BECKLEY, D. F. (1967). An Optimum System with Modulus 11. The Computer Bulletin, Vol. 11, No. 3, pp. 213-215.
BELL, D. A. (1972). Decimal Numbers. The Computer Bulletin, Vol. 16, No. 8, p. 373.

BErRLEKAMP, E. R. (1968). Algebraic Coding Theory. McGraw Hill.
Modulus 11 Check Digit Systems. The Computer Bulletin, Vol. 14, No. 8, pp. 266-269.

BriGGs, T. (1970).

BriGas, T. (1971). Weights for a Modulus 97 System. The Computer Bulletin, Vol. 15, No. 2, p. 79.

CampPBELL, D. V. A. (1970).
12-13.

PETERSON, W. W., and WELDON, E. J. (1972).

RED, C. J. (1970).

TANG, D. T., and Lum, V. Y. (1970).
409-416.

A Modulus 11 Check Digit System for a Given System of Codes. The Computer Bulletin, Vol. 14, No. 1, pp.

Error Correcting Codes (2nd Edition). MIT Press.
Modulus 11 Check Digits. The Computer Bulletin, Vol. 14, No. 4, p. 122.
Error Control for Terminals with Human Operators. IBM Jour Res and Devel. Vol. 14, No. 4, pp.

WiLp, W. G. (1968). Theory of Modulus N Check Digit Systems. The Computer Bulletin, Vol. 12, No. 12, pp. 309-311.

Book review

The Theory of Parsing, Translation and Compiling, by Alfred V. Aho
and Jeffrey D. Ullman; Volume 1: Parsing, 1972, 541 pages,
£8-75, Volume 2: Compiling, 1973, 460 pages, £8-60. (Prentice
Hall)

These two volumes bring together much of the substantial body of
theory accumulated over the last decade from studies of the many
models introduced to formalise various aspects of compilers.

Volume 1 commences with a review of mathematical concepts and a
short chapter providing both an overview of compilers and a brief
review of methods for specifying the syntax and semantics of pro-
gramming languages. Chapter 2 completes the preliminaries with a
thorough survey of regular sets, context free languages and the
related finite and pushdown automata; this chapter might well
serve as a text in a course covering these topics. Chapter 3 introduces
formalisms for translation which are elaborated subsequently.
Here we meet syntax directed translation schemata, finite and
pushdown transducers; the relatively simple lexical analysis phase of
compilation is treated in terms of regular expressions and finite
transducers and then the subject of parsing is introduced. The
intuitive notions of top down and bottom up parsing and their con-
nection with left and right parses is discussed.

The considerable attention which the parsing problem has received
in the literature is reflected in the fact that the next five chapters,
rather less than half of the total work, are devoted to it; there is very
little missing here. Chapter 4 deals with general parsing methods for
context free grammars and includes the Cocke-Younger-Kasami
method and that of Earley. Chapter 5, on one pass methods without
backtracking, treats all of the main models which have been used in
compilers, LL(k), LR(k), the many variants of precedence parsing
and Floyd-Evans productions. Chapter 6 covers limited backtrack
methods of both top down and bottom up varieties.

Starting Volume 2, Chapter 7 is concerned with some techniques for
improving time and space requirements of various parsing methods
and Chapter 8 develops the theory of deterministic parsing, estab-
lishing inclusion and equivalence relations between the language
classes recognised by different deterministic parsers.

Chapter 9 returns to the subject of translation, dealing with inter-
mediate representations of programs, models for code generation
and syntax directed translation methods in the contexts of determi-
nistic and backtracking parsing algorithms. Chapter 10 deals with
the problems of storage and retrieval of semantic information for
tokens, such as identifiers. In addition to the conventional solution
using symbol tables and hashing functions, the theoretically inter-
esting but (impractically ?) expensive property grammars of Stearns
and Lewis are examined. The final chapter presents the emerging
theoryunderlying machine independent aspects of code optimisation.
Program transformations eliminating both wuseless assignment
statements and redundant computations are considered in the context
of increasingly general environments—first within sequences of
assignment statements then utilising algebraic properties, commut-
ativity, associativity, etc. of certain operators, and finally, using flow

12

analysis techniques, in the context of program loops. Other optimis-
ations, code motion from within loops, reduction in strength of
operators, efficient allocation of registers, all receive attention.

The presentation is formal, proofs are presented for the major
theorems and lemmas but details are occasionally left and included
in the many exercises at the end of chapter subsections. These exers
cises also serve to amplify, or to introduce additional, ideas. Biblioa
graphical notes at the end of these subsections refer to the origin
papers listed in an extensive bibliography. (Volume 2 contains &
composite bibliography for both volumes.) Great care has beew
taken in proofreading; for books of this typographical complexnty,,
errors are few in number.

This is undoubtedly a valuable reference work for those commme&
to improving compiler technology and for those interested in forma}
languages and it is very welcome. It contains a wealth of materia]%
examples and exercises which would prove useful in a course o®
compilers, but one might quarrel with the authors’ recommendation§
on its use as a textbook in such courses. A number of topics whicks
can have far reaching effects on the overall design of a compiler arg
not mentioned at all; examples are runtime diagnostics, runtime
storage administration and the treatment of procedures and paraS
meters. Their omission in a work on the theory of compilers is n
surprising; currently there is little of mathematical significance to sayz
Their omission from a course on compilers, or their relegation to @*
laboratory course as matters of implementation detail, is a dlfferenQ
issue. 3

Similarly one might also question the value of studying so mang
parsers in the detail suggested. The parsing problem, notwithstandin,
the attention it has received, has never been large in relation to th
total problems of constructing a compiler. The LR methods of3
parsing, which have not been so fully discussed elsewhere, hav%
considerable attractions from a practical viewpoint. They wi
surely completely displace several of the methods recommended fog
detailed study. It would be quite reasonable in a course simply tc2
present the relatively straightforward reasoning which leads t&
(but tends to be obscured by) the formal descriptions of the algorz
ithms which produce parsing tables. This would allow those student9>
who wished to do so to pursue the details of the formal descrnptlons:_
more readily and it would provide sufficient background for undert3
standing more readily and it would provide sufficient background fof®
understanding the simple algorithms which interpret parsing tables
to produce a parse. It is certainly not necessary that a compiler
designer be conversant with the details of the space-time optimis-
ations implemented in his parsing table generating program any
more than it is necessary to comprehend the details of implementation
in compilers to design good programs. Familiarity with general
principles will help and suffice for both.

In summary, I liked these books, they contain much that is not
available elsewhere. They will certainly influence my teaching but I
would find it necessary both to supplement and to prune vigorously
to provide a balanced view in a course on compilers.

J. EvE (Newcastle)

The Computer Journal





