References
BARRON, D. W. (1969).
BaskiN, H. B. (1969).

CoOMPUTER SURVEY (1972). Vol. 11, pp. 310-311.

Assemblers and Loaders, London: Macdonald.
A modular computer sharing system, CACM, Vol. 12, pp. 551-559.

GLAMORGAN POLYTECHNIC (1971). Introduction to the IBM 1130 Assembler Language.

IBM (1970).

IBM 1130 Subroutine Library, Order No. GC26-5926, New York.

WEGNER, P. (1968). Programming Languages, Information Structures and Machine Organisation, London: McGraw-Hill.

Implementation problems—why are they seldom aired

in the Journal ?

P. Giles

Scottish Business Education Council

It is well known in educational fields that objectives should be
established before carrying out any detailed work towards the
development of a computer based system. These objectives are, of
course, to be properly documented so that they may be compared
with the actual outturn of events, thus improving the experience and
critical ability of those directing the development of the project.
In this way future developments will be better planned and imple-
mented.

There are admitted to be problems in this approach because some
benefits are not easily quantified and recent cost benefit analyses
have not always produced an acceptable result—London airport
proposals being a notorious example. However this is not a good
reason for refusing to set objectives.

Nevertheless there are many situations where objectives are never
clearly established—certainly not in print—and where, as a result, it
is impossible to describe whether the development reached its objec-
tives, diverged from them, or never arrived anywhere at all. This
situation is to be deplored because it greatly inhibits the development
of professional experience and judgement in the field. One major
advantage of employing a software house to handle developments is
that it provides an incentive to both sides to document clearly and in
detail both the desired objectives and the achieved results. Why
should this incentive be necessary ?

To understand the reasons we must consider the subconscious
objectives that are implicit in the actions of the chief protagonists in
any such development. Whether intended or not, the merest sug-
gestion of change to an established order immediately drives indi-
viduals into one or other of two social groupings. Each grouping,
either for or against, may centre on a very small number of indi-
viduals. Immediately they start to group there is a subtle psycho-
logical social pressure on the remaining individuals to clarify—at
least in their own minds—which grouping they belong to. This
grouping tends to focus and hence to exaggerate opposition to
change.

On the other hand the existence of opposition tends to heighten the
ambitions and aggressive intentions of those desiring change. Any
individual who has drifted to one group or the other endeavours to
formalise his reasons for doing so and thus crystallises his position
into a much more rigid attitude than he held previously. The prob-
lems of communication between data processing staff and users
produced by this situation are well known.

However, those accustomed to managing change and development
achieve their objectives more often by establishing a position of
power in advance. They realise that their ability to establish this
position depends largely upon their credibility and the self confi-
dence with which they act. It is therefore essential that each develop-
ment with which they are concerned shows no signs of indecision
or of mistakes. The simplest and most certain method of ensuring
such a satisfactory outcome is to document only achieved fact and
to be ready to bury rapidly any evidence of having taken a wrong
path.

This is the most practicable line of development for the non-
technical manager because the academic background of many pro-
fessionals inhibits them from employing such methods and leaves
the field open to the experienced but unqualified manager. As such

Volume 16 Number 3

managers become more senior they become more expert in this
approach and less able to see its weaknesses. Since it relies largel

on a principle of competitive personal ability in contrast to thg
professional approach of co-operation among different specxahstb‘
it leads managers into a philosophy of centralised control where

delegation is reduced to a minimum and the line of responsibility
must be clear. Such managers find it difficult to employ specxallsts
and professionals to assist them because the professional approac

to work and the aims that motivate specialists are foreign to theif
experience. Post war expansion of university and college educatior”
exaggerates this contrast to the detriment of both sides of mdustrym

However the blame for many unsatisfactory applications of coma
puters belongs very clearly on the technical side. In many cases pooB
communication at the planning stage, or inability to visualise thé
resulting clerical operations in any detail, leads to the creation
very low grade clerical work in areas surroundmg the computer. Any
simple clerical work which is devoid of meaning to the worker, or of
human interest, leads to a much higher error rate. How many systeni%
designers try to build human interest into the data preparation work E
How many computerised key punch systems welcome their operators;
by displaying ‘good morning’?

The absence of a reasonable human interface is one of the majoﬁ
faults of any batch processing system. What sensible human being>
would ever accumulate a whole day’s enquiries before even startm%
to find an answer to the first one? If more accurate and mort?f;
reliable information systems are to be set up the interface betweerp
the machine and the human being must be organised in a mannef®
that recognises that the user is a human being and not a moron.

Magnetic stripe ledger cards go a long way towards recognising thi€
because they enable the operator to take a knowledgable and influen2
tial place in processmg the work. They also place the operator and%
the computer in equally important positions in so far as they enable>
either of them to provide an information service to the outside world_.
In contrast the large batch processing computer sits in a position of§
power from which it refuses to release any information unless th&
precisely correct program is supplied in the correct way with theo
correct job cards. What more thorough way of asserting its authorltyo
over the operator!

For a larger sum of money a full scale on-line computer system
can be purchased and here the operatoris in a much happier position.
She is now able to provide a much more complete service to the
human beings with whom she deals, and may even be able to
suggest practical improvements in the existing computer responses.
Furthermore she is trained to hide the computer’s weakness by light
conversation during the seconds it must have before it can con-
struct its halting response.

These unquantifiable implementation problems which the computer
professional may expect to meet during his career are much more
difficult to solve than the technological problems more commonly
expounded in the Journal. This note is intended to initiate further
discussion on such topics so that experience of social problems may
be gathered together. Perhaps it will then become better understood
how to solve them, and more reports of successful fresh developments
of practice can appear in print. Do you agree entirely with this
problem analysis ?

283



To the Editor
The Computer Journal

Sir

I share your mystification concerning the ‘clegant trap’ that I
reputedly set for you to fall into (Mr. Gayler’s letter, this Journal,
Vol. 15, No. 4). Whilst I like to feel that any trap I did set would of
course be elegant, in this case I must protest my innocence. The point
I was trying to make (which was amply supported by Mr. Walwyn)
is that the sole purpose of a computer system is to serve the needs of
its users. A system may be 100% ‘efficient’ in its utilisation of the
CPU, but if this is achieved at the expense of meeting the users’ needs
it is a bad system. If the only way to avoid masses of JCL is to store
macros on disc, then this is a good use of the disc. (The better
alternative of designing the system right in the first place is not
available.)

Unfortunately, the majority of users do not realise what is possible
(if they did they would not tolerate so much lousy software), and too
much software is produced by designers who have never been real
users. When Robert Townsend became President of Avis he insisted
that all executives (including himself) should serve a spell as a
counter clerk. That’s what I call professionalism.

Yours faithfully,
D. W. BARRON

Department of Mathematics
The University
Southampton SO9 5SNH

6 February 1973

To the Editor
The Computer Journal

Sir
Degeneracy in the Matrix of Partial Derivatives

Osborne and Watson have published in this Journal an algorithm
for nonlinear discrete minimax approximation and an algorithm
for nonlinear discrete L, approximation. Let X1, . . .» Xm be the set
on which approximation occurs and let the nonlinear approximation
F(4, x) have p parameters aj, . . ., ap, where P < m. Let M be the
matrix whose 7, jth entry is

0
a—a; F(A, xl) .

It is assumed by Osborne and Watson that M has rank p.We
consider in this letter the question of which nonlinear approximations
F give M this rank.

Let {¢s, ..., ¢p} be linearly independent on {x,,..

P
define L(4,x) = > aydy(x). By the linear independence, the
k=1

matrix M of basis functions evaluated at the points has rank p.
Now let ¢ be a function such that ¢’ does not vanish and define
F(4, x) = ¢(L(4, x)), then it is easily seen that the matrix M of
partial derivatives for F must also have rank p.

However, this is the only example of rank p which the author has
found in a study of over twenty common nonlinear families.
Consider for example the simple form

.» Xm} and

F(4, %) = ad(ay), 3% F(A, %) = ayxd'(a) .

Well known special cases are ¢(x) = exp (x) (exponential approxi-
mation) and ¢(x) = 1/(1 + x) (rational approximation). If we set
a; = 0, the matrix M of partial derivatives of F has its second
column zero and M has rank at most 1. A similar situation occurs
when we have

F(A4, x) = ké'l 3 h(@n %) .

In the well known case of rational approximation, we can also have
rank of M less than p. In particular when R(4, .) = 0, the columns
of M corresponding to denominator coefficients are zero.

If the rank of M is less than p, we could perhaps have stationary
points of the algorithms which are not best approximations. Consider
in particular the case where

F(4, x) = aip(ax), $(0) =0,
284

and the algorithm is started with 4 = (0, 0). It is easily seen that M
is identically zero and the algorithms can loop.
Yours faithfully,

C. B. DuNaAM
Computer Science Department
University of Western Ontario
London
Canada
30 November 1972

References

OsBoRNE, M. R., and WATSON, G. A. (1969). An algorithm for
minimax approximations in the nonlinear case, The Computer
Journal, Vol. 12, pp. 63-68.

OsBORNE, M. R., and WATSsON, G. A. (1971). On an algorithm for
discrete nonlinear L, approximation, The Computer Journal, Vol.
14, pp. 184-188.

Dr. Watson replies:

With the exception of those of the last paragraph, the observations
in this letter are correct, although they have little relevance to the
practical situation. Obviously, for the algorithms to apply it is only
necessary for the matrices M defined at the successive approximations 9
A7 to have rank n. The choice of an initial approximation which £
avoids making the rank of M trivially less than » would not appear 3
(to me, anyway) to be a serious problem, but in the event of this &
happening, it would be detected by the linear programming method &
of solution advocated.

To the Editor
The Computer Journal

Iwepeoe//:sdyy wol

Sir
Dijkstra (1968) once wrote a letter suggesting that the GO TO o
statement was the principal source of trouble in debugging programs =
and that its elimination would be a significant step forward in 38
programming practice and languages. In retrospect, this seemingly 3
innocent, and to some, preposterous suggestion was the opening 8
gun of a programming revolution that may eventually be more%-
dramatic and far reaching than the transition from machine language &
to the ‘higher level’ languages. It seems clear now that it is feasible to e
abandon entirely the algorithmic concept of programming and devise @
new type languages based on a quite different concept of computing &
—that of Variable Free Programming (Backus, 1972), or Functional
Programming, or generally, Non-Algorithmic Languages (NAL).

The impetus for this change seems to be the need or desire for
constructing proofs of correctness of programs, and as we are
discovering, proving correctness of an algorithmic like program is
extremely difficult. In fact, the art of proving correctness of algor-
ithms in general has been much neglected and relatively little is known
about the subject. On the other hand, much more is known about
proving theorems about or properties of functions, suggesting that if
a program consisted solely of function references and that no side
effects are permitted, it would be relatively easy to prove that the
functions had the desired properties, and therefore, the program
was correct. Thus, the desirability of functional or function oriented
programs; we know how to prove things about them whereas we
find it extremely difficult to prove things about programs in algor-
ithmic languages such as FORTRAN, COBOL, ALGOL, ef al.

In a Functional Programming Language one describes only what is
to be done, not how it is to be done. LISP comes closer to being
function oriented than most of the other commonly used higher level
languages, yet it includes in most implementations (or aberrations)
statements, labels, go to’s, arrays, etc. A properly purged version of
LISP would come close to a Functional Programming Language,
but the implementation would have to be drastically altered in order
to get run time efficiency. Furthermore, some versions of functional
programming (strictly variable free programming) would exclude
the LAMBDA of LISP and thus eliminate for all practical purposes
even a purged version of LISP as a basis for a Functional Program-
ming Language.

Relatively minor modifications of the ALGOL-60 syntax together
with the purging of all statement like constructs, variables and side-
effects could form the basis of a function oriented non-algorithmic
language (called NON-ALGOL ?). One also would need at least one

20z Indy 61 uo 3senb Aq G6191.9/£82/€

The Computer Journal



" new type procedure, the ‘procedure procedure’ for declaring function
valued functions and more freedom in the way procedures are used
and passed to other procedures. But again, as in LISP, the imple-
mentation would require a vast overhaul to be useful.

In any event the NAL’s are coming and with them, greatly simplified
proof of correctness methods; whether they will sweep away the
present algorithmicly oriented languages* remains to be seen. The
realm of programming language research should prove quite exciting
for the next 10 years while we watch the efforts of Non-Algorithmic
Languages to displace the algorithmic languages and also see the
competition (personality conflicts, vested interests, etc.) of the NAL’s
among each other for acceptance.

An international agreement or conference for standardising a NAL
must eventually come to pass (like the ALGOL-60 meetings) but, it
appears much too soon to effect standardisation. We need more
versatility to determine just what would be the best way to structure
NAL'’s, even though this may mean building another Tower of
Babel by generating dozens of new NAL'’s. Also, the question of run
time efficiency will play a dominant (decisive ?) role. Functional or
Variable Free Programming Languages are extremely difficult if not
impossible to implement efficiently on existing hardware. Radical
hardware revisions, possibly with extensive use of content address-
able or associative memory, may be needed before NAL’s are
practical.

In the meantime, the defenders of algorithmic languages may yet
save them by major breakthroughs in the theory of proofs of correct-
ness for algorithms, that is, show that proving correctness of
algorithms in general is not nearly as difficult as it now seems.

*As hinted by Dijkstra (1972).

Yours faithfully,

L. J. GALLAHER

Rich Electronic Computer Center
Georgia Institute of Technology
Atlanta
Georgia 30332
USA
2 February 1973 ‘ '

References

BAckus, J. (1972). Variable Free Programming, talk at SIGPLAN
Technical Session, Fall Joint Computer Conference, Anaheim.

DiKSTRA, E. W. (1968). CACM, Vol. 11, pp. 147-8.

DuKSTRA, E. W. (1972). CACM, Vol. 15, pp. 859-66.

To the Editor
The Computer Journal

Sir
Hashing Techniques for Table Searching
Despite the many papers on this subject, in both The Computer
Journal (the latest one appeared in Vol. 15, No.4, written by Messrs.
Hopgood and Davenport) and other ]oumals——partlcularly the
Communications of the ACM—I have come to the conclusion that
the solution which should generally give the shortest average search
length is the ‘common-sense’ one, viz:
1. Table size M, M prime
Initial entry position, P, = function, (key). Then if further
probing is necessary, calculate Increment, I, = function, (key),
such that I < M and then subsequent positions, P,, are given by
P, = (P,_, + I) modulo (M)
2. Table size M, M = power of 2
As for (1) above, only to ensure I and M are co-prime, calculate:
Increment, I, = 2 x function, (key) + 1

This is the method given by F. Luccio (1972).

It seems to me that both these methods:

1. scan the entire table (as the table size and increment are
co-prime);

2. minimise clustering caused by one sequence of probes becoming
coincident with another sequence (because in general different
sized increments are generated by different keys; although it is
possible for two different keys to have the same increment, the
‘sequences do not generally coincide until after M/2 probes, and
so practically this coincidence has little influence on the average
search length);

Volume 16 Number3

and

3. minimise clustering caused by many keys hashing to the same

initial position (as their increments will generally differ).

Should anyone know of any analysis or practical work which might

discredit these methods, I should be most grateful to hear from them.
Yours faithfully,
A. J. D. PAWSON

60c Hatherley Road
Sidcup
Kent
7 February 1973

Reference
Luccio, F. (1972). Weighted increment linear search for scatter
tables, CACM, Vol. 15, No. 12, pp. 1045-1047.

Mr. Hopgood replies:
The major cause of the average length of search increasing when a
table is becoming full is primary clustering, that is, search paths
from a number of initial entry positions come together and stay
together, thus creating long search paths. A second order effect is
the problem of all entries from a particular initial entry position
having the same search path. Mr. Pawson suggests a very sensibles
cure for the second-order effect which also reduces the primarys
clustering by having more possible search paths from each initialg
entry point. Q
The results obtained by Luccio suggest that the weighted 1ncrementQ
linear search is comparable to the quadratic method, but no better. S
This implies that the amount of primary clustering remaining is about;j
equivalent to the second-order effect. If the user feels that the second-5
order terms are worth removing, it is a simple matter to define aﬁ
weighted increment quadratic search. Taking the average of a setg
of runs using random data reduces the average length of search at2
909 full from 2-84 to 2-76 for the quadratic method (Luccio’ s3
method gives 2:79). As these values are never achieved in practiced
due to poor hash functions and non-random data, differences in thes
third figure are academic. In practice, I have found that the straight-Q
forward quadratic hash method is both simple to use and gives good3
results in a number of applications.

To the Editor
The Computer Journal

Sir
In his paper on compiler diagnostics (this Journal, Vol. 15, No. 4
Burgess states that it would be advantageous to standardise dlag-w
nostics for programming languages. This sentiment is often expressedc’
but the argument does not withstand closer examination. 4>

Would it be acceptable to allow only a standard set of diagnostics$
for a language? No, firstly because if the diagnostics are to be2
sufficiently discriminatory to be worthwhile this assumes omnis<
cience on the part of the standards committee, and secondly because?
such a set of diagnostics could be applied rigorously only to ano
implementation of a language which had no extensions or contrac-_‘
tions whatever vis-a-vis the language definition. Would it then be.>
acceptable to specify a standard minimum set of diagnostics ? Agains,
no, partly because of the same problems of variations in the language\:
but more 1mportant1y because it may hinder the development of newv
techniques by requiring compilers to detect a particular set of errors.

In any case, this is missing the point of standardisation. It is
pertinent to standardise programming languages because these are
essentially man-to-machine communication and the recipient is not
intelligent. Diagnostics are machine-to-man communication and
there is less need for conformity. What would help the programmer
more than standardisation is a more general adoption of the practice
of printing an English phrase or sentence describing an error rather
than a cryptic message like ‘ERROR NUMBER 8.

Yours faithfully,
D. T. MUXWORTHY

%/QL/GIO!UB/IU[LUO

Edinburgh Regional Computing Centre
James Clerk Maxwell Building

The King’s Buildings

Mayfield Road

Edinburgh EH9 3JZ

7 February 1973



To the Editor
The Computer Journal

Sir
Your reply to Messrs Wheeler and Needham (this Journal, Vol. 16,
No. 1, p. 18) sacrifices something of professional integrity on the
altar of wit. The choice of altar is excellent, that of victim rather less
sO.

Certainly no editor has the right to publish under an author’s name
anything that the author has not agreed to publish, or to not publish
anything that the editor has agreed to publish. Certainly no editor
has the right to publish anything that debases standards of thought
and expression. The two are not independent, but aspects of the
same thing. Those who are slovenly about what they write are
slovenly about what they write about. Those who read slovenly wri-
ting are pushed towards slovenly thinking.

A function of editorship is to reconcile these directives by suggesting,
persuading, educating, and finally joining forces with the author
to cut out the careless, the crass, and the cute. Most authors will
welcome such editorial aid, if only in retrospect. Even I have done so,
though admittedly a long time ago.

On the whole this Journal has at least an honourable record. I am
probably old fashioned and ill tempered to resent a flock of un-
identified OTU’s (p. 30 et seq.) in the current issue. I hope, though
without robust confidence, that I am joined by those who are neither
in objecting to the cancerous abuse of the words ‘intelligent,-ence’
and (as usual) ‘information’. Surely by now authors should have
learnt to cross out the latter word whenever it springs to hand be-
fore mind, and substitute a more specific word appropriate to what-
ever is being talked about? If they have not learnt to do so, editors
must teach them. That linguistic corruption is endemic does not
absolve one from keeping it in check. Indeed editors could have
and still can get rid of it by refusing to propagate it.

Linguistic corruption is conceptual corruption, words being used
as substitutes for thought. Someone once said of computing and
cognate activities that probably no profession had acquired so
misleading a terminology in so short a time; certainly no profession
had cared less.

Yours faithfully,
ROBERT A. FAIRTHORNE
30 Clockhouse Road
Farnborough GU14 7QZ
Hampshire

10 March 1973

Editor’s comment:

I must apologise if I have allowed my natural inclination for wit to
hide the meaning of my comment on the letter of Dr. Needham and
Dr. Wheeler. Because of the purely practical problems involved, i.e.
the amount of work, finding suitably qualified people to undertake
it, ensuring that no change of meaning has taken place, it is not pos-
sible for the editorial staff of the Journal to monitor the standards of
English used in published papers. Referees do give considerable help
in this but even they are neither omniscient nor all seeing.

The Editorial Board of the Journal expects authors to write in
concise and clear English and deprecates the use of unnecessarily
long words, words of doubtful construction, and jargon. The
responsibility for seeing that this is done, however, must, so long as
present conditions apply, rest with the author.

To the Editor
The Computer Journal

Sir
In response to your editorial in the February 1973 issue of The
Computer Journal, I should like to make the following comments.
1t has been said of the Journal, that the vast majority, if not all, of
the articles therein are irrelevant or incomprehensible to most Data
Processing members. From my own experience, this is a fact. The
stock answer in the past has been that suitable papers of a D.P. bias
have not been forthcoming. I am only too ready to accept that this
also is a fact.
A reason for this, I venture to suggest, may reflect my own reason,
of never (before) having dared to presume that anything I could
write would not become an object of derision from the august and

286

erudite university fraternity. To put it bluntly, I and the average
D.P. man are just not in their class. (If we were, then we would soon
try to become one of them!)

Pleas have been made for the Journal to maintain ‘The highest
technical standards’. But how do you measure or evaluate such
standards ? If any such measure involves intellectual standards or
advanced technical/mathematical theory, then the standards of
commercial D.P. men can never rival those of the universities. Any
attempt therefore to maintain the readership (or even the member-
ship) of this ‘silent’ majority must inevitably involve a lowering of
such standards. I do not believe that this would necessarily te an
undesirable thing.

There would still be, of course, a need for the more advanced and
theoretical papers, perhaps even a majority of these, but please,
never forget the plain, simple and overworked commercial analyst
and programmer, without whom neither the BCS nor the University
Computer Departments could justify their present form of existence.

More positively, I should be very much in favour of any papers of
the type suggested in your editorial, explaining the context and
significance of new developments. Other areas which could materially
increase the knowledge and effectiveness of D.P. members may
include:

1. ‘Educational’ papers, outlining for instance the logic and struc-

ture of existing software. (Compilers, Operating Systems,
Peripheral Control, etc.). .

2. Problems of practical systems, either with solutions or merely an
analysis of the problem in order to entice further papers offering
solutions.

3. Systems descriptions of large or interesting applications. Pre-
ferably written after implementation.

With this unusual, and uncharacteristic, modesty over, I am
attempting to prepare a paper on problems of correcting data errors
within large integrated business systems. It will not attempt to
provide answers directly,but in view of my arguments above, it will
not achieve the intellectual standards of current articles. I should
like to know if you would be interested, or am I wasting my time?

Yours faithfully,
C. R. TYLER

34 Fenton Street
Scunthorpe
Lincolnshire

28 March 1973

Editor’s comment:
In the above letter Mr Tyler asks a question which, I am sure,
provokes thought in many systems analysts and programmers
operating in the field of commercial data processing, and, because
of the lack of an answer, deters them from submitting important
papers. The question is that whereas papers in the topics listed in
(1), (2), and (3) above are stated in the ‘Notes for authors’ to be
suitable for the Journal, what is the meaning of the phrase ‘highest
technical standards’ when applied to those papers.

The most apt answer to the question which I have seen yet was
written by one of the members of the Editorial Board. I quote:

“The criteria which I have used, when I have been asked to referee
a paper, have nothing to do with academic theses; I ask myself
about the paper I am to comment on,

1. is it interesting,

2. is it different from what I and others know already, a new
slant on topics, etc.,

3. how does it relate to what I do know, what extensions, etc.,
4. is it correct,

5. can I learn something from the paper and is it written in a style
which will enable other people to learn from it easily ?’

As an editor 1 should add to these five questions a sixth. Is the
length of the paper commensurate with the amount of new inform-
ation which it presents?

What interests Mr. Tyler is, of course, what would a paper on
correcting data errors have to contain in order to give an answer yes
to the above questions. Assuming that no work on this topic has yet
been published it should do the following:

1. Specify the class of problems which can arise in the preparation
of data.

The Computer Journal

20z udy 61 U0 1s9n6 Aq G6+919/£82/€/91/8101E/|UfLOD/W0Y"dNO"OILSPEDE//:SARY W) PAPEOUMOQ



2. For each type of problem specify the possible solutions to the
problem, identify the solution which has been adopted, and give
the reasons for the particular choice.

3. State how the results of the investigation have been applied in
the author’s work situation.

Where some of the results have been presented before these should
not be repeated but only referenced. Clearly, one would expect the
author to be aware of such publication. In a scientific paper one
would expect the author to attempt to establish a theoretical basis
for his results, but this is not expected normally in a paper concerned
with business applications.

I shall look forward to receiving Mr. Tyler’s paper. If it does not
conform to the above criteria I hope that at least I shall be able to
advise him on how to amend it so that it does.

To the Editor
The Computer Journal

Sir

In Volume 16, Number 1 (Feb. 1973) R. J. Dakin suggests in his
letter that ‘hardware designers have so far done very little’ in provid-
ing hardware address traps.

My copy of the publication ‘IBM System/370 Principles of
Operation’ (GA22-7000-2) is out-of-date I know. However it does
have about seven pages of description of the ‘Program-Event
Recording’ facility which he may care to read. Apparently the
hardware can selectively monitor for various events such as references
to instructions or storage alterations in a range of locations.

Thoughtfully there is also software support for this. OS/VS2, which
came out in late-72, supports it through DSS (Dynamic Support
System).

Yours faithfully,
D. G. GLADING
23 Gresley Close
Four Oaks
Sutton Coldfield
Warwickshire
12 March 1973

To the Editor
The Computer Journal

Sir
The computing speed on a new machine

M. Ahmad’s paper in the May 1972 issue of The Computer Journal
attributes to us observed execution times of instructions in the MU 5
computer. At the time of M. Ahmad’s stay in Manchester the hard-
ware of MUS was not commissioned, and the times quoted must be
derived from design estimates. They differ, in fact (in both directions),
from our design estimates and from the (now) observed times. The
instructions quoted in the paper appear to be taken from an early
version of the order code, which itself differs from the implemented
version. '

At this stage the MUS5 design team cannot endorse any detailed
conclusions about the performance of MUS. A systematic investi-
gation of its performance has been started, and the results of this
will be published as soon as they become available.

Yours faithfully,
R. N. IBBETT
E. T. WARBURTON
Department of Computer Science
The University
Manchester M13 9PL
22 May 1973

Editor’s comment:

It is a matter of regret that the paper of Ahmad appeared in its
present form. Apart from the fact that the times produced do not
have the support of the Manchester University development team,
I have been informed of a number of other defects. These include
a misquotation of a report of Wichmann and a failure to take
account of the more recent work in this area. I hope that the Man-
chester team will be able to produce a definitive paper on the per-
formance of the MUS in the very near future.

Volume 16 Number 3

To the Editor
The Computer Journal

Sir

The paper of Wells, ‘File compression using variable length
encodings’ (The Computer Journal, Vol. 15, No. 4), comments that
the decoding from variable length to fixed length ‘. . . if implemented
entirely by software may be disastrously slow’. An extremely
efficient and straightforward method of decoding is possible on a
binary machine.

If the longest encoding of a symbol into a variable length code-word
is of length n, then two arrays, SYMB[0:N]and NBITS[0: Nlareall
that is needed for decoding, where N = 27 — 1. Suppose the fixed
length symbol S is transformed into the code-word S’ of the length
m by the encoding process. To initialise the arrays for decoding,
consider a binary representation of length n of the subscript k, then
if the leftmost m bits of the binary representation of k are identical
with S’, set SYMBI[k] to .S and NBITS[k] to m. The algorithm for
decoding is then:

Al: 1. Let k be the binary number represented by the next 7 bits of
the encoded message.
2. The decoded symbol is SYMB[k].
3. Discard NBITS[k] from the message.
4. Return to (1) for the next symbol.

In the example of Fig. 1 of Wells’ paper, both arrays would contai
16 elements; . :

SYMBI[0] = SYMBJ[1] = ‘¢’, NBITS[0] = NBITS[1] = 3,
SYMB[2] = ‘r’, .. ., etc.

It is possible to reduce the table sizes involved at the cost of adde
decoding complexity by assigning an encoding of only 1 bits to th5
most frequently occurring symbol. Suppose that in addition to the
above, the most probable symbol is encoded as a string of 1 bits of
length j. Then the upper 277 elements of the arrays are unnecessarg.

o]

with the following more complex algorithm: o
A2: 1. Examine the next j bits from the encoded message. 2
2. Ifall;jbits are 1 then the decoded symbol is the most probabl§

one and j bits are discarded from the message and return toy

Sy wouy pafEEojumoq

step (1).
3. If not apply steps (1)-(3) of algorithm Al.
4. Return to step (1) for the next symbol.

In Wells’ example if the symbol ‘@’ is assigned a code of ‘11° the
algorithm A2 needs tables of size 12.
Yours faithfully,
CHARLES J. GIBBON:!
Mathematics Department
College of Arts and Sciences
University of Nebraska at Omaha
P.O. Box 688
Omaha, Nebraska 68101
USA
1 March 1973

61 U0 1senb Aq 56+91.9/¢82/¢/91/Brome/ulw

Professor Wells’ replies:
I am grateful to Professor Gibbons for pointing out this methodé>
which is certainly fast, with a time of order 1 compared with the
time for our decoder of order equal to the average length of the codel
word. However, the amount of store required can grow to be very™
large; if pmin is the probability of the least probable symbol the
storage requirement is in the order of (pmin)~2, since the longest code
word will be of length —log, (pmin). For an extended code such as
was discussed in the original paper this would require 22° words of
store.

Professor Gibbons does in fact point the way to a compromise
algorithm, in which the most frequently occurring codewords can be
detected in a single table look up into a reduced table, while less
frequent codes are iteratively decoded. A note which is in prepar-
ation describing an improved hardware decoder will also include
some discussion of this mixed algorithm.



