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A flexible theory of the general nonlinear ternary feedback shift register (fsr) is presented so that
the inherent advantages of the ternary domain may be fully exploited in the fields of digital computers,
communications, coding theory, and other areas where the device finds application. The authors
show that the description afforded by the modulo-3 arithmetic functions may be adapted to provide
a polynomial domain representation of these devices which is more flexible than other ternary
operations. Methods of transforming the sequence domain behaviour of the device into this poly-
nomial form, and vice-versa, are presented. Certain properties are isolated and the theory is
extended by deriving the transforms required to produce certain related polynomial forms which
correspond to simple operations in the sequence domain of the original fsr. The mechanism whereby
two factor polynomials may be combined algebraically to produce a composite polynomial with
exactly the same cycle set as a cascade connection of the two factors is fully investigated. Results
concerning the related forms of these composite types are presented together with certain identities

under the polynomial transforms.
(Received August 1972)

1. Introduction

Several authors (Turecki, 1968; Santos and Arango, 1964;
Godfrey, 1966; Lee and Lee, 1972) have indicated the advant-
ages in terms of increased speed and capacity together with
decreased cost and complexity of employing three state or
ternary switching devices in place of the conventional binary
elements. These advantages are especially relevant to applic-
ations in digital computers and automatic control. Also, more
efficient error protection schemes (Kelsch and Green, 1971) and
self-synchronising dictionaries are available to this ternary
régime. Systems which require sources of pseudo-random
sequences (Green and Kelsch, 1972) greatly benefit from a
translation to a three symbol representation.

In the foreseeable future the improvements in performance of
conventional binary logic devices will become few and far
between; an indication that circuit components are approaching
their practical limit in size and speed. However, the demand on
data handling and processing systems will inevitably maintain
its explosive growth as more and more disciplines become
oriented to the digital mode. To combat this designers must
now begin seriously to consider the possibility of constructing
systems to operate with multivalued logic devices.

The feedback shift register (fsr) is one of the most versatile
components in binary applications and the device and its
sequences find numerous applications in many diverse fields.
Preliminary investigations (Kelsch, 1972; O’Carroll, 1972) have
indicated that a similar, if not better, utility is evident in the
ternary régime. To make full use of this device and its flexibility
we first require to understand the fundamental theory des-
cribing its behaviour. This understanding will lead, hopefully,
to a discovery of many interesting properties, design procedures,
and applications. This paper is devoted to the study of the
ternary non-linear feedback shift register and its autonomous
sequences.

2. Ternary feedback shift registers

The general form of the ternary feedback shift register is
shown in Fig. 1 It consists of a cascade of ternary memory
elements (tristables) which hold past values of the output
from the modulo-3 addition of the input digit (if any) and the
feedback digit as derived from the feedback function. Although
we are usually interested in the autonomous behaviour of the
device it is important to derive a form of representation which
is applicable to the forced mode also. The ‘output’ digit stream
Z of the system is related to the input stream X and the feed-

360

<
/\L\
&)
ﬁHu
)
<
3

back stream Z* as follows,
Z=X®Z*
Now the function f(x;, x,,..., x,) may be regarded as g
recursion in an ‘operator’ x, so that x; may be interpreted a§
the ith application of this recursion to Z as well as the nam8
of the ith register position. Clearly, we are using the x’s in thg
same way as Huffman’s (1956) delay operator D because &
holds the ith delayed version of Z, namely Z;, which is equlg
valent to D'.Z. This means that we may represent the feedback
digit stream as the output stream Z weighted by the feedbac@
function. That is,
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Z* = f(Z\,Zyy .. Z,) = f(X1, X2y .. s X,).Z (2%

so that equation (1) becomes 2
Z=X® f(x1,X25..,%,).2Z (3%

or, 2
2X =2Z ® f(x, X3+ . 0, X,).Z g
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So the system is characterised by a describing polynomial F(
which has the form,

F(x) =2® f(x1, X3, -« -, Xp)

where f(x,, x5, . .

v 20z 8y 61

., X,) corresponds directly to the feedbac

T\

F (X4, Xg, s Xy )

Fig. 1 The general ternary fsr
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function which defines the autonomous behaviour of the
system. Note that all polynomials of this type will involve the
constant term 2, which does not play any part in the auto-
nomous behaviour but is the weighting given to the input
stream in the forced mode. To avoid confusion of this constant
term with the modulo-3 constants 1 and 2 which may be present
in f(xy, x5, ..., X,) these latter will also be represented as
single or double primes respectively, covering the whole
polynomial.

2.1. Linear ternary fsrs

When the feedback function is restricted to include only
modulo-3 additions of the register contents the device may be
considered to be linear. Since three is a prime number, the
results due to Elspas (1959) concerning the composition of the
characteristic polynomial of the device and its cycle set struc-
ture remains valid.

2.2. Nonlinear ternary fsrs

When the linear restriction on the composition of the feedback
function is relaxed the availability of a characteristic poly-
nomial disappears because the device becomes nonlinear. The
describing polynomial, as we have seen, remains a valid form
of description, and we may use it to investigate the properties
of the devices in this régime.

In the main, these properties will be manifested in the sequence
domain behaviour of the fsr so it is important that the relation-
ship between the sequence and polynomial domains be
thoroughly understood. The state S, of the shift register will be
represented as the number, expressed either in ternary or
decimal notation, corresponding to the stored digits and in
which the nth digit makes the most significant contribution.
A change of state corresponds to a shifting of this number one
place, equivalent to multiplying by three, and the addition of a
new least significant digit. Thus if P is the new state created in
this way, we may write

P = 3.5 + dg (modulo-3") 6)
where dg = 0, 1, or 2 and is the digit produced for input when

the fsr is in state S. Obviously, there are three different values

of S, differing only in the value of the most significant ternary
digit, which can become P when followed by an appropriate
dg, so that each state may have any of three predecessors as
well as any of three successors.

The deterministic nature of the state transition mechanism
ensures that each state will have a unique successor state.
However, each state need not have a unique predecessor and in
fact it may have none or up to three distinct predecessors, each
corresponding to the occasions when more than one of the
states S, S + 3""!, and S + 2.3""! give the same value of
feedback digit and therefore proceed to state P, as indicated
by equation (6). If F(x) is the describing polynomial we may
interpret F(S) to be the value of the feedback digit when the
fsr is in state S. Thus dg = F(S) and equation (6) becomes

P = 3.5 + F(S) (modulo-3") @)

2.3. Polynomial and sequence domains

It is evident that the particular form the state transition dia-
gram of the device takes is completely determined by the
describing polynomial. An alternative means of representing
the sequence domain operation is afforded by the ‘next-digit’
map, in which the 3" cells correspond to the 3" available states,
and are identified by suitable ternary coding of the rows and
columns. The contents of each cell is the value of the function
F(S) for each state S and therefore indicates the next-digit
following the state S. Fig. 2 demonstrates the arrangement for
the two variable case in which (a) represents this ‘sequence
domain’ map and (b) is the piterm (Green and Dimond, 1970a)
or ‘polynomial domain’ map.
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Fig. 2 Sequence and polynomial domain maps

An obvious requirement now is the ability to devise the
contents of one map representation from a knowledge of theg
contents of the other. To determine the transformation between=
the a’s and d’s we employ the fact that the digit dg is the ‘value’s
of the function when the fsr is in state S. Consequently, 3"
simultaneous equations may be formed by substituting the .
values of variables x,, X5, . . ., X, corresponding to each stateS
S, in the general form of the function, and deriving the appro-=
priate dg in terms of the coefficients of the polynomial map.?

When n = 2, for example, we find o
W)

dy = a, §
d=a,®a ®a, 5
d, =a,® 2a, ® a, 2
dy=ay®a; ® ag g
di=a®a,®a, ®a; Pa, Das Das D a; ® as 3
ds=a,®2a, ®a,®a; D2, Das D asg D 2a, ® ag 8
de = ao @ 2a; @ as =
di=a,®a, ®a, ®2a; ®2a, D2a;Dagcda,®ag >
ds=a06-)2a1@a2®2a3®a4®2a5@a6®2a7®a3(8%
The matrix equivalent of these equations is >
D=P,A O

where, D and A are column matrices containing the d’s and a’ss
and 2
1 0 0 00 0 0 0 0] 2

1 110000O0O00O0 &
121000000 E

1 00100100 Q
P=l111111111 (10p
121121121 ©
100200100 1
111222111 ~

1 212121 2 1 S

Evidently, P, includes the lower order matrices P, and P,
where

1 00
P,=|1 1 1| and Py, = [1]
1 21
Thus, we have in matrix terms
D=P,.A (1)
where the general recursive form of this transition matrix is
apparent,
P, n—1 E 0 ; 0

Py=|Pyy Py Py | forn>0 (12)

Py_y 2P, [P,y | and Py = [1]
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We may now transform any polynomial map into the corre-
sponding sequence domain map, and hence derive the
sequences, by a single application of this matrix P,.

Whilst this is useful, the more desirable transformation is the
one which permits the derivation of the polynomial form
corresponding to a given sequence domain structure, as
represented on the next-digit map. Clearly, this process is
represented by a matrix equation of the form,

A=S,D (13)

and comparing this with the general form of equation (9) it
follows that,

S, = Pt (14)
Once more we may derive the general form of S,
S,_11i i 0 0
s,=| o *23“5,, | forn>o0 - (15)

28,_,128,_,1285,_,] and S, = [1]

2.4. Cyclic fsrs

An important criterion to isolate in the general nonlinear
régime is that which determines the property that all the states
of a given fsr lie on pure branchless cycles. We have seen that in
general all states of a particular fsr have a unique successor
state but not necessarily a unique predecessor state. A necessary
and sufficient condition for the generation of pure state cycles
is that every state must have a unique predecessor state. In the
sequence domain this restriction requires that the three states

S =by,by,b3,...,b,
S+3"'=b,b,b,,... b D1
S+ 2.3 _bl,bz,bg,,...,b,,@Z

shall give rise to a different feedback digit so their successor
states will be distinct. This restriction clearly partitions the
sequence domain map into three regions each one correspond-
ing to the value assigned to the nth digit and covering 3"~ ! cells.
We may use this fact to enumerate these ‘cyclic’ functions. One
reglon may be entered arbitrarily in the full ternary range; that
is, in 33""" ways. The second region of 3"~ ! cells is limited to
take on any selection from the two remaining values not used
in the first region; a process which may be performed in 23"~*
ways. The third région is forced to take the remammg  ternary
value in each case and can therefore be filled-in in only one
way. Thus the total number of ways C; , of filling in the nth
order sequence domain map to ensure cyclic behaviour is
given by,

Cy,=2%""13""=6"" (16)

Incidentally, this argument may be generalised to give the
number of p-nary cyclic fsr’s of degree n.

Cp n = (p !)‘m_l (17)
We now require to derive the corresponding restrictions on

the polynomial form of the cyclic fsr and introduce a theorem
concerning these aspects.

Theorem I
A ternary autonomous fsr will generate pure state cycles if, and
only if, its describing polynomial F(x) is of the form,
F(x) = 2@f(x1’x23' . -’xn)
and
f(xh X250 00y xn) = fl(xl, X25 + 00 xn—l) @

[1 @ fz(xp X25 + v 0 xn-—l)] @ Xn (18)
where f; is any ternary function of the first n — 1 variables and
/2 is any function which takes on only the values 0 or 1; i.e.

it is a function equal to its own square (Kelsch, 1972).
An obvious consequence of confining the fsr to produce only
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pure state cycles is that a reverse-sequence fsr will exist. This is
a-new fsr whose sequences are the sequences of the original fsr
in time reverse. This sequence domain relationship corresponds
to the polynomial domain property defined by Theorem II.

Theorem I
If the describing polynomial F(x) of a cyclic ternary autono-
mous fsr is of the form

Fx) =2@ fi(x1, .. 5 %) @ A @ folxy, .. 0, X,-1)) O X,

then the polynomial RF(x) describes a new fsr the sequences
of which are the time reverses of those of F(x), and

RF(X) = 2 @ 2 Qfl(xn—ls LRI xl) @ (l efl(xn—b L) xl))
('B (1 @ fZ(xn—l: e xl)) o Xn (19)

3. Related polynomial forms

We now consider the polynomial domain operations which
enable certain related forms of ternary fsr to be described by
a transform operation on the original polynomial. We shall
illustrate these operations by means of an order-2 polynomial
but the results will be completely general.

opeojumod

3.1. Trinal form
If, in the sequences of a ternary fsr with describing polynomlala
F(x), we replace each digit d; by d; @ 1, then we have deﬁnedg
the trinal sequences of F(x). The descrlbmg polynomlal of the>
new fsr, which generates these sequences naturally, is termcdo
the trinal polynomial form of F(x) and is written TF(x).
Now, the above sequence domain operations indicate, form

example, that if in the original fsr, the state 0 (1 e. x; =0, w
x, = 0) is followed by digit d, (i.e. next state is x; = do,o
x, = 0), then in the trinal fsr state 4 (i.e. x, = 1, x, = 1) i lS:
followed by digit d, @ 1. Similarly, if state 5 is followcd byo
dlglt ds in the original, then state 6 is followed by digit ds @ 13
in the trinal. In general, therefore, the trinal of the state 130
followed by the trinal of the next-digit. We may regard the—
complete sequence domain operation as a transformation ofs
one set of successor digits d; from the sequence domain map, s
into a new set d, ;> representing the trinal.
Thus, for n = 2, we find

do—dy @1

H —ds D1

J —-d, ®1

a g d2 @ 1

d4 —dy®1

ds—d, @1

d6 —ds®1

‘17 —-d; @1

dg—~d, @1 (20)

or, in general matrix form
b-u,.D®J,

where J, is a unit column vector (i.e. every element = l),
D and D are column vectors containing the d; and d, respect-
ively. The transformation matrix has the general structure

oe//.S

20z Iudy 61 uo 3senb Aq 16891 ¥/09¢/¥/91 /9]

~
N
P
~—’

0} 0 {U,.,
Uy=|U~-y} 0 | 0 |forn>0 (22)
0 iU,_,i 0 | and U, = [1]

Now, corresponding to this new sequence domain map D,
there is a new polynomial domain map A, with coefficients 4,
Using the transform described in section 1, we may describe
the new polynomial in terms of the original sequence map.

A=S,D 23)
in general,
A=SU,D®J,) (29)
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Furthermore, corresponding to the original sequence domain
map D, there is a polynomial map A with coefficients a;, which
may be extracted by the relation
D=P,. A (25)
In general we have
A=S,U,.P,.A®J*

=T, A®J* (26)
where J}} is a column vector in which the first element = 1 and
all the others are zero, and
where, T, = S,U,P, and has the form

Tn—l §2Tn—1§ Tn-l

0 {T,_y{They | forn>0 @7

0 {0 iT,_,| and T, = [1]
Thus the trinal form may be evolved by a single application of
this transform matrix to the original function. This transform-
ation may be shown to be equivalent to certain algebraic
manipulations of the polynomial (Kelsch, 1972), for if

F(x) =2 @ f(xl’ X2y 00y xn) (28)

T, =

then
TF(x) =20 f(x; ®2,x,®2,...,x,D2)
=ROfx ®2,x,82,...,x,2)] (29)
For example, if
F(x) = 2@ 2x; @ 2x] @ x;x, @ x}x, © 2x,
its sequences are (@) 22102011 and (b) 0 i.e. a cyclic fsr
with cycle set (8, 1).
Now,
TF(x) =20 2x ®2)®2(x; ®2)° @ (x; ®2) (x, ® 2)
D2’ x®2)020x,®2)D1
=[2@® 2x; ® x} @ 2x,x, ® x2x, ® 2x,]"
and the trinal sequences are (a) 002101 22 and () 1; again
a cycle set of (8, 1).

3.2. Bitrinal form
If, in the sequences of a ternary fsr with describing polynomial
F(x), we replace each digit d; by d; @ 2, then we have defined
the bitrinal sequences of F(x). The describing polynomial of
the new fsr, which generates these sequences naturally, is
termed the bitrinal form of F(x) and is written BF(x). Clearly,
BF(x) = T(TF(x)) = T*F(x).

By repeating the arguments of the previous section we may
derive the sequence domain transformation involved in forming
the bitrinal sequences.

D=V,D®K, (30)
where K, = 2J,,i.e. a column vector in which each element = 2,
and where ¥V, has the general structure

0 {V,yl O
Vo=| 0 { 0 {¥V,_,| forn>0 (1)
Vori 0 1 0 | and ¥, =[1]

- 7
X—>®i><1><2 X 5he i, X5 X

o)

P(x)

Fig. 3 Cascade connection of two ternary fsrs
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Again, we may derive the equivalent polynomial domain
transformation, because

A=8S,V,P,.A®S,.K, (32)
=B, A® K} (33)
where K* = 2J%, i.e. a column vector with first element = 2

and all others zero. The bitrinal transform B, is found to have
the general structure

Bn—-l iBn—l an—l

_— = = = =

B,=| 0 [B,_,2B, | forn>0 (34)
0 { 0 {B,_,| and B, =[1]
Also, if
F(x) =2® f(x1, X35+« -5 Xp)
then

TFx) =2 f(x; ®2,x,®2,...,x,D2)
and therefore
BF(x) = T(TF(X)) = 2®f(x1 @ 1’x2 @ 1’ L -sxn® 1)”(3

Taking our previous example we find
BF(x) =202x; @D @®2x, ®1)’ D (x, @D (x, @ 1)
@ @), @ND2x, ®1) D2
=[2® xix; ® x,1 (

which generates the bitrinal sequences (@) 11021200 a
) 2.

w
s@V wouy papeojultba

olwspen,

3.3. Twin form o
If, in the sequences of a ternary fsr with describing polynomigl
F(x), we replace each digit d, by 2 © d, then we have defined
the twin sequences of F(x). The describing polynomial of tlé
new fsr which generates these sequences naturally, is termed
the twin polynomial form of F(x) and is written TwF(x). =

By repeating the arguments of the previous sections we may
set up the matrix form of this sequence domain transformatiors;

D=w,D (€L:)
where, P
. 3
Woer b 010 =
S et 2
W, = 0 { 0 W, |forn>0 (38
B g
0 {iW,.,i 0 and W, = [2] €
This leads to an equivalent polynomial transformation of tl@
form ©
A=S,.W,P,.A z
=Tw,.A (3%
where S
~
[ Tw,_, 0 0

Tw,=] 0 [2Tw,,| 0 |forn>0  (40)

l 0 { 0 |7Tw,_,| and Tw, = [2]

Equivalent manipulations to those of previous sections may
also be performed to reveal that this transform is identical to
that obtained by replacing

F(x) =2® f(x, X35 - .
F*(x) = 2 ® 2f(2xy, 2x5, . .

. Xp)

. 2%,) (41)

with

so that
TWF(x) = 2 @ 2f(2x4, 2x,, . .

Using our example we find that

. 2X,) (42)



TWF(x) = 2 @ 2(2.2x; @ 2(2x,)* @ 2x,.2x, @
(2x)%.2x, @ 2.2x,)
=2@ 2x; @ x2 @ 2x,x, ® xIx, ® 2x,
and the twin sequences are (¢) 11201022 and (b) 0.

3.4. Other related forms

It is obvious that combinations of the three polynomial oper-
ators could be used to define up to six related forms. In
addition, the reverse operator R can be employed to extend
this to twelve related forms, if only cyclic describing poly-
nomials are considered. Although more combinations of the
operators are apparent we shall see later that certain ones are
equivalent to some member of this basic set and give rise to the
same related form. However, each transform associated with
the distinct related forms may obviously be derived from a
combination of the appropriate single transforms. For example,
the twin trinal form TwTF(x) is formed by taking the twin of
the trinal.

(43)

Thus
Fx) =2@® f(xy, X3, . .., X,)
and
TFxX) =20 f(x;, ®2,x, ®2,...,x,D2)
S0

TwTF(x) =2 @ 2f(2x; ©2,2x, ® 2,...,2x, @ 2)" (44)
The matrix equation representing this complete transform is
A =TwT,. A ® L* where L* = Tw,.J* = K*

and the corresponding transformation matrix TwT, is formed
as follows

[ Tw,_, 0 0
™wT, =Tw,.T, = ) _O_ _Eljw,,__l__ _0_ )
o | o 7w,
[ Thoy { 2T | They ]
0 | T, T,
Lo 10 T
[ TwT,_, 32TwT,l 1 wT,_
o R P Py f
R

forn > 0 and TwT, = [2]

4. Cascaded fsrs and composite polynomial forms

We have seen that the ‘transfer function’ approach to the
analysis of the ternary fsr relates the output sequences Z to the
input sequences X in the following way.

_Z_ 2
X F(x
where F(x) is called the describing polynomial of the fsr and
has the structure

F(x) =2® f(x1, x5, ..., X,) 47)

wherein f(x,, x,,...,x,) is the feedback function which
describes the physical connections to the n-stage ternary shift
register in terms of modulo-3 sums and products. For con-
venience and brevity, equations of the type of (47) will, from
time to time, be written as

F=20f (48)
We now turn our interest to the consideration of cascaded
interconnections of two ternary fsrs. This arrangement involves

the forced response of one fsr to either the autonomous or the
forced sequences of the other, as depicted in Fig. 3. Evidently,

(45)

(46)
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this cascade arrangement has an ‘overall’ transfer function
which is related in some way to the transfer functions of the
individual fsrs. That is, we may define a ‘product’ in the poly-
nomial domain which evolves a higher order composite
polynomial which parallels the sequence domain operation of
cascading (Green and Dimond, 1970b). This new polynomial
describes a higher order single fsr with the structure shown in
Fig. 4 whose output sequences are identical to those from the
cascade. This then extends the concept of the composite
polynomial to this general nonlinear régime.

Let the sequence domain operation of cascading be reflected
in the polynomial domain by the operation

H(x) = H,(x) > Hy(x) 49)

where

Hy(x) = 2/P(x) = 2/2 ® p), Hy(x) = 2/0() = 2/2 ® ),
and

H(x) = 2/F(x) = 2/2 ® f)

is the overall transfer function of the cascade. We now wish to
relate the structure of the composite describing polynomial
F(x) to that of the factor polynomials P(x) and Q(x). If we2
consider the arrangement of Fig. 3 we may establish that thez
present value of the digit b; depends on the previous values oﬁ
the digits b; and the present value of the digit a@; from the ﬁrstQ
fsr whereas the present value of the digit a; depends on its owrg
previous values and the input digit (if any)

We may write for the autonomous mode

ai = p(ai—l, ey ai—n)
i1 =p@i—2 ..y Qi_pyoy)
etc

bi = ai ('B q(bi—la e ey bi—m)
biv=a;i_ 1 ®qbi_z ..., bi_p_y

etc.

~
W
S

~~~
W
75791 /219e/julwoo, M6  dno o1wspese//:sdpy

and

From equations (50) and (51) we find

bi @ 2q(b,~_1, sy bi—m) = p(ai—la vy ai—n) (52
Therefore,
b' =q(bi—1""9 bi—m)('Bp(ai 15— n) (53

and we may substitute for each @, in equation (53) usin
equation (51).

by=qb;-,, ...,

89L17059€

bim) ®plbioy ®29(bi—zs . s biopyy), .. 2
bi—n @ 2q(bi—n—19 LR ] bi—n—m)] (54)5
To transfer this recursion into the general polynomial notatlong

we replace b;_; by x; and derive the feedback function f o
So that

¥20c ludy 61 U

f = q(xla LR xm) @p[xl ® 2q(x2’ v m+1)’ c ey
xn®2q(xn+1""’ n+m)] (55)
— e 7
T -
1:(X17x2a"'7xn»«m>
N\ N J
F(x) = 2[Tw P(x)*Q(x)]

Fig. 4 Equivalent single fsr
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and
F=2&f

It is possible, moreover, to describe a multiplication procedure
to operate between P(x) and Q(x) which derives F(x) directly.
Let us define

F=2[C®p)»2dq)] (56)
where — signifies some polynomial domain operation equi-
valent to cascading in the sequence domain and we assume for
the purpose of constants that this operation is identical to
modulo-3 multiplication, so that we may write

F=2[1®2®p—-(2®q)]
=209®2p->(2®9) (57
Note that the overall multiplication by 2 is required to restore

F to the same standard polynomial form (i.e. with a constant 2)
as P and Q. From (57) we observe that

f=q®2p->Q2®9q) (58)

A comparison of equations (55) and (58) confirms the previous
assumption and reveals that

ZP_’ (2 @q) =p[x1 @ 2q(x2, LIRS xm+1)9 cee Xy @

.2q(xn+13 RS xn+m) (59)
The right-hand side of equation (59) is formed by replacing
each variable x;, in the function p, with x; @ 29(X;+ 1+, Xi4m)-
At this point let us define a new polynomial domain multi-
plication operation denoted by *, which behaves as follows.
(a) for a constant term 2 2%0(x) = 2 © Q(x) = 20(x%)
(b) for a linear term Xx;
x*0(x) = x*Q2 @ q(xy, - - - X))
= 2xi ('B q(xi+ 15 ¢« s xi+m)
(c) for a nonlinear term x; © x; O .. ., O
*Ox0...,0x)*Qx) = [x*0(x)] O [x*0x)]O...,
O [x*0x)] (61)
Each subproduct in equation (61) is resolved using equation
(60) and the total function is expanded using the rules of
modulo-3 multiplication. Note that whereas modulo-3
multiplication increases the ‘span’ (i.e. number of variables)
of a term, this new multiplication increases the ‘order’ of the
term, e.g.
(x;) O (x)) = x; © x; or x;x; whereas (x)*(x;) = X;+;

(60)

We can now rewrite equation (59) as follows

2p - Q2 ®9q) = plx*A @ 29(x5, . . 1, X)), - - %5 (1 O
zq(xla L] xm))] (62)
and so each variable x; has been replaced by
2xi*(2 @ q(xl, LIS ] xm))
which equals 2x;* Q(x).
Therefore,
2p - 2@ q) = p[2x,*Q(x), . . ., 2x,* Q(x)] (63)
= 2Tw p[x,*Q(x), . . ., x,*Q(x)] (64

On the understanding that * involves a term-by-term operation
between each term from p and Q(x) we may write (64) in a
more convenient form

2p - 2 ®q) = 2[Twp*Q] (65)
So that
F =0 ®2[Twp*Q] (66)
So that = 2[2 & Twp*(Q] ©67)
= 2[TwP*Q] (68)
We now have the result
F(x) = P(x) = Q(x) = 2[TwP(x)*Q(x)] (69

So to form the product polynomial we first derive the twin
polynomial of P(x) and then multiply Q(x) by each term from
TwP(x) using the order increasing multiplication defined
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previously. Finally, the coefficient of each term in the resulting
polynomial is multiplied by 2. Note that if P(x) is a linear
polynomial then TwP(x) = P(x) and so the multiplication
can proceed directly. As an example of this procedure consider
P(x) =2 @ 2x;x, ® x5 and Q(x) = 2 @ x3 @ x;. We wish
to find F(x) = P(x) - Q(x).
Now
F(x) = 2[TwP(x)*Q(x)]
= 2[Tw(2 @ 2x;x, @ x3)*Q(x)]
=2[2 @ x;x; @ x3)*Q(x)]
= 2[2*Q(x) @ x,*Q(x) © x,*0(x) ® x3*Q(x)]
= 2[(1 ® 2x3 ® 2x;3) ® (2x; ® x5 D x,)
OQx, ®x2® x5) @ (2x; @ x2 @ x4)]
=[2@® 2x;%, ® X2 @D 2x3 @ x2%3 @ 2x, D X%,
® x,x2 @ 2x2x2 @ X,x5 D 2x,%5 @ 2x3x5 2@x3
@ 2x4]

5. Product formation with polynomials containing 1 or 2
The procedures described in the previous section assume that
neither of the factor polynomials contain a ternary constang
additive in the feedback function. We now wish to consideg
the formation of products involving polynomials of the fornt
[P(x)]’ or [P(x)]” where the primes represent the presence ob
1 or 2 in the feedback function contained in P(x). Thus

[P(x)]’ = 2 @p(xl’ AR xn) @ 1 (70
[P(X)]” = 2 @p(-xl, ooy xn) ('D 2

There are three distinct situations in which a constant ma
arise.

WO o

and

dno-olwdpkoe)/:sd

1. Only first factor has a constant ;
In this case we are dealing with products of [P(x)]’ or [P(x)1®
with the second factor Q(x) which does not contain a constan%
of this type. Consider the case of [P(x)]’. Equations (50) no %

(&

become %
a; =p(ai—1"'~a a_,) ®1 3

ai_y =p@i_z - qi-n-1) D1 713

etc } : %

Equations (51) are unchanged but (54) becomes é
bi=qb,_1y.. o bi_y) ®plbi—y ® 2q(bi—2-- - - bi—m-1); - - g

by ®29(bi-p-1>-- - bin-m]®1 (72§

The remainder of the procedure is as before, the only change

being the inclusion of the constant term which now ‘cover§

the product function f. 8
So

F(x) = [P(x)] - Q(x) = 2{TW[P(x)]*Q(x)} =

2{[TwP(x)]"™*Q(x)}

= 2{[TwP(x)*Q(x)]"}
= [2TwP (x)*Q(x)]’

By a similar argument we find

[P(X)]" = [Q(x)] = [2TwP(x)*Q(x)]"

=
Yoz 1udy 61 uois

(74)

2. Only second factor has a constant

In this case we are dealing with the products of P(x) which
does not have a constant, with [Q(x)]’ or [Q(x)]". Consider
the case for [Q(x)]’. Equations (50) remain unchanged whereas
(51) become :

bi=a;®qbi_1,.-bi-m) @1
bioy=a;-y ®qbi—2 .- bi—m-1) D1 - (75)
etc.
Thus
bi ('B 2q(bi—1’ LIRS bi—m) @ 2 = p(ai—l, LIS ai—n) (76)
and
365



bi=qbi—1,- . bi—y) ®pl(bi—; D2g(b;_s, .. ., bim-1)
@2,..,b;,®29(b;_p_1s. by ®2] D1 7

Examination of equation (77) reveals that we must still take the
twin of the first factor but, because each variable now has the
constant 2 associated with it, we must also take the bitrinal of
TwP(x). Furthermore, this second operation accounts for the
constant 1 covering the whole function. Hence

[P(¥)] - [Q(X)] = 2{TwP(x)*[Q(x)]'} = 2[BTwP(X)*Q8€i)3
In the event that BTwP(x) develops a constant this must be
brought out and transferred to cover the entire product
according to the considerations under case 1. Also, by a
similar argument, one can show that

[P(x)] = [Q(x)]" = 2[TTwP(x)*Q(x)] (79)

3. Both factors contain a constant

This situation may be resolved using a combination of the
previous results. First, the constant in the second factor is
removed by the appropriate transform on the twin of the first
factor. Second, any constant remaining in the transformed
version of the first factor is then transferred to cover the whole
product. As an example consider P(x) = 2 @ x,x, ® x;)’
and Q(x) = 2 ® x? @ x;)". We wish to find F(x) = P(x) »
O(x). Now

F(x) = 2[Tw2 @ x;x, ® x3)*2 @© x? @ x3)"]

=2[(2 ® 2x,x, @ x3)"™*(2 @ x7 @ x3)"]

= 2[TQ @ 2x,x; @ x3)"*2 @ x? @ x3)]

=2[C D x; @ x;, @ 2x,%;, @ x3)*2 @ x} @ x3)]

= {2[C D x; ® x;, @ 2x1x, ® x3)*2 @ x2 @ x;3)1}"
and the multiplication can proceed as before within the square
brackets.

6. Some results concerning related forms of composite
polynomials

An investigation of the consequences of performing the poly-
nomial transforms on composite polynomial types reveals the
following results which are presented here without proofs.

6.1. Trinal form
Let F(x) = P(x) » Q(x) = 2[TwP(x)*Q(x)] be a composite
ternary describing polynomial. Then
TF(x) = P(x) > TO(x)
= 2[TwP(x)*TQ(x)] (80)

6.2. Bitrinal form
From 6.1. it follows that
T[TF(x)] = BF(x) = P(x) - T[TQ(x)]
= P(x) - BQO(x)
= 2[TwP(x)*BQ(x)] 1)

6.3. Twin form
TwF(x) = TwP(x) » TwQ(x)
= 2[TwIwP(x)*TwQ(x)]
= 2[P(x)*TwQ(x)] (82)

6.4. Reverse form
We have three cases

{@) RF(x) = RP(x) > RQ(x) = 2[RTwP(x)*RQO(x)] (83)
if

P(x) =2@® p(x1, ..., X p) @ a,x,

Q(X) =2® q(xla sy xm—l) @ 2xm

where a, = 1 or 2 and n and m are the degrees of P(x) and
QO(x) respectively.

and
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() RF(x) = TWRF(x) - RF(x) = 2[RP(x)*RQO(x)] (84)
if

P(x) = 2 @P(xn LIRS xn—l) ('B anxn

Q(x) = 2 @ q(xl’ LS xm—l) ('B xm
where a, = 1 or 2 and n and m are the degrees of P(x) and
Q(x) respectively.
(c) RF(x) # RP(x) > RQ(x) (85

if either P(x) or Q(x) is nonlinear in their highest order
variables (x, or x,,).

and

7. Equivalent related forms

The three polynomial operators T, B, and Tw, may be used
singly or in combination to produce up to six related forms.
If only cyclic forms are to be considered then the reverse
operator R may also be employed enabling up to twelve
related forms to be derived. These are

the original F(x) the reverse RF(x)
the trinal TF(x)  thereverse trinal RTF(x)
the bitrinal BF(x) thereverse bitrinal RBF(x)
the twin TwF(x) the reverse twin RTwF(x)

the twin trinal TwTF(x) the reverse twin trinal RTwTF(x)
the twin bitrinal TWBF(x) the reverse twin bitrinal RTwBF(x)

WwioJ} papeojumoq

Although more combinations are apparent we find that many =z
of these are equivalent. In some cases the equivalence is® @

obvious; thus g
TBF(x) = BTF(x) = TITTF(x) = F(x) 86)2 =3

and 3
TwIwF(x) = F(x) ®Ns

also S
RTwF(x) = TwRF(x) (88)%

Others are less obvious, for example g
TwBF(x) = TTWF(x) (89)=

TWIF(x) = BIWF(x) ' 0) 2

TwBTWF(x) = TF(x) ©1) &
TwITwF(x) = BF(x) 92) %

TTWTF(x) = BTWBF(x) = TwF(x) 938

TTwBF(x) = TwTF(x) %4 g

BTwTF(x) = TWBF(x) 95) 3

We see that an algebra of these operators soon begins to emerge. g
D

8. Conclusions é’

The general describing polynom1al of the nonlinear ternary ~
fsr has been set up and various properties mvestlgated The 2
related forms which correspond to simple operations in theU
sequence domain have been derived and transform methods 1
have been set up which enable each one to be generated from ' N
the original form.

The concept of polynomial composition has been introduced
and the process of forming the product of two nonlinear
polynomials has been fully described. The sequence domain
behaviour of this composite form is then equivalent to a
cascade arrangement of the factor fsrs.

The consequences of performing the above polynomial
operations on this composite form have also been investigated.
Finally, a number of results concerning certain equivalences
under the application of combinations of the polynomial
operators are listed.

The results presented in this paper go some way to providing
a system for the analysis, design, and classification for the
ternary fsr. Within the general division into cyclic and non-
cyclic forms we may envisage a further partition into irreduc-
ible and composite types. Also, the related forms of these
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polynomials may be considered, in a sense, to be equivalent,
differing only by the application of a suitable transform, and
the cycle set being identical in each case. Furthermore,
invariances under these operators will often lead to special
types with interesting sequence domain behaviour, and in so
doing, provide a further classification technique.

One property arising in this nonlinear ternary regime which
has no counterpart in the equivalent binary field is that
associated with certain maximal length cyclic fsrs. Such
devices generate a single cycle of length 3" digits and unlike the
binary equivalent, which can be shown to be generated only by
irreducible describing polynomials, certain of these emanate
from composite polynomial forms. What is more, the factors
of these polynomials are themselves polynomials describing
maximal length fsrs of lower order. For example, (2 @ x,)’
describes an order 1 maximal length fsr which generates a
single cycle of length 3 which is 201. The polynomial
(2 ® 2x, @ x3 ® 2x3x, @ 2x,)" describes an order 2 maximal
length fsr which generates the single cycle of length 9,
220021101. The product of these two polynomials, which
represents a cascade connection of the two factor fsrs, is
(2 @ x} @ 2x2x, @ 2x2 @ x2x;3 @ x;)’ which describes an
order three composite maximal length fsr which generates a
single cycle of 27 digits, namely,

222011020001202121112210100.

Since modular algebra is functionally complete for a p-valued
system if p is prime, it is not difficult to generalise most of the
preceding results to the p-nary case. For example the general-
ised polynomial-to-sequence domain transformation matrix
for a function of a single variable is easily shown to have the
form

10 0 ..., 0
1 1 1 R |
1 2 22 ..., 2e 1
P =11 3 32 ..o, 3t
1L (p=1) (=17%..,(p— 1!
References

ELspas, B. (1959). The theory of autonomous linear sequential networks, IERE Trans. on Circuit Theory, Vol. CT-6, No. 1, p. 45.
GODFREY, K. R. (1966). Three-level m-sequences, Electronics Letters, Vol. 2, No. 7, p. 241.
GREEN, D. H. and DiMoND, K. R. (1970a). Polynomial representation of nonlinear feedback shift registers, Proc. IEE, Vol. 117, No. 1, p.

Vol. 7, No. 22, p. 664.

The inverse transformation may be found by inverting this
matrix using the operations of addition and multiplication
modulo-p. Higher order matrices are built up as before.
Similarly, we can imagine many related forms in the general
modulo-p case, which result from the sequence domain oper-
ations of adding or multiplying by the integers modulo-p.

Difficulties arise when one considers non-prime radices
because in these cases straightforward modular algebra breaks
down due to the existence of divisors of zero. For example,
2©® 3 =6 =0 modulo-6, which implies that 0 + 2 = 3.
However, we can devise consistent algebras in certain cases.
If the radix is a power of a prime, i.e. r = p*, then it is possible
to construct a viable algebraic system using the powers of a
primitive element from the Galois field GF(p*) as symbols
rather than the integers modulo-r. For example, the addition
and multiplication tables for r = 4 = 22 using the symbols
0,a° = 1, @' = a, and a* = b, are found to be

©|0 1 abd €B|01ab

0/]0 0 0 O 0/]0 1 a b 9
1101 a b 1|1 0 b a 2
al0 a b 1 ala b 0 1 S
b10 b 1 a bl|b al O §

Using this algebra we may, once again, build up a theoretlcgl
description of the base-4 feedback shift register.
Unfortunately, when the radix is a product of distinct prmgs
(e.g. r = 6) no straightforward algebra with similar structuﬁe
to those described above seems to be available.

&689L17/09€/17/9L/BIO!UQ/IU[LUOO/LUOO'an'O!LUQPQ

GREEN, D. H. and DimonD, K. R. (1970b). Nonlinear product feedback shift registers, Proc. IEE, Vol. 117, No. 4, p. 681. g
GREEN, D. H. and KEeLscH, R. G. (1972). Ternary pseudonoise sequences, Electronics Letters, Vol. 8, No. 5, p. 112. ‘(%
HurrMaN, D. A. (1956). The synthesis of linear sequential coding networks, Proc. 3rd London symp. on Inf. Theory, Butterworth. @
KEeLscH, R. G. and Green, D. H. (1971). Nonbmary negacyclic code which exceeds Berlekamp’s (p-1)/2 bound, Electronics Lettefs,
KeLscH, R. G. (1972). Non-binary logic systems, a Ph.D. Thesis to be submitted to the University of Manchester. i
Lkg, S. C. and LEg, E. T. (1972). On multivalued symmetric functions, IEEE Trans. Computers, March, p. 312. El
O’CARROLL, L. M. (1972). A simulation of ternary sequential systems, an M.Sc. Thesis to be submitted to the University of Manchester.)
SaNToOs, J. and ARANGO, H. (1964). Base 3 vs. Base 2 synchronous arithmetic units, JEEE Trans. Computers, October, p. 608. N
TURECKI, A. (1968). The ternary number system for digital computers, Computer Design, February, p. 66.

367

Volume 16 Number 4



