Eric Mutch Memorial

The ‘Eric Mutch Memorial’ prize was offered, in August 1972,
for the best paper to be submitted on a topic nominated by
the Editorial Board.

Foremost among the objectives of the Board, when consider-
ing the topic to be chosen for the first competition, were the
need to emphasise the role of the Society in bringing together
the various disciplines involved in computing and the need to

demonstrate to all members of the computing profession the
relevance of the Journal to their work. The chosen topic, which
highlighted these points, was:
‘How the pioneering work of yesterday relates to the
computing practice of today’
The paper which was chosen by the Board as the best on this
topic is reproduced below.

Microprogramming and system architecture

J. K. Broadbent

Department of Computer Science, and Statistics, Queen Mary College, Mile End Road,

London E1

This paper outlines the evolution of microprogramming from its position as a technique of logic
implementation to its use in the implementation operating systems and high level programming
languages. Although such uses are at the moment numerically relatively insignificant it is argued
from both hardware and software considerations that this evolution will continue as an extrapolation
of already well established trends in system architecture.

(Received February 1973)

1. Introduction

The term ‘microprogramming’ was first introduced by Wilkes
(1951); since then a prolific and well documented literature has
emerged. A recent bibliography (Jones et alia, 1972) covering
only 1969-1972 contained one hundred and eighteen references.
Wilkes’s survey in 1969 contained fifty five references and
Husson’s book (1970) has a bibliography with over two
hundred entries on microprogramming. Many definitions of
microprogramming have been given (e.g. Husson, 1970;
Flynn, 1967) and its actual meaning is often discussed at some
length. Unfortunately as a help in understanding a principle,
definitions can be opaque and misleading and can obsolesce
even though the word defined continues in use. A brief
example will probably be more helpful.

The execution of a typical machine instruction such as add the
contents of register R to the contents of main store location S
can be broken down into several discrete steps (or rather must
be broken down into discrete steps to ensure that the instruction
is executed correctly) as shown by the flowchart in Fig. 1. In a
microprogrammed machine the setting of flip flops, loading of
registers, connections to an arithmetic unit or whatever is
required at each step to achieve the correct change of state in
the CPU for that step are determined by the contents of a
memory with one word of the memory usually controlling one
step. Each step may take one or more processor cycles. A
collection of step controls for implementing a specific machine
instruction is a microprogram and the individual step controls
are micro instructions—the parallel with programming or at
least with machine code programming should be obvious.
Microprograms may reside in main memory or in a special
faster memory known as a control store with some processors
being able to execute microprograms from either main memory
or a control store. A collection of microprograms for imple-
menting a specific machine ccde is a ‘microinterpreter’.
Fig. 2 shows a block diagram for this organisation.

Sequencing of microinstructions can either be by keeping the
address of its successor as part of each microinstruction or, in
default of a branch microinstruction, assuming the next sequen-
tial location in the control memory. The micro prefix is also

- attached to many other familiar names—microassemblers, =

pe:JE// sdjy wouy pepeojumoq

microcode, microsimulators, microdiagnostics, microexecutives.
The word length (or bit dimension as it is sometimes called) of @
the control memory is influenced by many factors. Basically =
there is a distinction between horizontal (or minimally encoded) 2
and vertical (or highly enccdzd) formats for microinstructions. ﬁ
In a horizontal format the microinstruction would be control- S
ling the opening and closing of logic gates largely in a bit §
significant manner, whereas in a vertical format the instruction =.
is broken down into fields for selecting registers or functions.
As a strict horizontal form would require one bit per control
line in the processor microinstructions are always a com-
promise. The word length is determined in addition by the I
number of distinct operations which may be performed in ©
achieving a processor’s change of state and the degree of simul- g
taneity which can be allowed or is required to give a satis- 5
factory performance at the machine code level. For example, o
the Interdata model 4 (a minicomputer) microinstruction 1s§
16 bits, whilst that of the 360/50 is 90 bits. m
Subscquent sections in this paper will deal with various aspects o g
of mlcroprogrammmg and system architecture to give an overall
1mpresswn of the movement in hardware complexity to meet >
programming requlrements Attempts will be made to justify S
or explain the use of microprogramming both as part of that
trend and independently of it. N

olw

w

L/aonle/|u

2. The engineering justifications for microprogramming

Although the current increase of interest in microprogramming
is probably stimulated more by software problems it is worth
considering the hardware justifications first to see how they
have changed and whether they are still valid. Wilkes’s original
paper describes microprogramming as an orderly approach to
the design of a control section of a computer. That is a sound
design principle. But it is noticeable that at any one time the
largest computers available have not been microprogrammed,
e.g. CDC*STAR, 7600 and 6600 and IBM 360/195. The latter
is a particularly important exception as other models of the
360 range were microprogrammed. In a computer with no
cache memories or look ahead for operand fetches the main

Now at ICL, GmbH, Bereich Informatik, 4000 Dusseldorf, Immermannstrasse 7, West Germany.

2

The Computer Journal





