Discussion and correspondence
The project, and the future of Computing Science

courses
D. C. Brown*

Computing Laboratory, University of Kent, Canterbury

Computing Science lecturers have still to agree on exactly
which elements of this rapidly expanding field are to be taught
to undergraduate students. There is disagreement about the
name of the subject area (ACM, 1968) and doubt about whether
some of the subjects adopted by the computing fraternity
really belong to Computing Science (Strachey, 1970). In fact
Strachey comes to the conclusion ‘that those subjects which
we ought to teach are beyond us, while those which are within
our capacity are on the whole irrelevant’. The ACM have
chosen to divide Computing into three broad categories:

1. Information Structures and Processes.
2. Information Processing Systems.
3. Methodologies.

Obviously some subjects fall into more than one category.
Examples of these would be Systems Analysis and Compiler
Design. The ACM also mentions related subjects which are
gradually becoming bound up with computing; for example
Statistics, Linguistics, and Management.

The future

With rapid advances in knowledge, it is becoming increasingly
important to produce some scientists with skills in more than
one discipline. Large computing projects will require an inter-
disciplinary approach, and it is essential that undergraduate
Computing Science courses ‘provide the students with the
intellectual maturity which will allow him to stay abreast of
his own discipline and to interact with other disciplines’
(ACM, 1968). It has already been recommended that all
University students should acquire some knowledge of com-
puting (UGC, 1970). I feel that the future of Computing
Science teaching lies in an extension of this recommendation.
In practice this would mean an increasing number of joint
courses, with Computing Science being offered in several
‘flavours’. e.g. Engineering, Business Studies, Science, Human-
ities, and Social Science.

Fragmentation

Computing Science has developed very little theory in compari-
son with other sciences, but it is generally agreed that this is
because of the fact that, again by comparison, it is a young
subject. Amarel, who is interested in ordering and formalising
the vast amount of rather unstructured information in the
field, is of the opinion that ‘if the rate of generation of general
principles and methods in the field will continue to lag behind
the rate of production of specific computer systems and specific
application packages, then there will be a tendency for computer
science curriculi to be overwhelmed by a variety of fragments of
detailed, specialised material—and for students of computer
science to have negligible opportunity of being exposed to
other disciplines, and to areas of intellectual activity where
computers do not necessarily play major roles’ (Amarel, 1972).
This fragmentation is already evident in the all embracing

reports from the ACM (1968) and the BCS (1967). One can

readily see the difficulty in relating the different subjects in the
field, and also the theoretical and practical aspects. Fragment-

ation is the very essence of our educational methods—all
through school, and even afterwards, this tendency is strong,
and probably most of all in the sciences. If we add to this
tendency the demonstrably compartmentalised subject of
Computing, what hope is there for our poor computing
students ?

Projects

The ACM recommend that students attain a ‘reasonable level
of programming competence’ by ‘including computer work of 5
progressive complexity and diversity in the required courses’,2
and that ‘it is also desirable that each student participates in a3
“true to life” programming project’ (ACM, 1968). This is one§
aspect of the teaching of Computing with which most people=
are in agreement, and it is obvious that suitable practical workg
is essential. It is common practice for students studying Com-=
puting Science degrees to attempt a reasonably substantialy
project during their final year.

A recommendation

With sufficient emphasis, and proper supervision, the final year?
project can be used as an initial solution to the problemss
outlined above. The project must be wide in scope, probablyS
open ended, involving more than one discipline and more thans
one subject area within Computing Science. If possible 1t3
should be a team effort involving group discussions and deci-=
sions. Emphasis should be placed on adequate design of the:
software involved before the individual programs are wrltten,(D
careful documentation, and adequate testing.

A suitable task for such a project team would be to design andg
build a simplified Question Answering System (QAS)S
(Simmons, 1970; Brown, 1972). This is a form of Information®
Retrieval System which usually has the followings
characteristics: >

<

1. An Input Language—as near natural as possible. <

2. A Syntactic Analysis section—to determine the structure ofC
the input statements or questions.

3. A Semantic Analysis section—to determine the meaning of3
the input. i~

4. Data Structures—the representation of information withinS,
the machine. N

5. Inference Procedures—to obtain information implied byh
the stored information.

6. Output Language—as near natural as possible.

A project of this sort would allow members of the team to work
in a subject area that interested them. It must be noted that as
there are many approaches to the design of QAS it will allow
students to do some individual reading, but it does, of course,
mean that the project will have to be well supervised. I consider
that the following topics could be brought into the project:

Computational Linguistics, Formal Grammars,

Mathematical Logic, Heuristics, Problem Solving,
Data Structures, Information Retrieval.

The project would also be a starting point for a study of the
future applications of computers, such as the large scale use of

“Diwepeoe)/:

*Present address: Marconi Space & Defence Systems Ltd, Stanmore, Middlesex

380

The Computer Journal

Robots, Intelligent Information Retrieval Systems and Com-
puter Aided Instruction.

Conclusion

In order to overcome problems of fragmentation, and as an
initial solution to the requirement for Computing students
with an interdisciplinary approach, it is suggested that more

ACM (1968). Curriculum 68, CACM, Vol. 11, No. 3.

emphasis be placed on final year undergraduate projects. They
should be used to widen a student’s knowledge as well as to
reinforce existing knowledge, and ought to involve groups of
students. The author believes that, in future, Computing
courses should be joint courses, biased towards one particular
applications area, and concentrating on the techniques
applicable in that broad area.

AMAREL, S. (1972). A set of goals and approaches for education in Computer Science, AFIPS conference proceedings, Vol. 40.
Brrtis COMPUTER SOCIETY, Education Committee (1967). Annual Education Review, The Computer Bulletin, Vol. 11, No. 1.

Brown, D. C. (1972).
SiMMoNs, R. F. (1970).

BIBLIO—A Bibliography of Question Answering Systems, Unpublished—University of Kent, Canterbury.
Natural Language Question Answering Systems: 1969, CACM, Vol. 13, No. 1.

STRACHEY, C. (1970). Proceedings of the Symposium on Computer Science, Girton College, Cambridge; Aug. 1969, Bulletin of the Institute

of Mathematics and its Applications, Vol. 6, No. 1.

UGC (1970). Teaching Computing in Universities, Report of a Joint Working Party (Chairman: K. Barrill) SBN-11-700165-1, University

Grants Committee.

To the Editor
The Computer Journal

Sir

The paper ‘A note on compiling arithmetic expressions’ (Rohl and
Linn, 1972) suggested that certain optimisations may be made in the
compilation of arithmetic expressions by treating, for example,
‘a—b—c*dasif —c*d — b + a had been written. The impres-
sion may have been given that this optimisation was applicable to
compilers for all the well known high level languages, but this is not
in fact so. The PL/1 specification (IBM, 1969) is particularly explicit
on this point:

‘The operators + and * are commutative, but not associative, as
low-order rounding errors will depend on the order of evaluation
of an expression. Thus, 4 + B + C is not necessarily equal to
A+ B+ C).

(consider, for example, the case of 4 = 1:0001, B = —1-0000,
C = —4-0000,, — 5 when the expression is evaluated by floating
point hardware with a mantissa of only 5 decimal digits; moreover,
even in integral arithmetic, overflow could occur in one case but not
in the other).

Whilst it might be argued that users should not allow such ill-
conditioned expressions to arise, or that they should be required to
insert brackets whenever the order of evaluation was of importance,
the fact remains that implementors must abide by the official speci-
fications of the various programming languages, much though one
might regret the details of some of them. Thus it turns out that only
in FORTRAN is the implementor given the necessary discretion to
make this particular optimisation.

In ALGOL 60 (Naur et al., 1963), the relevant sentence is ‘The
sequence of operations within one expression is generally from left
to right . . . This particular sentence has been interpreted in many
ways but, if it is to mean anything at all, then the ‘operations’ referred
to must be the actions carried out on behalf of the operators.
Substantially the same sentence appears in the specification of
ANSI COBOL.

In ALGOL 68 (van Wijngaarden et al., 1969) it is clear that in
a — b — c* d, the operations required by the second — are to be
performed on two operands which are the result of @ — b and the
result of ¢ * d.

There is however a simpler optimisation, which is legitimate with
all the languages mentioned, in which the two operands of an
operator may be interchanged if shorter code results thereby. Thus
a + ¢ * d may be compiled as ¢ * d + a. This relies on the com-
mutative properties of + and *, which are not in dispute—indeed this
optimisation is also applicable to — and / on those machines which
provide the ‘reverse minus’ and ‘reverse divide’ operations (hardware
designers please note).

Yours faithfully,
C. H. LINDSEY
Department of Computer Science
The University,
Manchester M13 9PL
15 December 1972

Volume 16 Number 4

References .

RoHL, J. S., and LINN, J. A. (1972). A note on compiling arithmetic
expressions, The Computer Journal, Vol. 15, No. 1. .

IBM (1969). PL/1 Language Specifications. Form Y33-6003-1.

VAN WIINGAARDEN, A. (Ed.) et al. (1969). Report on the Algo-
rithmic Language ALGOL 68, Numerische Mathematik, Vol. 14,
p. 79.

NAUR, P. (Ed.) et al. (1963). Report on the Algorithmic Language
ALGOL 60, The Computer Journal, Vol. 5, No. 4.

To the Editor
The Computer Journal

Sir
A note on the JK method
I should like to draw attention to a point concerning the JK method,
a new method suggested by Kaiser (1972) for finding the eigensystem 3
of a real symmetric matrix 4. The method is similar to Jacobi’s 3.
method; the purpose of this note is to make the connection more %
precise. The notation of Kaiser’s paper will be used in an extended =
form.
The JK method constructs a sequence of matrices B® by:
B = 4
BW&k) = Bk-1) R(k)
= AT® where T®) = R R® _ RK)
where R®) is a plane rotation matrix chosen so that a pair of columns
of B®) are orthogonal. R*) has the form:

rop® = rgg® = cos ¢; rp® = —rgp® = —sin ¢
rii® = 1@ # p,q); ry%® = 0 otherwise,

/Wwo9°dno"oIWeped.//:sd)y Wolj papeojumoq

~~
=
6 Ad ZLOLLY/08E/VI9L/BI0

o

| Uo1sen

for some pair (p, q). The aim is that lim B® = B, the matrix of
k-0

column eigenvectors of A4 scaled so that the sums of squares of the i

components equal the corresponding eigenvalue. This contrasts withS.

Jacobi’s method in which a sequence A*) is generated according to

A® = RE k-1 REB) 4O = 4 R
— T®’ AT®, where T® = RMR® .., R® @

where again R®) is a plane rotation matrix, chosen in this case to
annihilate an off-diagonal element of A%*-Y, For the JK method,
Kaiser suggests that the order in which the pairs of columns are
made orthogonal be taken as: (1,2),...,(1,n); 2,3),...,2,n);

..;(n — 1, n), repeating the cycle until convergence is obtained.
However, no convergence proof is given.

We shall now show that the sequence of plane rotation matrices
{R® } generated by the JK method applied to a matrix A is identical
to that generated by the row-cyclic Jacobi method applied to the
matrix 42. Suppose that the matrices R®, . . ., R%-1 are identical
for both methods, and consider iteration k. We shall suppose that,
in the JK method, columns p and g of B®), denoted b,®, by(¥), are
to be orthogonal; and that, in Jacobi’s method, the (p, q) element of
[42]®) is to be zero. Kaiser shows that the appropriate angle of
rotation for the JK method is the angle ¢ defined by

381

2b,*=1)" pg(k=1) T o
tan 2¢ = bp®—D7 by k=1 — p k=17 p (k1) pe| - 4’2l
From (1), and in an obvious notation, we have

2tp k=17 424 6=1)
tan 2(}5 = D7 g2, k1) — g (1) g2, (6-1)

This is exactly the angle of rotation required to annihilate the (p, q)
element of the matrix T®-1" 42T*-1), that is, [42]*~Y. Thus an
induction argument shows that the matrices {R*)} generated by the
two methods are identical.
Forsythe and Henrici (1960) have proved for the row-cyclic Jacobi
method that
lim RO R® , R&® =T
k—o0
where T is the matrix of unit-length column eigenvectors of the
matrix under consideration. Thus, for the JK method,
lim B® = lim AR® . 6 R®
k—o0 k—c0
= AT
= B, the required matrix.

This therefore establishes the convergence of the JK method.

References

ForsYTHE, G. E., and HENRrIcI, P. (1960). The cyclic Jacobi method
for computing the principal values of a complex matrix, Trans.
Amer. Math. Soc., Vol. 94, pp. 1-23.

KAIser, H. F. (1972). The JK method: a procedure for finding the
eigenvectors and eigenvalues of a real symmetric matrix, The
Computer Journal, Vol. 15, pp. 271-273.

Yours faithfully
K. W. BRODLIE

Department of Mathematics

The University

Dundee DD1 4HN

7 March 1973

To the Editor
The Computer Journal

Sir
I should like to bring two items to your attention.

Firstly, as regards a meaning for ‘SHRDLU’ (this Journal, Vol. 16,
No. 2, p. 34). In some efforts at counting the frequency of occurrence
of letters from the English alphabet in ‘normal’ texts, the results were,

in order,
ETAOIN SHRDLU ...

This was noted, for example, by Sir Arthur Conan Doyle, in the
Adventure of the Dancing Man from The Return of Sherlock Holmes.
David Kahn, in The Codebreakers, gives this sequence as

ETAONI RSHDLU.

Was this also the motivation for the linotype layout?

Secondly, another reference which is related to the article A4
graphical representation of the Backus-Naur form by Chaplin, et al.
(this Journal, Vol. 16, No. 2, pp. 28-29) is A syntactical chart of
ALGOL 60 by Taylor, et al. (Comm. ACM, Vol. 4, No. 9 (Sept.,
1961)). The point of view in the latter is ‘top-down’ though, while
Chaplin’s is ‘bottom-up’.

Yours faithfully
J. RICHARD SWENSON
Department of Computer Science
University of Toronto
Toronto 181
Canada
24 April 1973

To the Editor
The Computer Journal

Sir
Extensions to Backus Naur Motivation

I am using the Backus Naur form of notation to define the syntax
of a complicated data-stream. I wish, however, to extend the B.N.F.

382

notation by the addition of certain further conventions, and I would
like to request the help of readers of the Journal in giving credit where
credit is due for these conventions.

The first extension to the standard B.N.F. is that:

1. <Item?) indicates that {Item) may be absent or may occur once
only; e.g.

{Integer) ::= {Sign?) (Decimal digit) |
{Integer){Decimal digit)

2. (Item*) indicates that {(Item) is present an indefinite number of
times from 1 upwards; e.g.:

{(Real Number) ::= (Integer) . (Decimal digit*)

3. (Item* ?) indicates that {Item) is present an indefinite number of
times from 0 upwards; e.g.:

{Group) ::= (Member*?)

This extension is, I believe, due to R. A. Brooker; perhaps some-
one can tell me in what it was first published, and when.

The second extension which I wish to use is that, where the number
of occurrences of {(Item) is between certain known limits, say @ and

b, this shall be denoted by (Item) b ;eg.:
a
. o 2, 4
{Vehicle Registration Mark) ::= (letter)] {decimal digit) i |
. N 2
{decimal digit>) {letter) 1 |

{decimal digit)> :1; letter) g |

eoe//:sd)jy WOl papeojuMO(]

(letter) i {decimal digit) i <1etter?>§

Although this would appear to be a ‘natural’ or ‘obvious’ extension
of B.N.F., I do not know of any published mention of it. If it hasG
been published, I shall be grateful to any one who can supply me 8

with the relevant details. 3
Yours faithfully, S

A. C. LARMANS

Selnec Southern Bus Company %\»
Daw Bank &
Stockport SK3 0DU e
6 June 1973 @
e

&

Q

iy

3

o

g

«Q

c

3

o]

Errata -
In the paper ‘Interactive digital simulation on a small computer’ >

1ud

(this Journal, Vol. 16, No. 2, pp. 118-121) by B. Gay and S. G.=

Payne, an error appeared in Figure 3. Line 18 of SUBROUTINE 3

INTI should read: N
2DT = DTD/2.

In the paper ‘Lagrangian interpolation at the Chebyshev points
Xn,, =cos (vrr/n), v = 0(1)n; some unnoted advantages’ (this
Journal, Vol. 15, No. 2, pp. 156-159) by H. E. Salzer, there are a
number of errors connected with one of the references. On page 156,
left-hand column, line-4, the reference to (1964) should be a reference
to (1952); on page 159, in the first and second lines of the second
Berman reference, ‘(1964) . . . Izv, Vyss. Uéebn. Zaved. Matematika,
No. 6, (43), pp. 10-14° should read ‘(1952) . . . Doklady Akad. Nauk
SSSR, (N.S.), Vol. 87, pp. 167-170’; also on page 159, in the second
line of the second Berman reference ‘Vol. 30, Part 2, 1965, p. 632’
should read ‘Vol. 14, 1953, p. 542°.

The Computer Journal

