Tree driven data input and its validation

M. I. Padgett

Department of Civil Engineering, University of Nottingham, University Park,

Nottingham, NG7 2RD

A generalised technique for the input of forms into a computer system, and its implementation in
ALGOL is described. The format for any section of a form is parameterised. Each type of form
has an associated input format tree which holds the various sets of section parameters. This input for-
mat tree is used to decode the data belonging to a form into a data tree.

(Received September 1972)

The work described in this paper was one part of a larger
system known as ADMIN (Automatic Design of Management
Information Networks). Although ADMIN was not fully
implemented and work on it has now terminated, the part
described below was fully implemented and tested. Further-
more, it can be described on a standalone basis. ADMIN, in
terms of business systems, was aimed at promoting the collec-
tion of the correct data in a sufficiently short timescale for
economic analysis to be feasible. To this end the system was
intended to provide a facility for the construction and inter-
rogation of models which consist of highly interrelated sets of
items (i.e. networks). The method of building these models was
meant to be by the input of Standard Forms to the computer.

The main difficulty in designing an inputter for these Standard
Forms is that it is not known at the outset what type of forms
are required to gather the data for a particular management
information system. The choice is either to have purpose built
inputters for each type of Standard Form or to have one gener-
alised inputter capable of handling all types of forms; the
implications of adopting the latter being that it will be highly
parameterised. Because of the desire to have high flexibility and
speed in allowing new forms into the model, the generalised
inputter is preferable and is the one described in this paper.

The paper has three main sections. The first indicates in an
informal manner how the structure of a form can be analysed.
The second formulises this analysis by parameterising each
section of a form. In the third section an attempt is made to
give an insight into the computer techniques used in the imple-
mentation.

Having gathered the data on one form it is often transcribed
onto a suitable form for data preparation. This method is
obviously open to clerical error. The prime design aim of the
inputter was to facilitate the completion of Standard Forms
with a minimum regard for the need of the computer to have
‘punctuation’ between sections. In view of this the inputter
allows a very free format and forms are suitable for immediate
data preparation after the addition of a small number of
section delimiters.

The inputter was implemented on ICL 1900 series computers.
The bulk of the coding was in ALGOL which was enhanced by
some fifty or more primitive subroutines written in PLAN.
These primitives enabled structure manipulation to take place
and were available to all ADMIN subsystems.

This paper is not intended to be a full specification for the
inputter. Space alone forbids this and in addition it would
tend to cloud the main ideas. The aim is to give the reader a
feeling for the problem and how it has been solved. Every
effort has been made to ensure that the rules and definitions
given are consistent but no formal attempt has been made to be
‘necessary and sufficient’. Appendix 1 gives an explanation of
the technical terms used. It might be found helpful to read it at
this juncture, and in this manner it is hoped to establish a
common vocabulary with the reader for this paper.

Volume 16 Number 4

Informal discussion of the main concepts

The basic aim of the inputter is to decode the data on a form
into a data tree and perform a limited amount of validation on
the data. This aim is achieved by the use of an input format
tree of which there is one for each type of form. This data trees
is then passed to other ADMIN subsystems for further:
semantic checks before items from it are placed in a data-m
base. First some of the basic syntax of a form is analysed and‘I>
then some of the facilities available to the user are described. 3

In general a form can be divided into sections, either byi
physical lines or a numbering system, or a combination of both.=
The two methods of division are exactly the same from aZ
logical point of view. The idea of a section is now developed.§
A section is said to be complex if its contains subsections and%
primitive if it contains no subsections. A primitive sectionZ.
contains a string of characters or an integer (in effect a string ofo
characters which are interpreted).

A convenient method of holding the structural 1nformatxon3
implied by dividing the form into sections is to represent itg
by a tree, each section of the form corresponding to a node ofé_
the tree. The tips of the tree corresponding to primitive sections=
and other nodes corresponding to complex sections. Fig. 1=
shows how the structure of a form can be mapped onto a tree®
structure.

The reasons for using a tree to represent the structuralcs
information must be understood in the wider context ofg
ADMIN where the idea of a network is basic. A tree can be;
considered as a special case of a network and is thus and
obvious structure with which to identify the format of a form. ‘{,’
Further to this, many primitive procedures for the mampu-@
lation of trees are available to all the ADMIN subprojects ofg
which this is one. o

In Fig. 1 one primitive has been indicated as having a varlablc.\)
number of characters. In such a case a single character, referredj>
to as a delimiter, is added to the string of characters, so that=.
when decoding of the data takes place a definite symbol
indicates the end of the primitive. The choice of character=
which is to act as a delimiter is free as long as it obeys the rules
which are defined later. Often a delimiter will occur naturally
on a form as for example, in a list of names separated by com-
mas. The comma acts as a delimiter but it is not partof thedata.
If the primitive is held in a fixed length field as for example:

LLELOW |

then it can be argued that there is no need for a delimiter, since
six characters are taken to be the primitive, and leading and
trailing blanks are removed. However, fixed format on forms is
severely restrictive and especially inappropriate when the for-
mat of forms might change quickly in the initial design stages
of any system. Delimiters, as will be seen later, have a much
more general use than the one outlined above.

Frequently on a form a section, either primitive or complex,
will be left blank, as it is found to be nonapplicable. Formally

/Y1919

315

Complex:
3 sub-
sections

Complex: Primitive: Primitive:

2 sub- string of integer of

sections 4 to 6 3 digits

characters

Primitive: Primitive:
string of 5 integer of
characters Lk digits

Fig. 1 Structure of a form mapped onto a tree structure

(a)

Complex:
3 subsections,
delimitert
Primitive: string Primitive: Primitive:
3 to 6 characterf string of 4 integer of 2 to
delimiter* characters 3 digits,
delimiter:
(b) HOPE*NONE-30:M
(c)
ISIHOPE | IS]NONE I III -30 |

Fig. 2 (a) Anillustration of a simple input format tree with delimiters
(b) Specimen data
(c) Data tree that would be produced using (2) and (b)
(N.B. In (c) S denotes a string and I an integer)

A B A' B!

N

Input format tree Data tree

Fig. 3 (a) Contraction at A’ due to section corresponding to A being
null.
(b) Lateral extension at B’ due to repetition of section at B.

such sections are said to be null. If the section is primitive, then
one method of indicating nullness is to punch space characters.
However, it is often more desirable to have a visible character
which can be used to represent nullness. For example, positions
not occupied by digits in a cheque might contain the character
* and this is an obvious security precaution.

If the primitive section has a delimiter, then a shorthand way
of denoting nullness is simply to punch the delimiter. This is one
reason why primitives containing a fixed number of characters

316

are allocated a delimiter. In this case if the primitive is null, then
a convenient way of indicating nullness is to punch only the
delimiter as opposed to punching a fixed number (possibly
large) of null code characters if no delimiter is allocated. The
example below shows the three possible ways of indicating a
primitive as being null, assuming a nullcode of * (say) and a
delimiter : (say). -

Example
O O [O: i.e. spaces and delimiter

***. i e. nullcode and delimiter
: i.e. delimiter only.

The shorthand used in denoting nullness of primitive sections
(i.e. delimiter only) becomes essential when considering the
nullness of complex sections. Each complex section is assigned
a delimiter. With one optional exception (described later) this
delimiter is always added to the end of any data concerning the
subsections of this complex section. A simple example of the
input format tree and a specimen data input is shown in Fig. 2.

To denote a complex section as being null it is sufficienty
to write its delimiter. It should be noted that the depth of thes
data tree is less than the correspondmg part of the input formatm
tree, if a complex section is null. Fig. 3 shows the structure onlym
of the input format tree and the data tree. The complex SCCthl’l—“
corresponding to the node marked A is null and thus therei is3
contraction at the node marked A’.

A common occurrence on forms is for a subsection format to?
be repeated several times. An example of this might be in%
forms describing the job functions of personnel where each lme%
corresponds to one person. It would be inefficient to repeatB
the identical structures on the input format tree, and so theo
concept of a repeated section is introduced. All the repeatedv
sections on a form mlght not be used in some cases, and thus3

3
the maximum and minimum number of expected data sets foro
this structure is specified. The example below illustrates how a3
section of the structure tree might look.

/:sdny

REPEATED SECTION
BETWEEN 1 & 9
TIMES

EACH REPEAT IS A
STRING OF4 10 G
CHARACTERS.

nb Ad €879L¥/GLE/F/9L/o101E Ul

It will be noticed there is only one son from the repeated?
type node. This son corresponds to the repeated section ando

. . o . . =}
might be complex or primitive. In Fig. 3 the node B corres-p
ponds to a repeated section. It will be noted there is a lateral;‘C)>
extension of the structure at node B’ on the data tree.

Sometimes data in one or more subsections of a repeated"
complex section will overflow into the same subsections of thex
next repeated complex section. Typically this occurs in repeated
sections which are lines divided into subsections. Fig. 4(a)
shows a form with four subsections on each repeated line for
name, job description, salary and age respectively (say). No
delimiters are shown but they are, of course, necessary. The
job description has overflowed. Initially the inputter decodes it
as two independent repeated subsections as shown in Fig. 4(b).
Resequencing then takes place as shown in Fig. 4(c), so that the
result is one logical section.

A method has been evolved to indicate on the input format
tree when resequencing is allowed and what ‘signal’ should
trigger it.

A limited amount of what is best described as syntactic and
semantic validation is carried out on primitive sections. A
primitive is checked to see that the number of characters it
contains falls within a defined minimum and maximum.

The Computer Journal

(a) Part of a form with two structurally repeated lines

SMITH MANAGING DI 9000 ko

RECTOR

(b) Data tree before resequencing
/\\

S lREC

TOR

S ISMITH]S IMAI\'AGING DI] ‘I ")O()‘OJ I i’lf) |

(c) Data tree after resequencing

/

N ‘SMITE, le_[MANA(iIN(‘. DIRECTOR J Eﬁ lf)OOOl ‘ I

Fig. 4 Resequencing.

~

|

Integers (i.e. converted strings) are optionally checked that
they are less than a given maximum and optionally greater than
a given minimum. No contents check is carried out on a string
not representing an integer, but it is possibly desirable and can
with little modification to the inputter be included. Other
types of validation take place between sets of items and these
are mentioned elsewhere. It should be noted, however, that
anywhere a rule is stated or implied there is a corresponding
error check.

Formal description of node parameters

The eight parameters which are used to define the syntax and
validation associated with each section are now given. In the
following node and section should be taken to be synonymous.

1. TYPE

Complex sections are either of type M or type R.

(@) Type M if it contains a fixed number of subsections, not all
of which are identical. (M for many or multiple or mixed.)

(b) Type R if all the subsections are identical.

Primitive sections are of type S or L.

(a) Type S is a string.

(b) Type 1 is an integer.

2. MAX

(a) For type M or R specifies the maximum number of sub-
sections or repeats respectively.
(b) For I or S specifies the maximum number of characters.

3. MIN

As in MAX, with minimum replacing maximum.

N.B.

1. For type M then : MAX = MIN.

2. For fixed length primitives MAX = MIN.

3. Leading and trailing spaces are included in MAX, MIN
conditions. But will be removed during processing.

Volume 16 Number 4

4. The sign character if present is included in MAX, MIN
conditions for integers.

4. DELIMITER

Delimiters are used to terminate or denote the nullness of
complex or primitive sections. A delimiter must be defined for
all sections except for a primitive section with a fixed number of
characters (i.e. MAX = MIN) where its definition and
subsequent use is optional. Delimiters cannot be defined in
isolation nor can they be used on particular data forms without
corresponding to the rules given below. However, first the
concept of an effective delimiter must be established.

Any section which is the last subsection (i.e. youngest son on
the input format tree) of another section can, if a delimiter is
required, use the delimiter of main section. This concession is
useful, since it cuts down on the number of non-data characters
on a form. The idea can be extended so that one delimiter can
act for several nested subsections each of which is a last sub-
section. Fig. 5 shows a skeleton tree with delimiters at the side
of each node. A legal delimiter sequence for nodes 8, 7, 1 would
be

* . T

but in fact 1 can be used to the same effect. Rules governing the
definition and use of delimiters are now given.

0} papeojumoq

©

character (@ in the current implementation). <
[V

Q

W)

Rule D2 %
The transparency character @ and the effective end of line2.

marker « (described later) are not allowed as delimiters.

woo dno

Rule D3
The shorthand technique of using effective delimiters is notg
allowed when father and last son have the same associated=.
delimiter. If the father delimiter is present, then should theg
presence of the son be indicated it must also be accompanied=:
by its delimiter. Three legal sequences of delimiter following any®
data corresponding to node 10 in Fig. 5 are:

1. **:

2.*: (: acts as an effective delimiter for node 8)

3.: (: acts as an effective delimiter for both nodes 10 and 8

Aq €8¥T11/S1LE/v/9

Rule D4
The effective delimiter for a set of repeated sections must no¢
be the same as that for the repeated section. For example: ifs
the structure tree is as below:

REPEATED SECTION:

DELIMITER *

20z ludy g uo

STRING : | T0 3

CHARACTER : DELIMITE~ #*

then ABC ** is ambiguous since the second * can either indi-
cate a null string or the end of the repeated set of strings.

Rule D5
If a complex section is to be denoted as being null by using only
its delimiter, then the following condition must hold.

Condition

No node on the yo-yo path to a primitive node shall have the
same delimiter.

If this condition fails, then the nullness of all the sons of the
complex section must be indicated, and Rule D5 applies to all
of these sons.

317

Fig. 5 Skeleton input format tree with delimiters.

As an example of the use of Rule D5, consider the structure
tree in Fig. 5. If the section corresponding to node 2 is null
then =, * is required and not just *.

N.B. This is the shortest way. A further legal way is * :
Of course if the primitives have null codes these can be option-
ally inserted.

The above rules might appear unwieldy, but they are given to
allow for input format trees of any size. In practice it is common
for them to have about a dozen nodes, and the rules then become
very simple to operate.

— %
, T

S. NULLCODE

This parameter is applicable to primitive sections only (i.e.
type S or I). The character may be inserted between MIN and
MAX number of times to indicate that the primitive is null.

6. MINVAL
Applies to nodes of type I and specifies the minimum allowable
value of the integer.

7. MAXVAL
Applies to nodes of type I and specifies the maximum allowable
value of the integer.

8. RESQ

Applies only to nodes of type R. Resequencing is allowed to
take place between data sets whose structures are identical,
The structure of these data sets is defined once and hangs from
a node of type R. For two data sets the nullness of a particular
subsection in the second set will trigger resequencing. RESQ
is set non-null if resequencing is desired, and its value indicates
which son in the data set is to trigger resequencing.

Two rules are necessary:

Rule Q1
If either data set is completely null in all its sections then no
resequencing takes place.

Rule Q2
At least one of any two corresponding integers must be null.

| 42 |
| 37 |

will not be resequenced as 4237.

Note:

The usual removal of leading and trailing spaces is not done
until all resequencing has finished. Thus intermediate spaces are
preserved.

Example:

318

The decoding technique

Assuming that the data has been read into the input buffert and
the requisite input format tree has been obtained the general
principles needed to obtain the corresponding data tree are now
given. Fig. 6 is used as an example and is referred to in the text.
The input format tree and the data have been chosen so as to
illustrate many of the ideas mentioned previously. In this
respect they are not completely typical of everyday use. The
contents of the form are self-evident. Double underlining repre-
sents the pre-printed section of the form which is not input
as data. Error detection and recovery are discussed in a separ-
ate section but it must be realised that these processes are
continuing simultaneously with the formation of the data tree.

1. Recursion
The main decoding procedure is recursive. Some justification
for this statement is now attempted.

1. Tree structures are essentially recursive, i.e. each subtree
taken in isolation is a tree in its own right.

2. The decoding of a complex section is not completed until 1ts

last subsection has been decoded. Thus at any one time there g
are several sets of the eight-parameters associated with each =
section in operation. They correspond to different section &
levels. These parameters have to be stored and referred to at &
various stages. Thus an obvious technique is to use a g

recursive procedure where these parameters can automati-
cally be stored and destroyed after use.

3. There is a one to one correspondence between the depth in
the recursion and depth in the input format tree. Furthermore
there is, in effect, a one to one correspondence between the
actual calls of the recursive procedure and the actual number
of nodes that are examined during decoding. The reason for
the words ‘in effect’ is that for repeated sections some nodes
will be examined as many times as there are data sets corres-
ponding to the repeated section.

The onus for going deeper into the recursion rests with the
input format tree whilst exist from recursion depends on the
presence or lack of data in the input buffer. Which of the two
predominates is now discussed in Sections 3 and 4 below. First,
however, the technique used to form the data tree is described.

2. Method of forming the data tree

If a section is found to exist, after analysing the input buffer,
then a data tree corresponding to that section is passed out of
the recursion to the level above. This data tree will be degener-
ate, i.e. consist of only one node, in the case of primitive
sections and in the case of complex sections that are null. At
the level above this data tree now becomes the youngest
subtree on the data tree which is being formed at that level.
If it is the first subtree at the level above, then it will entail the
creation of a head node from which it can be hung. Fig. 7
shows how the subtree of Fig. 6(c) containing the data '®
HERBERT, CLERK, 1200 has its final section added.

3. Principle of maximum recursion

The recursive procedure starts operating by examining the data
at the head node of the input format tree. (This can be con-
sidered to correspond with a complex section for all practical
purposes, since the case of a form consisting of a single string
or integer is unrealistic.) For any complex section, if data is
present corresponding to the first primitive section contained
within it, then assuming no errors the current position pointer

tConceptually the input buffer consists of a linear string of the data
characters and a current position pointer able to move in both
directions. Each card has an end of line marker (< in the current
implementation) and only data up to but not including < is ap-
pended to the buffer.

The Computer Journal

dy 0Z UC 159n6 Aq £81914/5 L€/b/91 /0l01E/ U000 dno-diLIBpEoE)/:sdyy W

I\)

=

—®
CEEONNAN

©
PeleD[[1]

® _®
oL LI BlBEI Tl

® ©)
[l prl] [sfefo][]]

@)
rlsfafs] [][

i

CEERENEN

*

©) @
BERETTTT] (kLT TTT] (sl -l 1]

Fig. 6 (a) An input format tree with parameters from left to right at each node

Identification

71/LONDON; SMITH!

Name Job Description Salary

JONES= MANAGER@/ , 5000, :

= DIRECTOR , LR
HERBERT = CLERK 1200)

Fig. 6 (b) A simple standard form whose input format tree is shown in Fig. 6(a)

ISPONES I LSFANAGER/DIRECTOR I [z]5000 | [s [rereerT | [S]ELERK | |I| 1200]

Fig. 6 (c) Data tree produced using (a) and (b)

of the input buffer will be pointing to the first character of that the input data buffer examined. For example, in Fig. 6(a),
section. Accordingly recursion, and correspondingly deeper recursion takes place from node 1 until node 4 is reached.

penetration of the input format tree, automatically takes place, However, during the recursion the delimiter associated with
following a yo-yo path until a primitive node is reached. It each node is noted and placed on a stack, known as the current
should be emphasised that at no stage during this recursion is delimiters stack. It will be seen later how this stack is used for

Volume 16 Number 4

319

202 udy 0Z U0 189n6 AQ £8%9L /G 1L E/#/91/81014e/|uf00/W0d"dNo"oILLSPEDE//:SARY W) PAPEoUMOQ

(@)
IiHERBEHI Elcm-:mc l
®)

I| 1200

()
ISIHERBER’I] |S]CLER.KI lI 11200'

Fig. 7 Method of forming data tree
(a) Partially completed data tree at level n (say) of recursion.
(b) Subtree (degenerate) at level n + 1 of recursion
(c) Resultant data tree at level # after addition of subtree from
leveln + 1

decoding and error detection purposes. Thus at node 4, for
example, the stack will contain the delimiters /;!).

By the above process an alignment of the input format tree
and the input data buffer, which is likely to be correct, is
achieved. The checking and correction of this, if necessary, is
described below.

4. Criteria for exit from recursion

Depending on whether a node is associated with a primitive or
complex section there are different criteria for exit from the
recursion. Always, though, if a delimiter has been added to the
current delimiters stack on entry it is removed on exit. The two
cases are now discussed.

For primitive sections characters are copied from the input
buffer and assigned to a section until the MAX number is
reached, or a current delimiter is found. Implicit in this copying
process is the moving of the current position pointer in the
input buffer. If the first character inspected is a current
delimiter, but not associated with the current level of recursion,
then the primitive is deemed not to be present, i.e. empty and
exit takes place. Note that in this case no data tree will be
passed out of the recursion. Otherwise a single node data tree
is passed out which either has no data, a string or an integer in
its data stack.

For complex sections the possibility of exit is only considered
after returning from the recursive level associated with the first
subsection, as is required by the principle of maximum recur-
sion. If this first subsection is empty then exit must take place.
But first, the input buffer is examined to see if the character
pointed to by the current position pointer is an effective
delimiter for the complex section, and if this is the case a
degenerate data tree with no data in the stack is passed out.
Otherwise the section is empty and no tree is passed out.
Should the first subsection be non-empty then a search is made
for all the remaining subsections that are defined on the input
format tree before exit is allowed.

Errors

After forming the data tree the most important function of the
decoding process is to detect errors, note them, and if possible
continue to decode. It must be stressed that recovery after an
error is at best an educated guess and that it makes the decoding
process considerably more complex.

As errors are found they are recorded on an error tree. The
tree consists of a head node with each son of the head node
corresponding to an error. In the data stack of each ‘error node’
are integers which parameterise the error. This error tree is
then suitably presented at the end of decoding.

Some errors are localised, as for example a primitive section

320

containing too few characters, and need no specific recovery
action. Others are more serious and require a realignment of
the input data buffer and the input format tree. Always it is
the current position pointer of the input buffer that is moved as
opposed to changing the node being analysed on the input
format tree. This ensures that no looping occurs in decoding,
since no back-tracking can take place on the input format tree.
To elaborate, decoding ends if exit is made from the recursive
level corresponding with the head node of the input format
tree, or if the end of the input data buffer is reached. In normal
circumstances these two should coincide. The two occasions
on which the current position pointer is moved are described
below.

The first occasion is concerned with an ‘overshoot’ situation
and the possible need for ‘back-tracking’ in the input data
buffer. A decision as to whether to back track depends on
the contents of the found delimiters stack which is built up
during the decoding process in the following manner: when
decoding primitives any character found which is a delimiter,
but not a current delimiter, is either deemed to have been
punched spuriously, or to indicate that the input format treed
is possibly out of alignment with the input data buffer. Ing
consequence the delimiter and its position in the input datad
buffer are entered as an ordered pair on the stack of found>
delimiters. This stack is, of course, empty at the start oy
decoding. e

If a delimiter is defined for a section, then there is an overw
shoot check, subject to certain conditions given below. Beforeﬁ
this, however, the method of the check is discussed. First, albg
ordered pairs, that were added to the found delimiters stacki:.%
when the current position pointer of the input data buffer wass
more than some threshold value (typically 80, i.e. one cardf
from where it is now, are removed. This housekeeping is5
designed to minimise unreliable back—tracking Second
starting with the ‘eldest’, each ordered pair is examined to sees
if its delimiter agrees w1th the section delimiter. If it does, therg
the current position pointer of the input data buffer is movec&
back to the position indicated by the second element of thel
ordered pair, and the found delimiters stack is emptledm
Otherwise the next ordered pair is examined until there are nos
more left.

For primitive sections the overshoot check is applied immedi<;
ately on entry to the corresponding level of recursion. Foxﬁ
complex sections, to conform with the principle of maxlmumi>
recursion, the check is applied only after returning from the>
recursion associated with the first subsection, and then only i
that subsection is empty.

The second occasion on which the current position pointer-
of the input data buffer is moved occurs at the end of the recur<’ .
sive procedure. Here the concern is that there should be no?
‘undershoot’ by the pointer. The check is always applied taS
sections which have been found to be non-empty and have a\)
defined delimiter. As an example, if a primitive has a maxxmum\>
of 6 characters delimited by a colon then

SALESMAN:

947

01senbRq

will cause an error. The pointer will be stopped on the second A
and thus as a corrective measure it is moved to the colon, i.e.
the characters AN are ignored. Generalising, the pointer is
always moved, if it is necessary, to point to the next delimiter
in the buffer.

Conclusions

The inputter has relatively large overheads in the form of
PLAN structure manipulation primitives, ALGOL library
procedures and data storage areas. In all these come to approxi-
mately 20K words of storage as opposed to approximately 6K
for the inputter itself. It was only when these overheads were

The Computer Journal

shared by other ADMIN subsystems that they became
acceptable.

During the initial testing stages of the inputter over fifty
different types of form were input and all the facilities mentioned
were found to be useful. Typically a form with about one
hundred non-null primitive sections took about one minute to
decode. This time is acceptable, since for the first attempt at
defining and coding the inputter, correct logic and speed of
implementation were considered to be more important than
efficiency. A logical system can usually be made efficient, but
not necessarily vice versa.

Probably the most important spin-off from the above work is
the way in which delimiters were employed. In the field of
lexical analysis there would appear to be the possibility of using
similar techniques. Finally it should be emphasised that the
inputter was designed for large systems where quite possibly
thousands of forms are involved. Its flexibility can only be
justified in such an environment.

I would like to express my grateful thanks to all my former
colleagues for their help, encouragement and patience. In
particular, J. Thomas, who suggested the use of a tree structure
technique and some of the parameters for the inputter.

Appendix 1

The purpose of this section is to define some of the terms used
in this paper. No claim is made for the universality of the
definitions. Fig. A1 shows a tree structure with the nodes num-
bered and these are the ones referred to in definitions.

The head node is number 1.

Tip nodes are 3, 4, 5, 7, 9 and 10.

Nodes 2, 5 and 6 are sons of node 1.

Node 8 is the father of nodes 9 and 10.

Node 5 is the elder brother (or major) of node 6 and the younger
brother (or minor) of node 2.

Node 2 is the eldest son (first son) of node 1.
Node 6 is the youngest son (last son) of node 1.

Transversing the tree from the head node the yo-yo path

through the nodes is that indicated by theascendingnumbering. 5
Each node of a tree has a data stack associated with it. This 5

stack is empty when the node is added to the tree. Subsequently §
any number of the following items in any order can be placed &
in this data stack.

(a) an integer (held directly)

(b) a stack (held as a pointer)
(c) a string (held as a pointer)
(d) a tree (held as a pointer)

The facility (d) is not used by the inputter but is given for g

completeness A string in the ADMIN system is not thats
defined in the ALGOL 60 report. However, ALGOL 60 type
strings are often converted into ADMIN type strings but not &
vice-versa.

Book reviews

Job Control Language and File Definition, by Ivan Flores, 1971; 268
pages. (Prentice-Hall Inc., £6-25)

This is a disappointing book. There is certainly a need for a book
which explains job control language for the IBM 360 series in a way
which reveals the underlying structure of its semantics, rather than
concentrating on its rather arbitrary syntax; and this book sets out
to do just that. Unfortunately Professor Flores’ book falls a long way
short of success.

The idea is sound: to introduce the operating system and its com-
ponents, and file structure; interleaved with chapters which describe
the associated JCL, and attempt to link the two together. The
execution is disastrous. The one thing above all others which a book
of this sort must be is accurate. Next most importantly it must be
clear. Finally it should be complete on its chosen level. This book is
none of these things.

A first reading revealed no less than one hundred and ten errors of
various sorts—mostly printers errors, which in themselves could be
fatal to a book on JCL, but also errors of fact. Particularly prone to
error are the examples, which frequently contain faults which would
cause strings of diagnostics from the assembler or the reader/
interpreter, e.g.

‘DISP = (OLD,MOD)’ and ‘OPEN (IND,OUTD)’ .

Where clarity is concerned, Professor Flores and I have opposite
views. He seems to believe that the clarity of a text improves in
direct proportion to the number of different typefaces in use. I do
not; particularly when the same word in different typefaces is used to
mean different things.

The decision as to how much information should be provided on
each topic is a difficult one for any author. Professor Flores says in
his preface that his book ‘will be a reference source for system pro-

Volume 16 Number 4
2

grammers and ‘find good appllcatlon in a senior or graduate course o3
in computer science’. In my opinion he provides far too little &
information for the former group. As to the latter . . . well, in view
of the other shortcomings of this book, it hardly matters

MARTYN THoMas (London) &

Computer Control in Process Industries, by E. 1. Lowe and A. E.
Hidden, 1971; 279 pages. (Peter Peregrinus Limited, £4-00)

This is a project-oriented textbook sponsored by the Council of the

@)
2

Q)

peoe//:sdny woly pep

CD

O

c

Q

€/%/91 /51014e/uf0d/Wwod"d

a
=
N

819l

w

uo 3sanb Aq

I\)

Chemical Industries Association and produced by two members of S z

its Instrumentation Advisory Committee, to meet a need which was S
not satisfied by previous books in this area. Encouraged by such a

need, the authors have produced a well-written and easily read Y

textbook, which, whilst primarily aimed at satisfying the needs of the
chemical engineer and instrumentation manager, will be of consider-
able interest to computer professionals working in the field of process
control. Whilst those sections dealing with computers—in particular
Chapter 3—will be elementary to those involved with computers on
a day-to-day basis, the remainder of this book is concerned with two
main areas of considerable importance—the interface between the
computer system and the process, and the organisation and manage-
ment of computer projects in this particular field. Several portions
of Chapter 10 concerned with the organisation of computer pro-

jects closely resemble portions of the BCS Code of Good Prac-

tice, although written independently.

Summarising, this is a book which deserves a place on the book-
shelves of all concerned with the control of continuous processes, in
the light of the wide range of training and reference material which
it contains; ranging from central processors, through interfaces such
as CAMAC and BS 4421, to management and codes of practice.

F. E. TAYLOR (Manchester)

321

3.
N
N

