Simulation of real-time program faults
P. Burnettt, P. A. Kidd*, and A. M. Lister*

Two techniques are presented for making simulation a powerful aid in the development of real-time
programs. The techniques have been implemented in a Honeywell 516 simulator on a PDP-10 and
have proved successful in the development of software for a real-time medical information system.

(Received August 1972)

1. Introduction

Simulation of one computer on another has long been a recog-
nised way of developing software for the simulated machine.
While the value of this technique is apparent from its wide-
spread use, it has hitherto been limited by two factors. These
are, firstly the difficulty of simulating real-time phenomena,
which is essential if real-time programs are to be debugged, and
secondly the generally inflexible way in which breakpoints can
be introduced into a program. This paper presents techniques
for overcoming these deficiencies and for making simulation a
powerful interactive debugging tool.

The first technique is for simulating real-time events such as
peripheral transfers and interrupts. Since a large proportion of
program bugs are concerned with these events, and since they
become apparent only in real-time situations, the authors
believe that this feature can prove valuable. It is described in
Section 2.

The second technique is for halting the simulated execution of
a program should any specified combination of possible states
arise. These states are such things as the values of program
registers, the number of instructions executed, and the relation-
ships between the contents of memory locations. The conditions
for halting may be changed at any time by the user issuing
commands from a terminal, and he thus has a powerful
debugging aid at his disposal. This feature is described in
Section 3.

The stimulus for this work arose from the development of the
Guys/Essex Medical Information Project (Abrams ez al., 1968;
Bowden ef al., 1971) on a Honeywell 516. Because of the large
amount of software to be written and the limited ‘hands-on’
time available, a simulator with the above features was clearly
desirable. Such a simulator has been written for a DEC PDP-10
(Burnett, 1972), and has proved extremely valuable for program
development.

2. Peripheral simulation

Realistic simulation of peripheral activity is essential if a
simulator is to be a powerful tool for detecting real-time
program faults. Necessary requirements are that the simulator
should:

(a) test all parts of any peripheral handling code

(b) reproduce the relative speeds of CPU and peripherals

(c) preserve crisis times

(d) simulate interrupts.

Requirement (@) rules out any method which makes all
peripheral transfers instantaneous and which therefore does not
test those pieces of code which are entered if a device is busy.
An attempt to overcome this deficiency by making tests for
‘device ready’ fail once and succeed thereafter will fall foul of
requirements (b) and (c).

What is needed is a method of delaying peripheral transfers
and of altering the flags associated with them. This delay is to

be until such time as the simulator has executed a comparable
number of instructions to that which the actual machine would
execute during the course of a real transfer. The degree of com-
parability need not be exact; it is sufficient that it be within the
same order of magnitude, and hence it can be achieved by
counting instructions executed by the simulator without takingg
account of their varying execution times. 2

Thus when a peripheral activity is initiated the appropriates
status flags are set and a count associated with that activity is§
initialised. On each subsequent instruction cycle the count is>
decremented. When it expires the transfer of data or alteringg
of flags is performed according to the manner in which the=
simulated peripheral is supposedly active.

To implement such a scheme directly would be restrictives
since it would impair the speed of a large number of programs?g
in those situations where real-time control is not necessary,3
interrupts are switched off, and peripheral activity is directed>
by means of wait loors. For example, consider as a worst casegf
the output of characters to a teletype. Taking the output speeds
as 10 characters per second and the average instruction time as3.
3 microseconds gives a count for this device of around 30,0003
The time taken to execute 30,000 instructions under simulations
may be prohibitive, and will usually be largely wasted in a two2
instruction test loop (skip if ready; jump . —1). '

Some advantage may be gained by allowing the device counts=
to be varied, within limits, by the programmer. In effect this=
allows the speed of the peripherals to be controlled as may bé>
felt necessary. The user is then in a strong position in most-
program development situations. On one hand, if his programs
has peripherals active but is not dependent on their relative”
speeds, then he can set device counts low; on the other hand, if
the relative speeds are critical then the device counts can be set;
so as to gear the peripherals almost exactly to real time. =

This is essentially the method adopted, and it should be noted”.
that it is adequate for the simulation of crisis times. The crisis’
time for, say, reading consecutive characters from a paper tapé&.
in motion is simulated by the length of time taken for the tapey
reader count to expire. On expiry of the count the next character?
is transferrred to the input buffer, overwriting the previous one
irrespective of whether the buffer has been read or not. Thus
the obligation of the programmer to transfer out of the buffer
sufficiently quickly in real life is reproduced exactly under
simulation.

Setting device counts low will reduce crisis times and so if
a program can meet crisis times under simulation it will certainly
meet them in real life. However, the possibility arises that a
valid program can go wrong through failure to meet crisis times
when run on the simulator. Provided device counts are not set
too low this should seldom happen, and experience has shown
that quite low device count settings can be achieved before any
differences between programs run on the real machineand under
simulation is observed.

sdy

VAWE]

+ICL, Bracknell, *Computing Centre, University of Essex, Wivenhoe Park, Colchester, Essex CO4 3SQ

Volume 17 Number1



A further benefit of variable device counts is that it is possible

. to investigate the critical parts of a real-time system by select-

ively varying the device speeds under simulation and observing
the system’s behaviour.

It is worth noting that as far as data transfer is concerned the

simulated peripherals may be represented on the host machine

by any convenient peripheral. For example, data being input

through a simulated paper tape reader may in fact come froma..

disc file or from magnetic tape; the correspondence between
the simulated peripherals and the host’s actual peripherals is
made by the user.

The overhead of peripheral simulation is two instructions per
simulated machine instruction for each active peripheral; if no
peripherals are active the overhead is a single (test) instruction.

Interrupts
The scheme for peripheral simulation described above makes no
mention of interrupt handling. In fact interrupts can be fitted
into it with little extra effort. What is required is a flag for each
peripheral which, when set, means ‘this peripheral is in inter-
rupt condition’. The flag will be set on expiry of a count in the
same way as the ready flag is set—indeed for most peripherals
it will be set at the same time. At the beginning of each instruc-
tion cycle the simulator checks whether any peripheral is
interrupting, i.e. whether the following three conditions all
hold:

(@) the peripheral is in interrupt condition

(b) the bit corresponding to the peripheral in the interrupt

enable mask is set

(c) interrupts are enabled.
If so then a jump to the interrupt routine is effected in the same
manner as the real machine.

3. Conditional halts
The conditional halt is the second feature of a simulator which
makes it of great value in interactive debugging. It is used to
halt simulation and return to the user whenever a specified set
of conditions holds. The power of the feature lies in the fact
that the conditions are evaluated during each instruction cycle
at run-time, as opposed to more traditional break-point
insertion which is effectively performed at load-time.

We shall first give a few examples of the kind of conditions
which may be specified and then proceed to describe the
implementation. ’

‘Conditions are concerned with the values of registers and
memory locations and with the number of instructions executed.
Examples of simple conditions are:

(i) P<20
satisfied if the content of the program counter is less than
208-

(i) A = [1000]
satisfied if the content of the accumulator is equal to that
of location 1000.

(i) N=1
satisfied if one instruction has been executed since the
simulator was last entered.

Simple conditions may be combined into multiple conditions
by the connectives AND(.) and OR(+), and inverted by the
use of NOT(%). Round brackets may be used to resolve
ambiguities. Concatenation of two simple conditions implies
an omitted ¢.’. Examples of multiple conditions are:

(i) 1000 = [1001] = [1002] = O
satisfied if the contents of locations 1000, 1001, 1002 are
all zero

(ii) P < 5000 + P > 6400
satisfied if the program counter does not lie between
5000 and 6400. This type of condition can be used to

trap any attempt to jump out of code into data.

(iii) %((P > = 5000.P < = 5777) + (P > = 1000.

P < =1077))

This will trap any attempt to jump out of the two areas
5000 — 5777 and 1000 — 1077.

(iv) P=1040.(X < 0 + X > = 40)
This will detect an out of bounds array subscript for an
array of length 404 accessed via indexing by an instruction
in location 1040.

The implementation of conditional halts is divided into two
parts. The first part occurs at user level, where the specified
conditions are formed into a condition tree, the leaves of which
are simple conditions and the nodes of which are the connect-
ives ¢.” and ‘+°. The second part occurs during simulation at
the beginning of each instruction cycle, when the condition
tree is evaluated and if the result ‘true’ is obtained an exit is
made to the user.

Building the condition tree

Building the condition tree is a two-pass process. The first pass
is a lexical scan which reduces the input string of characterg
specifying a multiple condition to a canonical form. Pass twg
acts on the resulting character string to produce a tree by ai
algorithm closely resembling that for the conversion of an
arithmetic expression into reverse Polish form. The ‘operators3
are ‘.” and ‘+’, and the ‘operands’ are the individual simpl
conditions. Thus the condition given in example (iv) above ral'f

compiled into the tree S
D

3

I3)

2

P = 1040 o
8

3

8

X<0X>40 3

=]

NOT (%) -operators are eliminated from the condition tree b§
use of De Morgan’s laws, yielding two advantages; firstly the.
size of the tree is reduced, thus saving both space and evaluation
time, and secondly the tree becomes uniformly binary. Thg
leaves of the tree, which are simple conditions, consist of
pointers to the operands of the condition and to the appropriate:
machine code routine for evaluating it. ©

Aq 606

Evaluating the condition tree s
Evaluation of the condition tree occurs at the beginning of each
instruction cycle, and if the result is ‘true’ then an exit is made tg
the user. Evaluation is by means of a recursive routine whick
calls itself to evaluate sub-trees and calls the appropriatf
machine code routine to evaluate leaves. Redundant evaluatiofi
of sub-trees is avoided whenever the result is apparent from
evaluation of the left-hand branch alone. N

The time overhead depends on the multiplicity of the condition
being evaluated, but as this in practice is rarely greater than
four it has not proved to be a critical consideration. When no
condition is being evaluated the overhead is a single (test)
instruction.

4. Conclusion

The authors feel that simulation of one machine on another can
be a powerful aid in developing real-time programs for the
simulated machine. Experience shows that when a simulator is
written to incorporate the features described in this paper then
the environment provided by the simulator is almost indis-
tinguishable, as far as real-time program running is concerned,
from the actual machine itself. The additional benefit of being
able to control the running and halting of the program at will
makes the simulator a useful debugging tool, with negligible

The Computer Journal



overhead in cases where this facility is not required. The
experience gained in use of the conditional halt facility is
currently being evaluated with a view to providing similar
facilities implemented in hardware for a particular class of
machine.

References

Acknowledgements

The authors wish to thank their colleagues for their help
throughout this project, and the referee for his constructive
comments on the preparation of this paper.

ABRrAMS, M. E., BowpEN, K. F., CHAMBERLAIN, J. O. P., and MAcCALLuUM, 1. R. (1968). A Computer-Based General Practice and Health
Centre Information System, Journal of the Royal College of General Practitioners, Vol. 16, p. 515.

BowpeN, K. F., MacCAaLLUM, 1. R., and PATIENCE, S. P. (1971). Data Structures for General Practice Records. IFIP Congress Proceedings.

BURNETT, P. (1972). An Interactive System to Simulate a Small Computer. M.Sc. Dissertation, Computing Centre, Essex University.

Book reviews

Numerical Methods for Unconstrained Optimimization, edited by
W. Murray, 1972; 144 pages. (Academic Press Inc. (London),
£3-00)

The main criticism I have to make about this book concerns the
rather excessive delay in publication of the work. Dr. Murray
explains in the preface that this was partly due to the delay in the
decision to publish the proceedings of the IMA/NPL conference,
held in January 1971. However, it is commendable that most of the
contributors took advantage of the delay to revise their original
papers to include material which has appeared since the conference.

The book provides an excellent introduction to the subject of
unconstrained optimisation which is suitable not only for the non-
specialist but also as an undergraduate course text. There are one
or two printing errors, and, personally, I prefer the use of a heavy
type x for the position vector of the variables, but the notation used
is clearly explained in the Glossary of Symbols—an example other
authors would do well to follow!

The chapters, or sections, of the book correspond to the papers
given at the conference; after a brief introduction to ‘Fundamentals’
given by the editor, W. H. Swann gives a good practical survey of
Direct Search methods, which could have included with advantage a
numerical comparison of the methods described. This is followed by
a chapter on ‘Problems related to unconstrained optimization’
by M. J. D. Powell, dealing with methods for functions which are
sums of squared terms, and with the use of unconstrained tech-
niques in constrained optimisation problems. The latter topic
includes both the penalty and barrier function methods and the use
of Lagrange parameter methods for problems with equality
constraints.

Murray’s description of ‘Second derivative methods’ commences
with a summary of the advantages and disadvantages of the ‘classical’
steepest descent and Newton methods (the former is not a second
derivative method, of course) and includes a discussion of the prob-
lems which arise if the Hessian matrix is not positive definite. If this
is not the case the importance of the use of Choleski’s method is
stressed and a numerically stable modified Newton algorithm using
this factorisation is described. A useful inclusion in the chapter is a
description of the application of the Marquardt-Levenberg method
when second derivatives are available. Fletcher’s survey of ‘Con-
jugate direction methods’ starts with a review of the objectives of
optimisation and conditions required for efficiency of any method;
he shows that the conjugate direction methods meet these criteria
and considers in turn methods which do and do not require calcul-
ation of the derivatives of the objective function. The chapter is
concluded by relating these methods to the general class of Quasi-
Newton methods which are described in detail by Broyden in the
following chapter. The underlying principles of this class of method
form the basis of Broyden’s survey, and the paper includes a compari-
son of the use of various forms of update formulae for the
approximation to the Hessian and its inverse.

The final two chapters are essentially practical in nature. In
‘Failure, the causes and cures’, Murray gives useful hints for dealing
with programming errors, rounding errors and problems arising in
transformation of variables; he also compares the numerical stability
of the various classes of method, and finally discusses the use of
algorithms with regard to choice of input parameters and interpret-
ation of computer results. Fletcher’s ‘Survey of Algorithms for

Volume 17 Number1

unconstrained optimisation’ is also extremely useful from the prac-
tical point of view, but is, unfortunately, a subject which ‘dates’
very quickly and has therefore suffered most from the delay in
publication. No reference is made to the NAG library the aim of
which is to include the best available routines, written in bothS
'‘ALGOL 60 and FORTRAN, for most of the important topics ing
numerical analysis, including optimisation. One of the most useful
features in the original paper was the flow chart for choice of&
algorithm for any practical problem—this has been omitted fromg
the book, although it was included in the Harwell report of the paperg
(TP456).

To summarise, the book is well written and a very worthwhlleU
purchase for both the specialist and non-specialist. One hopes thatE
the IMA/NPL conference on Constrained Optimization, to be heldQ
early in 1974 will live up to the high standard set by its predecessor.3

HEATHER M. LIDDELL (London)%

'g

U

Numerical Methods for Nonlinear Optimization, edited by F. A.8 S
Lootsma, 1972; 439 pages. (Academic Press Inc., London, £9- 00)\

The problem of finding the maximum or minimum value of a functloré
of several variables is one which appears trivial until one actually®
has to solve it. For some considerable time now the main strategies?j
have been well known. These include variable-metric, conjugate-Z
gradient and non-gradient methods. However as the number of<
variables increases the tactical problems multiply and the economicss
of obtaining solutions begin to obtrude. Fairly trivial changes in the®
tactics employed in developing algorithms for solvmg these problemsN
can make quite radical changes in the economics of the methods. c>
Thus the importance of efficient algorithms has emerged. c

This book is the report of a conference held at Dundee Universitys
in June-July 1971. It includes papers on the theoretical aspects of:
methods for unconstrained optimisation using variable-metric andg
conjugate-gradient methods. Particular methods for non-linear least>
squares and curve-fittings—in which some defined distance-function©
has to be minimised—are studied. Some attention is paid to theg
design of methods for finding global optima of problems that may—
have local non-global optima. There are also papers dlscussmgg
problems of constrained optimisation.

Of recent years non-gradient methods have been somewhat neg-
lected, but since these promise to be more sparing of computer
storage space they have a particular potential when the number of
variables is very large. There is some discussion of simplex type
algorithms demonstrating this.

It would be invidious to choose any paper from this collection for
special mention—the general standard is so high. A wealth of com-
putational evidence is given about the performance of the algorithms
discussed, and the tests used appear convincingly realistic. All in all
this book is a valuable ‘tool-box’ for anyone faced with a non-linear
optimisation problem.

As a footnote to an entertaining query raised by F. H. Branin about
who was Raphson, D. J. Wilde’s off-the-cuff reply that he was
Newton’s programmer is wide of the mark. Raphson appears to be
the true author of the so called Newton-Raphson method. He gave
it in his book Analysis Aequationum Universalis published in
London in 1690.

A. Young (Coleraine)

27



