Methodology of computer systems design

S. J. Waters

London School of Economics, London WC2

This paper discusses the need for a systematic approach to computer systems design whereby net-
works of files and programs can be planned in a logical, orderly manner. Alternative methods are
compared and developed into a design ‘ladder’; each step in this ladder represents a design decision
and an eventual climb of the ladder achieves a feasible computer system.

(Received June 1972)

This paper results from the CAM research project at the
London School of Economics and Political Science, which is
investigating a computer-aided methodology of developing
computer-based, information processing systems; the project
was initially financed by the Science Research Council and
outlined by Waters (1972a).

At some stage in the development of an information processing
system, the following design problem must be solved:

DESIGN a computer system

SATISFYING the defined objectives (and constraints)

GIVEN a definition of information processing
requirements and a definition of resources.

The computer system that is being designed is essentially a net-
work of programs and files that is often represented by a
‘program suite organisation flowchart’ or ‘run diagram’. The
nodes of this network are the programs and the branches are
the files of the computer system; the input/output interfaces
between the computer system and its environment are also
defined. Fig. 1 illustrates a serially processed payroll system;
much supporting documentation is necessary to detail this

simple system: complex systems contain hundreds of programs
and files.

The defined objectives to be satisfied include, at least, the
dozen discussed by Waters (1972); these are efficiency, time-
liness, accuracy, security, compatibility, implementability,
maintainability, flexibility, robustness, portability, acceptability
and economy. In practice, these objectives conflict and their
relative weights vary between systems and designers; further,
these relative weights are rarely quantified.

The given definition of information processing requirements
includes the input/output messages, the database contents and
the processes that transform input and database information
into output and further database information. The messages
are defined in terms of format, device/media, sequence, volume,
frequency, response time, source/destination, etc; these mes-
sages connect the computer system to the organisation’s
human and automatic systems (e.g. new employee data, labour
statistics) or to the organisation’s environmental system (e.g.
tax code assessments, tax returns). The database is defined in
terms of information content, size, accessing activities, etc.
but does not include partitioning into files which is one aspect
of the computer systems design problem; Waters (1972)
defines some of the common accessing activities (e.g. hit ratio,
hit group, fan in/out ratio, volatility, point overflow). The
processes are defined in terms of the conditions and trans-
formations which process information.

The given definition of resources includes the computer
hardware/software configuration which is either available or
being proposed and the ‘men, money, machines’ and time that
might also be available.

Thus, the computer systems design problem is clearly complex,

particularly as a result of the large quantity of given data, the
imprecise nature of an overall objective function and the
intricate design process. In practice, alternative designs are also
hypothesised by varying the given data and/or the objective
Sfunction until a satisfactory solution is achieved.

|umoQ

The need for a systematic approach
Many existing computer systems do not meet the above do@n
objectives, usually because:

1. There are severe communication problems between usess,
analysts, designers, programmers and operators.
2. Systems definition is often inadequate and inaccurate. =
3. Insufficient time and effort is devoted to systems demgnﬁ
4. Fallacious rules of thumb are widely used. o
5. Designers rely on their own (limited) experiences; there 1$a
tendency to make the current system ‘look like’ a prevuﬁ;s
one. e
6. Systems are designed in insufficient detail. hse
7. A formal method has been lacking; most of the hterat@'e
discusses techniques, not method.

This paper aims to overcome the latter three points by gs-
cussmg a method that incorporates the major design decxsuils
in a logical sequence. Instead of relying on (elusive) msplratl@n,
the designer’s thought processes are directed step-by-step
through the design problem.

pap

y w

CLYILLIVIL

Langefors’ method
Langefors (1966) published an early attempt at a des
method within an overall approach to systems analysis thatis
basically sound; this work is still widely referred to and talgn
as a basis for much research in the field. q,
The method fails because the number of feasible groupings’
vast, minimisation of transport volume is not the main (let
alone single) objective and memory size constraints are relaxed
by direct access storage devices. In particular, the detailed
approach is obscure, unsystematic and far from complete; 1th
invalid for early, serial access computers as well as modf.;gn
configurations.

Martin’s method

The eminently practical Martin (1967) proposes an alternative
method, but unfortunately, Martin’s method is again incom-
plete; this paper extends his file/program approach to a set of
sequential, detailed design decisions.

The proposed method
Computer systems design is but one stage in the continuing
process of systems analysis, design, implementation and
maintenance. Therefore this stage can be entered from any of
the others and may itself enter any of the others; the total
approach is usually iterative, not linear.

Fig. 2 illustrates an overall method of computer systems

(This paper was originally submitted in June 1972 as half of a longer paper; the second half will be published shortly.)

Volume 17 Number1

17

Pay advices
File insertions,
amendments and

deletions
- PC

CONVERT
input

MT

MT

VALIDATE
input

MT LP Error reports

MT

SORT input
(to payroll
sequence)

MT ————————
Y
Y A
NT | MT
Payroll master file
PROCESS L (Brought-forward and
payroll /(' Carried-forward in
payroll sequence)
MT| MT
MT
PRINT
output
LP Payslips

Reconciliation accounts
Miscellaneous reports

Fig. 1 Computer system for a serially processed payroll

design. The first two steps design the input/output files and
programs. The next step designs logical master files by deciding
information content, sequence, access method and format;
logical master (e.g. process and update) programs are then
designed by deciding their procedure content, processing modes,
security and breakpoint facilities. Slave files (e.g. transaction,
temporary and working) and slave programs (e.g. sort and

13

Design physical system

Design slave files and programs

Y
A

e Ul e O\

Design logical master programs

Y

Design logical master files

Design input files and progranms

=) ——) ——

Design output files and programs

Fig. 2 Outline of a computer systems design method

. Processing mode

U e O\
<

. Program procedure content

12. Channelling > g
i =
|9

[

11. Blocking < 3
Q.

E

10. Buffering - - =
g

N

9

9. Device allocation > =
i 3
o

2

8. Breakpoints [o
8

b

o

T. Security E]
2

5

%

o

N

[~

3

2

N

>

w

o

(o]

c

\
\
4., File format <
|
| i
o]
3. File access method >
©
| &
. File sequence > ~
N
rb

2
| \
h

. File information content

-

Fig. 3 A computer systems design ‘ladder’ of decision points

dump) are inserted to complete the logical system; finally, this
is developed into a physical system by deciding device alloc-
ation, buffering, blocking and channelling arrangements.

Fig. 3 illustrates a proposed ‘ladder’ of computer systems
design decisions; this ‘ladder’ is operated within the overall
method of Fig. 2. Each step represents a decision point and the
‘ladder’ is sequentially climbed one step at a time; the current
design can be estimated and assessed at each step with the
possibilities of continuing the climb or slipping back to any
previous step to take an alternative design approach. The first
eight decisions are concerned with structuring a ‘logical’
system which satisfies the given information processing require-

The Computer Journal

FILE CHARACTERISTIC FILE ACCESS METHOD

SERIAL SEARCH ISAM DIRECT ADDRESSING

(Appendix 3; Ic) (Appendix 3; 2b) (Appendix 3; 3a(i)
Quick-response requirement Doubtful 4 V4

(as time consuming)
Record keys sparsely allocated over key v4 vV Doubtful
number range (as storage wasted)
Very large size vV Doubtful

(as necessary on-line storage unavailable)

Volatile (high proportion of record v Doubtful

insertions and/or deletions)
Point overflows (large groups of records are /
inserted with consecutive key numbers)

(as overflowing can be
significantly inefficient) v

Fig. 4 Some guides to assist choice of key-retrieval, file access method for given file characteristics

ments; the first four structure logical files and the second four
structure logical programs. The final four decisions are con-
cerned with structuring a ‘physical’ system whereby the logical
system is fitted to the given resources to define hardware
utilisation. It is vital to recognise that a system is not designed
until all decisions have been taken; each and every decision can
have significant impact on the performance of the system.
Appendices 1 to 12 discuss each decision and its alternatives
with the factors that guide an efficient choice.

Some of the initial work contributing to this method was
published by Waters (1970) and a detailed explanation of the
approach with examples is awaiting publication in Waters
(1973).

Conclusion
This paper has developed a manual method which is effectively
a ‘guided tour’ through the highly technical ‘jungle’ of com-
puter systems design. If nothing else, this method provides a
sequential checklist of major design decisions with guides for
each decision; as so often happens, investigating the appli-
cation of computers improves insight into the equivalent man-
ual operation. However, the CAM research indicates that
computer software should yield substantial benefits by im-
proving the quality of manual systems design without
replacing the human designer.

The manual methodology has already been discussed and
accepted by several industrial organisations and the author
would be pleased to discuss it with any other interested parties.

Acknowledgements

The author wishes to acknowledge the assistance of his col-
leagues in the LSE Systems Research Group, particularly
Mr. F. F. Land and Dr. A. H. Land of the Statistics, Mathe-
matics, Computing and Operational Research Department.

Appendix 1 File information content

This decision is to group elementary information items into
records and records into files (which constitute the database);
it is assumed that conventional file organisation techniques will
subsequently be used. The factors that guide the large number
of alternative choices are:

1. The items and their identifiers or keys (e.g. gross pay to date
identified by employee number, usage quantity identified
by product number and resource number).

2. The relationships between identifiers (e.g. an employee
works in one department which belongs to one factory).

3. The frequency of access to items and the identifiable
subsystems that access them (e.g. product stock accessed
continually for despatching, product price accessed daily for
invoicing and product sales history accessed weekly for

Volume 17 Number 1

forecasting).
4. Identifier activities with respect to input/output messaggs
and processes (e.g. hit ratio, hit group).

A record can be formed by grouping items as follows:

1. All items for common identifiers; for example, one recogd
could contain all employee items (both payroll and persogi-
nel). Common identifiers can consist of several individuzl
identifiers; for example, usage quantities would be ide
fied by product and resource which could form product/
resource records separate from basic product and baﬁc
resource records. Q

2. All items for common identifiers and a common accesm%
frequency and/or a common subsystem; for example, an
employee payroll record and an employee personrgl
record. A sales control system might eventually justifysa
continual]y accessed product stock record, a daily-accessed
product pricing record and a weekly-accessed product sal§s
history record. 5

In general, the first approach is preferable because consoﬁ-
dation of items into records reduces the number of files add
simplifies their control (particularly with respect to identifier
insertions and deletions). The second approach can subsE-
quently be taken to avoid subsystems carrying overheads gf
irrelevant information.

A file can be formed by grouping records as follows:

1. All records for common identifiers; for example, a prod@t
file of all product records and a product/resource file of ﬁl
usage information records.

2. All records for related identifiers; for example, a payr&ll
file of employee, department and factory records. A prg-
duction system might justify a single product file of &l
products with each record containing basic mformatu‘gl
followed by resource usage information. N

3. All records for common and/or related identifiers constitut-
ing a hit group in a low activity situation; remaining
records are grouped into a relatively inactive file. Sales
ledger systems often justify a file of active customers and an
archive file of inactive customers; high activity product
records (e.g. catalogued products) could constitute a daily-
accessed file and low-activity product records (e.g. special
products) could constitute a weekly-accessed file, if accept-
able.

Generally, the first two approaches would again achieve file
consolidation whereas the last approach could avoid file transfer
overheads.

Finally, this ‘data processing’ information that has been
grouped into files may subsequently be enhanced by ‘house-
keeping’ information that is a function of the design process;
for example, labels, trailers, controls, etc.

PEOJUMO

q €68¢

Appendix 2 File sequence

This decision is primarily between a random or sequential file
and, in the latter case, between a choice of sequences with
respect to identifiers. In practice, random files are relatively
rare; guides to the choice of sequence for a sequential file are:

1

2.

3.

. The given information processing requirements might

dictate that a particular procedure be obeyed in a specified
sequence; organising the file in this sequence can avoid
additional processing (particularly sorting). For example,
product stocks might need to be allocated in customer
priority sequence so organising the customer file in customer
priority/customer code sequence could prove advantageous.
Large volumes of output messages are usually required in a
specified sequence (if only to facilitate subsequent human
referencing); again, organising the file in this sequence can
avoid additional processing (particularly sorting and
editing). For example, organising a payroll file in factory/
department/employee sequence facilitates ‘spinning-off’
payslips in the required sequence without intermediate
sorting and editing.

Conversely, a large volume of input messages could be sub-
mitted in a specified sequence, therefore organising the file
in this same sequence could avoid initial sorting.

. Processing can be simplified by organising the file in a

suitable sequence; in particular, the ‘pigeon-holing’ tech-
nique for accumulating totals can be facilitated. For
example, a payroll file organised in factory/department/
employee sequence enables department and factory totals
to be ‘pigeon-holed’ as a run progresses and only current
department and factory totals need be accumulated.

. The size of a file can be a function of its sequence, particu-

larly due to the repetition of identifiers. For example, the
simplest usage file might contain 18 characters of inform-
ation for each of 10,000 product codes of ten characters and
1,000 resource codes of four characters; organising the
file in product code/resource code sequence requires
10,000 x (10 + 1,000 (4 + 8)) = 120,100,000 characters
whereas resource code/product code sequence requires
1,000 x (4 + 10,000 (10 + 8)) = 180,004,000 characters,
giving a 509 increase.

. File sequence could be chosen to enforce a hit group situ-

ation which might substantially reduce subsequent pro-
cessing time. For example, a public utility (e.g. gas, elec-
tricity) system could organise the consumer file in the
sequence of meter-reading round number; this enforces hit
groups for the production of meter-readers’ round lists and
subsequent consumer bills and, to some extent, for payment
updating.

A possible disadvantage in choosing a convenient file sequence
as above is that a significant number of record key amendments
might occur which require extra program runs and file passes
to maintain the sequence of the file. Notice that quick-response
systems usually restrict the choice to guides S and 6.

Appendix 3 File access method
This decision is to choose the addressing method whereby
records of a file can be located and accessed.

Key retrieval is the usual technique whereby a key number is
given and its record is accessed by one of the following methods:

L.

Search: record keys are progressively examined until the
matching record is found. Alternative searching methods
are:

(a) total search, whereby all records are examined from the
first; the file can be sequential or random;

(b) partitioned search, whereby all records are examined
from the appropriate partition point (found by an index
or algorithm); the records within a partition can be sequen-
tial or random;

(¢) serial search, whereby all records are examined from the
previously matched record; the accesses are made in the
same physical sequence as the file;

(d) logarithmic search (or binary chop or repeated dicho-
tomy), whereby a sequential file is progressively bisected.

. Index: record key is translated to record position by search-

ing index(es) instead of the file; alternative indexing methods
are:

(@) full index, whereby a single index defines the record key/
position for every record in the file; the file can be sequential
or random;

(b) hierarchical (or partial) index, whereby level n index
(n=1,2,....N, usually N = 2 or 3) defines the highest
key number in each of the level n + 1 indexes until level N
index defines record position: ISAM uses this approach to
reduce the number of seeks to one, for most accesses.

. Algorithm: record key is translated to record position by

arithmetic and/or logical transformation; some alter-

native algorithmic methods are:

(a) simple algorithms, whereby a basically sequential file 1@
generated without synonyms; examples are:

(i) direct addressing (or self-indexing) where
Position = Key No.

(ii) ‘degapping’ which is a refinement of direct addressin
whereby large blocks of consecutive, unallocated key=
numbers (i.e. ‘gaps’) are removed before applying

Position = Reduced Key No.

(iii) scaling, which assumes even distribution of allocate

key numbers over the key number range with

Key No. x No. of Records in File
No. of Key Nos. in Range

(b) complex algorithms, whereby a random file is generate

with synonyms ; examples are prime division, digit selectlon,?_
folding, truncation, radix transformation, squaring, etc\

dify ?ﬁou papEo|UM

Position =

o&woodnoogw@peoey:s

Fig. 4 illustrates some guides for the common key-retnevalg
file access methods; Waters (1972) indicates the fallacy of:
basing access method on hit ratio so this is omitted from thex

Orders
(ex input
programs)

SORT orders
(to customer
sequence)

202 Iudy 61 uo 1sanb Aq £68Z1L7/21/

\
t
Customer
master file Product master file
(processed PROCESS ’r(rocessed randomly)
orders P y
sequentially)
Invoices
(to output
programs)
Fig. 5 ‘One-shot’ processing

The Computer Journal

guides. The available secondary storage devices can restrict
choice of file access method; a limitation of only serial access
devices (e.g. magnetic tapes) implies serial searching; direct
access devices with zero seek time (e.g. fixed head drums and
discs) may prefer full or hierarchical indexing to the usual
ISAM approach.

If there is an additional accessing requirement for content
retrieval, whereby records satisfying specific conditions are to
be retrieved, then the above file access methods require a total
search of the file to achieve this. If this is unacceptable, then
(partially) inverted file organisation allocates an index to each
condition which defines each record key satisfying that con-
dition; thus, provided the conditions are predictable, lengthy
file searches are reduced to index searches. Alternatively,
multilist file organisation allocates a list to each such condition
to reduce file searches.

Appendix 4 File format
This decision is to define the format of the file, its records and
their items.

The format of an item of information can be fixed or variable
length; fixed length format further permits decimal or binary
representation for numeric items, otherwise character represen-
tation is usually chosen; for example:

1. Fixed length binary format (e.g. word format) is sometimes
used for numeric items to utilise faster arithmetic operations
without suffering input and/or output conversion.

2. Fixed length binary format is sometimes used for limited
value items in a large file to reduce file size by ‘packing’
(e.g. an indicator can be packed into 1 bit).

3. Character format 1s probably used more widely; although
variable length format can significantly reduce file size,
fixed length format is often chosen to meet software
constraints.

The format of a record can be fixed or variable length. Again,
variable length format can significantly reduce file size where
maximum record length is substantially greater than normal
record length; however, fixed length format is often chosen to
meet software constraints. In extreme cases, a variable length
record can be segmented into a variable number of fixed length
records to meet such constraints.

The format of a file can be fixed or variable length. Usually,
files contain variable numbers of records and therefore have
variable length; however, fixed length files occur when:

1. Access method (e.g. direct addressing) dictates this require-
ment.

2. File size is significantly reduced by identifying each record
by its position (instead of its key number) when key
numbers are densely allocated; for example, a product file
of 9,000 active records of 10 data characters with a four-
character product key would require 9,000 (10 + 4) =
126,000 characters if only active records are held; the
equivalent fixed length file would contain 10,000 x 10 =
100,000 characters, where the saving is due to eliminating
key numbers.

Appendix 5 Program procedure content

The preceding four decisions have yielded a set of (logical)
master files with information content, sequence, access method
and format defined; this decision is to define a network of
(logical) programs that satisfy the information processing
requirements of the system (with little regard to computer
configuration). Initially, feasible master programs are defined
which process the master files; then slave programs (e.g. spool,
data edit, sort, print, etc.) and slave files (e.g. accepted data
file, print file, working files, etc.) are inserted to complete this
logical system.

Initially, processes are grouped against master files with

Volume 17 Number 1

respect to common elementary information items; thus, all
processes that refer to items of a master file are collected into a
process program. This approach achieves program consoli-
dation and reduces the number of file passes; the results depend
on the number of master files and their degree of interaction
with respect to processes as follows:

1. In many cases, the master files do not interact so that each
master file generates a single process program. A common
solution, in practice, is illustrated by the Fig. 1 process
program; if several such process programs are generated
then they can be further consolidated by ‘piggy-backing’ the
master files. Occasionally, a process requires the master
file be passed more than once; for instance, the record key
amendments requirement that was mentioned above.

2. In some cases, the master files do interact because processes
refer to several master files alternately; for example, the
process that values customer orders for finished products

Orders
(ex input
programs)

SORT orders
(to product
sequence)

A

| Product master file

PROCESS P
1}~ (processed sequentiall

orders

Y

SORT orders
(to customer
sequence)

20 udy 61 U0 1s8n6 Aq €68Z11// L/1/L L/aIRIEfRIW00/Wwod dno olwspeoe)/:sdjy Wolj papeojumoq

Customer master file

PROCESS P (processed sequentially)

orders

Invoices
(to output programs)

Fig. 6 ‘Sort-sequential’ processing

FILE ORGANISATION METHOD FILE PROCESSING MODE

FILE ACCESS METHOD FILE SEQUENCE SERIAL SEQUENTIAL SKIP-SERIAL SKIP-SEQUENTIAL RANDOM
Search Sequential v4 V4 (Binary chop) (Binary chop) (Binary chop)
Search Random 4 x X x x

Index Sequential Vv v V4 v v

Index Random v v v4 v v

Algorithm Sequential 4 4 V4 v v

Algorithm Random v X v v v

Fig. 7 Analysis of file processing mode against file organisation method

Total file transfer time = Maximum [(CPU Time) + Total of Column 1 File Transfer Times,
Column 2 Channel Transfer Times,
Column 3 File Transfer Times]

would first access the product file to establish prices and
then access the customer file to establish trading terms
(e.g. discounts). An extreme approach is the ‘one-shot’
solution illustrated by Fig. 5, as used in quick-response
systems, whereby the process program has on-line access
to all master files. Another extreme approach is the ‘sort-
sequential’ solution illustrated by Fig. 6 whereby the
interactive processes are disected against the master files;
care must be taken to readjust the initial updating of master
files by a transaction if that transaction is subsequently
rejected against the final master files. Between these two
extremes, there are many permutations to the approaches 4.
depending on the number of interactive master files, for

example, four such master files can yield some 20 variations.

These monolithic process programs can subsequently be split
to yield alternative designs; common divisions are by process

3. Skip-serial (or selective-serial), by which only active (blocks
of) records are processed in physical sequence. Indexed
sequential and algorithmic sequential files can be skip-
serially processed by pre-sorting accesses to key sequence.
Indexed random and algorithmic random files can be skip-cg
serially processed by pre-sorting accesses to record address>
sequence; the record address is established before sorting bym
driving the key number through the index or algorithm.®
The remaining files cannot be skip-serially processed (othero
than possibly binary chopping a sequential file after pre-
sorting accesses to key sequence).

Skip-sequential (or selectlve-sequentlal), by which only\
active (blocks of) records are processed in logical sequence.g 8
Indexed and algorlthrmc files can be skip- sequentlallyrl
processed by pre-sorting accesses to key sequence; the—-
remaining files cannot (other than possibly binary choppmgC

sdpy

frequencies and/or message types.

Appendix 6 Processing mode
This decision is to define the processing mode of each file as

a sequential file after pre-sorting accesses to key sequence).2
5. Random, by which only active (blocks of) records areS
processed in neither physical nor logical sequence. Indexeds
and algorithmic files can be randomly processed but the_

remaining files cannot (other than possibly binary choppmgm
a sequential file).

Fig. 7 summarises processing modes against file orgamsatlon_\
methods.

Guides to the choice of processing mode, in addition to the=
above restrictions, are:

1. Random processing usually requires the entire file be on-w
line which might exceed direct access device capac1ty, this iso
occasionally overcome by randomly processing the file mg
sections that are ‘storable’. g

. Random processmg often incurs time-consuming seeks§
unless the file is small or the seek area is reduced by a hltA
group situation or the available direct access devices have>
zero seek time.

accessed by each program. Generally, there are five possibilities:

1. Serial, by which the entire file is processed in its physical
sequence. A file without index or algorithm facility would
usually be serially processed; an indexed or algorithmic
file can be serially processed to minimise seek time. This
processing mode must be chosen if only serial access
devices are available.

2. Sequential, by which the entire file is processed in its
logical (key) sequence. This is equivalent to serial processing
for a sequential file without an index facility. Indexed
sequential and indexed random files can also be sequenti- 2
ally processed; the remaining random files can only be
sequentially processed by accessing every possible key
value (whether allocated or not) in consecutive sequence.

9101l

LILIL

68¢CLy/.L

20z Iud

FILE CHARACTERISTICS
(DEVICES, BUFFERS, CHANNELS)

SIMULTANEOUS OPERATIONS

PARTIAL (WITH MULTIPLE-
BUFFERED FILES ON OTHER
CHANNELS ONLY)

PARTIAL (WITH FILES ON
OTHER CHANNELS ONLY)

TOTAL (IRRESPECTIVE OF
CHANNELLING)

1. Single-buffered files 4

2. Multiple-buffered, slow-speed device files v4
(one file per device) ‘

3. Multiple-buffered, magnetic device files—
sharing a device

4. Multiple-buffered, magnetic device files— V4
separate devices but sharing a channel

5. Multiple-buffered, magnetic device files— 4
separate channels

Fig. 8 Aggregation of file transfer times to total file transfer time for a program

22 The Computer Journal

3. Random processing is usually necessary in quick-response
systems unless file access queues are pre-sorted.

4. If fan in/out ratios are high (i.e. each hit record is accessed
many times) then random processing causes multiple
accesses to each hit block of records; other processing
modes cause a single access only.

5. Updating by overlay (when skip-serially, skip-sequentially
or randomly processing) subsequently requires complicated
security and breakpoint procedures.

6. Updating by overlay can reduce secondary storage require-
ments because the brought-forward file is not updated to a
physically separate carried forward file.

7. One-shot processing implies randomly processing some,
possibly all, files accessed by the program.

8. Slave files are usually processed serially.

Waters (1972) indicates the dangers of basing processing mode
on hit ratio but very low activity can favour skip-serial, skip-
sequential or random processing; in particular, it is often more
efficient to process queues of quick-response messages skip-
sequentially by scanning than randomly (even if the ‘minimum
seek time’ method is used).

Appendix 7 Security

This decision is to ensure that each file can be regenerated
should it be lost, ‘crashed’ or corrupted. Generally, there are
three possibilities (and combinations of the three):

1. Generation, where recent successive versions of the file are
retained together with their updating messages; the ‘grand-
father system’ commonly retains the current ‘son file’, its
‘father file’ and its ‘grandfather file’ and the ‘son’ file over-

" writes its ‘great-grandfather’ file. This method is used for
serially and sequentially processed files where the brought-
forward version is updated to a physically separate carried-
forward version.

2. Dumping, where a file is periodically dumped to provide
back-up copies; this method is used for skip-serially,
skip-sequentially and randomly processed files which are
updated by overlaying brought-forward records by carried-
forward versions. If a file is to be recreated from its
previously dumped version, then there are two further
choices:

(a) either the dumped file is updated by appropriate mes-
sages (which must also be retained) in the normal manner;
(b) or the dumped file is updated by replacing original
records by their new versions (which requires that the new
version of a record be dumped whenever it is updated).

The second method requires a separate secondary storage
device from the file itself but can simplify the recreation
procedures and save computer rerun time.

3. Duplication, where identical versions of the file are con-
tinually updated, whatever the processing mode. An
advantage is that little computer time is lost in switching to
the second version of the file if the first version fails;
however, additional secondary storage devices can be
required and computer time can be increased if simultaneity
is not subsequently possible.

Thus, the method of master file security depends on file
processing mode, acceptable recreation time and availability
and reliability of computer hardware/software; file duplication
is a simple but underused technique, particularly in serial
processing systems. Usually, temporary files are recreated by
rerunning the programs that generated them; again, file
duplication is an underused but effective technique.

Appendix 8 Breakpoints

This decision is to choose breakpoint (or checkpoint or restart)
procedures so that a program/file breakdown can be speedily
corrected. In practice, batch-processing breakpoints occur at

Volume 17 Number1

15 or 20 minute intervals so that the program can be restarted
from the last breakpoint instead of right from the beginning.

Appropriate areas (e.g. run totals), if not all, of primary
storage are dumped at each breakpoint so that they can
subsequently be reconstituted. The actual breakpoint is
identified for all files by inserting special breakpoint records or
by dumping the last record key before the breakpoint.

When a restart is necessary, the contents of primary storage
are reconstituted and the files are re-aligned at the breakpoint
as follows:

1. Serially and sequentially processed files are merely
positioned at the first record after the breakpoint.

2. Overlayed files are sometimes dumped at each breakpoint,
particularly if they are relatively small; these files are
positioned by setting up the dumped version. Notice that
random processing requires the entire file be dumped at
each breakpoint but skip-serial processing only requires the
current ‘interval’ of the file be dumped.

3. Otherwise overlayed files must be downdated from the
breakdown back to the breakpoint; this requires the old
versions of updated records to be dumped so that the
can subsequently be downdated. The combination of ﬁ
security and breakpoint procedures often requires mcrg—
mental dumping’ whereby both old and new versions &f
updated records are dumped to a physically separate filg}
thus, the master file can be updated from a dumped versw?l
or downdated from the current version.

eoe//:sdny

Appendix 9 Device allocation
The preceding eight decisions have yielded a logical comput&
system of programs and files with little regard to computer

configuration; this must now be developed into a physical
computer system by deciding hardware utilisation. This initial
decision is to assign the following files to computer stora@
devices:

1. Master files, which are referenced or updated by each
of the system.

2. Slave files, which transfer information between progra
within each run of the system.

3. Dump files, which support the security and breakpoi
procedures.

4. Programs, which can be regarded as files having the follo
ing properties:
(a) each program is a relatively small file; each record is@
(housekeeping or information processmg) procedum
identified by a procedure name; each item is an operatlolg,

(b) the system only references such files; at present, they afe
updated by standard software systems of preprocessors;
compilers and assemblers;

(c) at present, each record is accessed by the operating
system; usually, this accessing is random using an index:§
or partitioned file.

Future developments might allow programs to be organised,
updated and accessed by the information processing system to
avoid the restrictions of current software systems; programs
and files could then be combined and revised as convenient to
the information processing system.

These files are allocated to devices to meet design objectives
(often reduction of expensive computer time) subject to the
following constraints: '

1. The device must support the file access method and proces-
sing mode.

2. File security constraints must be met; thus, dumped and
duplicate versions of master files must be assigned to
separate devices from the master files as must those slave
files that support the security system.

3. Breakpoint constraints must be met; thus, incrementally

-
Buwoo/

5'119”

eszﬁm LB

€

udy

23

dumped files must be assigned to separate devices from the
master files.

4. An updated file must be output to the same type of device
that subsequently inputs it; however, this constraint is
sometimes relaxed by job control languages.

5. The number of devices and their capacities must not be
exceeded.

The underlying implication of this generalisation is that
interactive records from various files must be input to primary
storage together; a program procedure and the information
records it accesses must be simultaneously accessible by the
logic and arithmetic circuitry of the central processing unit.

This device allocation problem often has a large number of
solutions which can be reduced by the following guides:

1. Small, frequently accessed files are often allocated to
primary storage and initially loaded from secondary
storage devices; for example, common program procedures
and reference tables.

2. Slave files supporting the security and breakpoint pro-
cedures are often allocated to magnetic tape devices.

3. Large, serially processed files are usually allocated to
magnetic tape devices; in particular, large files are allocated
to faster tape handlers if a variety is available.

4. Two devices are often allocated to ‘multi-device’ files that
are processed serially or skip-serially to permit ‘ping-
ponging’; for example, one tape of a multi-reel file can be
on-line while the previous tape is rewound and the following
tape is loaded.

5. Operating systems often allow a file to be allocated to non-
contiguous areas of direct access devices, where necessary.

6. The ‘split-cylinder’ technique is sometimes used to reduce
time-consuming seeks on direct access devices where
several files are serially processed together on the same
device; for example, a brought-forward master file might
be allocated to tracks O to 7 of each cylinder on a magnetic
disc pack and its slave transactions file might be allocated
to tracks 8 and 9.

Otherwise, the most frequently accessed files are allocated
to the middle cylinders so that the least frequently accessed
files are allocated to the outer cylinders.

Waters (1972) indicates the fallacy of basing device allocation

on file hit ratio so this is omitted from the guides.

Appendix 10 Buffering
This decision is to allocate primary storage buffers to secondary
storage files to achieve simultaneity between file transfers and
central processing unit operations. Slow-speed devices are
usually double-buffered but fixed-cycle devices (e.g. some card
readers) are often multiple-buffered to avoid missing cycles.
Skip-serially, skip-sequentially and randomly-processed files
are usually single-buffered as the position of the next required
record is not known in advance and therefore cannot be pre-
called while the current record is being processed; thus, there
is no simultaneity between such files, other than some pre-
seeking. If, however, the next record is known in advance then
it can be precalled into a second buffer to achieve simultaneity;
this assumes the file is referenced only, otherwise a return seek

References

would be necessary to overlay the current record when it is to
be updated after processing.

Serially and sequentially processed files are usually double-
buffered to achieve simultaneity. Occasionally, small files are
single-buffered to release primary storage and large, low-
activity files are multiple-buffered to smooth any imbalance
between file transfer and heavy record processing.

Appendix 11 Blocking

This decision is to choose block size so that secondary storage
device files have reduced transfer time overheads and/or
reduced file size; notice that all such devices are involved and
not just magnetic tapes.

Often, installation standards or restrictive software constraints
dictate standard block sizes (e.g. 1,000 or 2,000 characters);
given an unrestricted choice, then block sizes are chosen as
follows:

1. Waters (1971) developed a simple algorithm for serially and
sequentlally processed files, which apportions available
prlmary storage to such secondary storage files by minimis-_
ing computer run time; the algorithm caters for varlablcg
numbers of buffers, variable devices, multi-device files, etcz
and achieves significant savings over traditional approachesQ

2. Direct access device files are often blocked so that file size 181
reduced; the aim is to minimise block overheads and tracl@
wastage.

3. Skip-serially, skip-sequentially and randomly—processed::’
files are often unblocked to avoid overhead transfer o
spurious records; however, such files are serially or sequens
tially processed on occasion (if only for dumping or re§
organisation purposes) and this strongly favours a large:
block size. This imbalance can be resolved by choosing arf
intermediate block size (whlch reflects the relative fre?
quencies of the various processing modes).

/|ulloo/wo

Appendix 12 Channelling
This decision is to allocate the secondary storage devices té{
channels to maximise their simultaneity of transfer. Slow-speed@—
(i.e. non-magnetic) devices are usually permanently aSSIgned:]
to multiplexor channels which (together with multiple-buffer=
ing) ensures simultaneity among them and the central:‘
processing unit.

High-speed (i.e. magnetic) devices are usually linked to selecto%
channels so that only one device can use the channel at any
point of time. Single-buffered files (e.g. those processed Sklp::
serially, skip-sequentially and randomly) cannot transfeg;
simultaneously to each other but multiple-buffered files ca
provided they are assigned to separate channels. Some com-.
puters contain floating channels which achieve this simultaneit
automatically by transferring information along any channi
that is currently free; however, most computers contain ﬁxe@
channels and devices are manually allocated to these channels’
to reduce computer time by balancing file transfer time over -
channels; a constraint may be to allocate duplicate files to
different channels (to counteract channel corruption). Fig. 8
illustrates the simultaneity achieved by buffering and (fixed)
channelling.

LANGEFORS, B. (1966). Theoretical Analysis of Information Systems; Studentlitteratur, Sweden.

"MARTIN, J. (1967). Design of Real-Time Computer Systems; Prentice-Hall, New Jersey.

WATERS, S. J. (1970). Physical Data Structures. Paper 6 of Proceedings of BCS Conference on Data Organisation.

WATERS, S. J. (1971). Blocking Sequentially Processed Magnetic Files; The Computer Journal, Vol. 14, pp. 109-112.

WATERS, S. J. (1972). File Design Fallacies; The Computer Journal, Vol. 15, pp. 1-4.

WATERS, S. J. (1972a). A Survey of CAM and its Publications. Final Paper of Proceedings of NCC Conference on Approaches to Systems

Design.

WATERS, S. J. (1973). Introduction to Computer Systems Design, National Computing Centre (awaiting publication).

The Computer Journal

