G together with arcs
leading to, and from, it to every other real vertex of G.

If the graph G, possesses a hamiltonian circuit, this will have
the form x;,x;, ..., x;, |»|.Xi,,,--. X;, Which can be
interpreted to mean that the items can be manufactured in a
sequence:

Pi,+,sPi,+2, o -,pi,.’ Pippip .. "pi,-

with a single facility resetting operation between the finishing
of the last and beginning of the first item in the sequence. Thus
the dummy vertex serves the purpose of a marker indicating the
position in the sequence where a facility resetting is necessary.
In terms of the graph, the dummy vertex y, and its associated
arcs provide a path between any two real vertices. Thus if an
item sequence with one resetting operation exists, i.e. if a
hamiltonian circuit would exist in G provided that one ‘arc’
(x;, x;) ¢ A could be used, the addition of y, to G will always
cause a hamiltonian circuit to exist in G; since the extra ‘arc’
(x;, x;) needed can be replaced by the two dummy arcs (x;, Y1)
and (yy, x;)- S

If the graph G, possesses no hamiltonian circuit we construct
the graph G, = (X, 4,) from the graph G,, where:

X, = X,V {».}
and
A, = A4, 0 {(x,y)lxe X} U {(y2, x|x € X}

and continue in the same way.

From the above argument the following theorem immediately
results.

Theorem) .
If the graph G,, = (X,,, 4,,) given by:
X,=X u,:'u1 {yj}] (¢))
j=

and

A, =Auv I:LTJ {x,yp|xe X}:| V) |:§1 {j,x)|xe X}])

contains a hamiltonian circuit, but the graph G,,_; defined 1n a
similar way does not, then m is the minimum number of facility
resettings that are necessary, and if the hamiltonian circuit of
G, is:

Xips oo or Xigs s Xigyps + o Xigy s Xigypp s oo
Xi, , Xiypr oo €tC,
v os Xigs | Ym|s Xigy oo+ o> X, °

then the products should be produced in m sequences given by:

.., pig followed by pyg. ., . .
followed by pis, ,» - -

Py, -+ CtC. .

pia“, . ..
3] pi,.’ pip « e+ Dia

Proof .

The proof follows immediately by induction from the argument °

preceding the theorem.

The algorithm

In the argument of the preceding section the graph G was
increased by a single dummy vertex at a time. If the optimum
solution to the problem involves m resettings of the facility,
then m + 1 attempts have to be made to find hamiltonian
circuits in the graphs G, Gy, . . ., G,,, with only the last one of
these attempts being successful and leading to a solution of the
problem. Obviously m is bounded from above by # and in
general for practical problems m will only be a small fraction
of n. Nevertheless, a different procedure for generating and
testing the graphs for hamiltonian circuits is, in fact, necessary
from the computational point of view, since it turns out (see

Volume 16 Number 3

next section), that it is much faster to find a hamiltonian circuit
in a graph that possesses one rather than prove that no hamil-
tonian circuit exists in a graph that does not possess one. This
fact immediately suggests that a better algorithm is one which
starts with an upper bound B for the optimal (minimal)
number of facility resettings m, and sequentially forms and
tests the graphs Gp, Gp_,, etc. until a graph G,,_, is found
which possesses no hamiltonian circuit.
A short description of such an algorithm is given below.

Step 1. Find an upper bound B to the optimal (minimal),
number of facility resettings that may be necessary.
(See Appendix.)

Form the graph G according to equations (1) and (2).
Does Gy possess a hamiltonian circuit ? If yes store the
circuit in vector H overwriting any previous circuit
stored there and go to Step 4, else go to Step 5.
B« B — 1, go to Step 2.

Stop. m = B + 1 is the minimal number of facility
resettings required and the last sequence in H is the
required item manufacturing sequence.

Steps 1 and 3 of the above algorithm require further explan-
ation. Obviously, the tighter the initial upper bound B is, the
fewer will be the number of iterations of the main algorithm.
In the Appendix a procedure for calculating a good intitial
upper bound is given; whereas in Selby (1970) and Christofides
(1973) an efficient algorithm, which finds a hamiltonian circuit
in an arbitrary directed graph, is described (corresponding to
Step 3 of the main algorithm above).

Step 2.
Step 3.

Step 4.
Step 5.

Computational results

The efficiency of the algorithm in solving large scale scheduling
problems of the bivalent type was tested on six problems involy-
ing 50, 100, 200, 300, 400 and 500 products to be scheduled.
These were randomly generated problems, with an average of
about four items being able to follow immediately after the
manufacture of a given item has been completed and without
resetting of the production facility being necessary.

Table 1 gives the experimental results for these problems.
All times shown in this table are seconds on the CDC 6600
computer at Imperial College. The computing times are
further broken down into the time expended in finding a
hamiltonian circuit in the graphs which possess one (i.e.
graphs Gg, Gg_4, . . ., G,,) and that expended in order to show
that G,,_, does not possess a hamiltonian circuit i.e. to prove
that m is indeed the optimal answer to the problem. From these
timings it can be seen that, if, for example, only twice the time
taken to find a hamiltonian circuit in G, is allowed for searching
for a hamiltonian circuit in G,__;, and if a circuit is not found
during this time, assuming that G,_, does not possess one,

Table 1 Computational results for six scheduling problems

NUMBER OPTIMAL INITIAL COMPUTING TIMES (SEC.)
OF SOLUTION* UPPER
PRODUCTS (m) BOUND* TOTAL UPTO FOR
(B) mf (m —1)§
50 3 4 951 031 92
100 8 10 159 0-73 15-2
200 12 14 12-8 1-36 11-4
300 15 16 252 1-97 232
400 15 17 259 4-42 21-5
500 16 19 40-4 3-80 366

*Number of facility resettings.
tTime taken to reach optimal solution.
§Time taken to prove that m is indeed the optimal solution.

202 udy 61 U0 189n6 AQ Z#191.9/292/€/9 1 /81014E/|uf00/W0d"dNO"oILLEPEDE//:SARY W) PAPEO|UMOQ

then more than 90% of the computing time would be saved,
and one would still have a good chance of ending with the
optimal answer (although this, of course, could not be
guaranteed).

Appendix
The following is an algorithm for calculating an upper bound B
on the minimum number of facility resettings required.

Step 0. index « 0, B« 0
Step 1. Set labels I(x;) = 0 ¥ x;€ X. Set p = 0.
Step 2. G = (X, A), choose any x, € X, set S = {x,}.
Step 3. If index = 0 form §= SuTIS; else form
S=8Sur-s
Where: I'x; = {x;|(x;, x;)€ A} and I'S = uSI’x,
X{€E
and also:
I x; = {x(x;, x)e A} and I' 'S = uesl“"xi
Step4. If §= S go to Step S,else p—p + 1, I(x;) < p ¥
x;€ 8 — S, S « § and return to Step 3.
Step 5. Find one x € {x;|(x;) = p}
Step 6. Ifindex = O find an x’ € {x;Jl(x;) = p — 1 and
(x',x)e A}.
else: find an x’ € {x;|l(x;) = p — 1 and
(x,x")e A}.
Step7. X+« X — {x}, 4« A — {(x, x)Ix;€ X} —
{Cxi, X)Ix; € X},
If X = {x,}, B« B + 1and go to Step 12; else go to
Step 8.
Step8. x« x',p«p— 1.Ifx" = x, go to Step 9 else go to
Step 5.
Step 9. If index = 0, index « 1 and go to Step 1; else go to
Step 10.
Step 10. If X = {x,}, B « B + 1and go to Step 12; else go to
Step 11.°
Step 11. index « 0, B« B + 1.
- References

BELLMORE, M., and MALONE, J. C. (1971). Pathology of travelling salesman, subtour-elimination algorithms. Ops. Res., Vol. 19, p. 278.
The shortest hamiltonian chain of a graph, Journal of SIAM (Applied Maths.), Vol. 19, No. 4, p. 689.
CHRISTOFIDES, N. (1973). Graph Theory—An algorithmic approach. Academic Press. To appear.

Distribution Management (Chapter 7), Griffin, London.

LiTTLE, J. D. C., MURTY, K. G., SWEENY, D., and KAREL, C. (1963). An algorithm for the travelling salesman problem. Ops. Res., Vol. 11

CHRISTOFIDES, N. (1970).
E1LON, S., WATSON-GANDY, C. D. T., and CHRISTOFIDES, N. (1971).

p. 979.

SELBY, G. R. (1970). The use of topological methods in computer-aided circuit layout. Ph.D. Thesis, London University.

XeX—{x}, A+ A — {(x0, x))lx;€ X} —
{(x1, x0)Ix; € X}.
Return to Step 1.
Step 12. Stop. B is the required upper bound.

The algorithm requires some explanation. When index = 0
Jforward paths are traced through the vertices of G starting with
vertex x,. These paths are traced by labelling with p those
vertices of G that require p arcs to be reached from x,. (Steps
1, 2, 3 and 4.) When none of these paths can be extended, the
algorithm proceeds to Steps 5, 6 and 7 which trace the longest
of these paths backwards to the vertex x, erasing from the
graph vertices (and their associated arcs), which lie on the
longest path. Step 8 terminates the erasing process. Step 9
returns the algorithm to the beginning with index =1 to
start forming backward paths, i.e. paths terminating at x,.
Again the longest of these is found and erased.

The longest of the forward and backward paths (to or from
Xo), can be considered together as a single long path which
contains x,. The number B (of path sequences necessary) is
then increased by unity at Step 11, and the process continued
by choosing another vertex x, from the remaining graph tog
form new longest forward and backward sequences until theé
graph is exhausted. o

The final value of B, which is the number of path sequencesQ
used to erase the whole graph (i.e. cover all the vertices), is.
then, obviously, an upper bound on the required minimumS$
number of such covering sequences (i.e. on the minimum=
number of facility resettings required).

opeoe//:sdy

Acknowledgements
The author wishes to acknowledge with thanks the use of a5
computer program, written by Dr. G. R. Selby, for determining>
hamiltonian circuits in undirected graphs. This program hasS
been modified by the present author to deal with directedd
graphs, and forms a basic step in the algorithm given in thi

paper.

264

202 Indy 61 U 1senb Aq Z¥$919/292/€/91/al0Me/|ulwooftu

The Computer Journal

